Leamg

Seyed Abbas Hosseini
Sharif University of Technology

Most slides are adopted from Soleymani CE-717




Dimensionality Reduction

Dimensionality reduction is the transformation of data from a high-
dimensional space into a low-dimensional space so that the low-dimensional

representation retains some meaningful properties of the original data.




Feature Selection vs. Extraction

Feature Selection
select a subset of a given feature set
Feature Extraction

A linear or nonlinear transformation on original feature set
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Feature Selection vs. Extraction

Unsupervised Feature Extraction
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Supervised Feature Extraction
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Linear Dimensionality Reduction

Finding a linear transformation (matrix) that directly maps data from
high dimensional feature space to a low dimensional feature space

Original data

Type equation here.
reduced data

x' € RY

AT - Rd'Xd

x =ATx
xeER d < d



Principal Component Analysis (PCA)

Goal:

Reducing the dimensionality of data by a linear transformation
while preserving important aspects of the data

Two equivalent views: find the direction for which
the variation presents in the dataset is as much as possible
argmax % Z (v"'x("’)2

the reconstruction error is minimized

N
argmin Z [|x ™) — (v"‘x("))v||2
v

n=1 -

blue:+ red: =
is fixed (shows data)
So, maximizing red:is equivalent

origin to minimizing blue:
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PCA vs. Random Projection

PCA finds directions that preserve the information in data and original
data can be reconstructed by minimum error.

RANDOM PROJECTION




Principal Component Analysis (PCA)

Goal:

Reducing the dimensionality of data by a linear transformation
while preserving important aspects of the data

Two equivalent views: find the direction for which
the variation presents in the dataset is as much as possible
the reconstruction error is minimized

Method: Mapping each data onto first few Principal components




Principal Components

Principal Components: Orthonormal basis for the vector space of data that are

ordered by the fraction of the total information (variation) in the corresponding

directions

Claim: PCs are the eigenvectors of the covariance Matrix of the data points.
E(?l)
E(Xd)
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First Principal Component

Find vector v1 that maximizes sample variance

max— Z (v x(M — )
= nZ vl (x™ — %)(x™ - %) " v,
n=1

N
1
= vl (NZ(X(”) — x)(x™ — X)T> v, = viSv,
n=1

T

s.t. vijv, =1
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First Principal Component

N
1 T.(n) T =\ % T
max — (v]x — V3 x) = v; SV,

v N
n=1

s.t. viv, =1

L(vy,41) = v{Sv; + 41(1 — v{vy)

oL
‘671'=O=>25v1 _ZA]V1 =O

= Svl — /111)1

Eigenvector with maximum eigenvalue maximizes the objective
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Second Principal Component

max v Sv,
V2
s.t. viv, =1
viv, =0

L(vy, Ay, @) = vISv, + A,(1 —viv,) — aviv,

oL
Findinga: — =0 = 2Sv, — 24,v, —av,; =0
avz

= 2v{ Svy, — 2A,v{ v, —aviv; = 0
= 2 viv, =2, X0—a =0

=>a =10
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Second Principal Component

max v4 Sv,
V2
s.t. vav, =1
viv, =0

0

L(vZ:AZ: ) — vz sz + AZ(l U:ZTUZ) o avzvl

" oL
Finding 1,: F = = 0= 25v, — 24,1, =0
2

= sz — szz

v2 is the second largest eigenvalue
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PCA Steps

» Input: N X d data matrix X (each row contain a d

dime

nsional data point)

__1 N i

X < Mean value of data points is subtracted from rows of X

1 ST . .
S = EXTX (Covariance matrix)

Ca
Pic

culate eigenvalue and eigenvectors of §

k d' eigenvectors corresponding to the largest eigenvalues

and
XI

put them in the columns of A = |v,, ..., V]

= XA . .
First PC  d’-th PC
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Reconstruction

Original data can be reconstructed using the PCs and the
transformed data
V] X
x'=|
UZIX

X =AT(x—-%)
SX=X+Ax' =X+ AAT (x — X)

A= [‘Ul, ...,vd’_

if we use all PCs, then original data can be found without any error.
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PCA on faces: Eigenfaces

Display regular faces of dataset

16
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Eigenfaces: PCs of faces

‘ r .
p WM EACN
: 4 e . ~"
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First few eigen faces vs. Last few eigenfaces
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Eigenfaces: Reconstructing images

x is a 112X 92 = 10304 dimensional vector
containing intensity of the pixels of this image
andX =x—Xx

Feature vector=[xj,x;, ...,x ]

x! =v % - The projection of x on the i-th PC

Average
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Eigenfaces: Reconstructing images

d'=16
Original
d'=64 d'=128 -256 Image

d'=32
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Pros & Cons

No parameter tuning
PCA is deterministic and fast
Can be a preprocessing step specially for noise reduction in data
However:
Data of different classes may not be separable after PCA

Distance among data and data topology may not be preserved

LDA
« PCA
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t-Distributed Stochastic Neighbor Embedding (t-SNE) is an unsupervised,
non-linear technique primarily used for data exploration and visualizing high-
dimensional data. The technique is a variation of Stochastic Neighbor Embedding

(SNE).
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overview of working of t-SNE:

The algorithms starts by calculating the probability of similarity of points in high-
dimensional space and calculating the probability of similarity of points in the
corresponding low-dimensional space.

First, measure the - _ o o™

- -
distance between /-“"’ -
two points...

..lastly, draw a line from the
point to the curve. The length
of that line is the “unscaled

Then plot that
distance on a

normal curve that is

centered on the
point of interest \

similarity”.

(I made that terminology up, but
it will make sense in just a bit!)
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The similarity of points is calculated as the conditional probability that a point A would
choose point B as its neighbor if neighbors were picked in proportion to their
probability density under a Gaussian (normal distribution) centered at A.

Using a normal distribution
means that distant points have
very low similarity values....
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It then tries to minimize the difference between these conditional probabilities (or
similarities) in higher-dimensional and lower-dimensional space for a perfect
representation of data points in lower-dimensional space.

- ...and lastly, drawing a line
from the point to a curve.

However, this time we're
using a “t-distribution”.

Just like before, that means
picking a point...

..measuring a distance..
—

- YOOV ©
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Like before, we end up
with a matrix of
similarity scores, but
this matrix is a mess...
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In simpler terms, t-SNE gives you a feel or intuition of how the data is arranged in a high-
dimensional space. It was developed by Laurens van der Maatens and Geoffrey Hinton in

2008.
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SNE pair-wise similarities

dimensionality reduction methods convert the high-dimensional data set X = {x,,..., x,,}
into two or three-dimensional data Y = {y,, ..., y,,} that can be displayed in a scatterplot.
Stochastic Neighbor Embedding (SNE) starts by converting the high-dimensional

Euclidean distances between datapoints into conditional probabilities that represent
similarities.

. — X (I —xil1*/207) pjlj = 0
/! 2 k+#i €XP (_||Xi _kaz/zog) "

For nearby datapoints, P;; is relatively high, whereas for widely separated datapoints,
P;; will be almost infinitesimal (for reasonable values of the variance of the Gaussian,
o). We set the variance of the Gaussian that is employed in the computation of the

conditional probabilities P;; = =

_exp (=l —y;ilI?)
>k exp (—|lyi — vil|?)

qjli qjj =0
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pair-wise similarities stay the same

Pijli

P ]
'.’*.‘ -

dili
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pair-wise similarities stay the same

P
* e o
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pair-wise similarities stay the same

" ..
'O‘*o‘ -
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pair-wise similarities stay the same

. ';‘k.' .

32



If the map points y; and y; correctly model the similarity between the high-dimensional
datapoints x; and x;, the conditional probabilities p;;; and g;; will be equal.

A natural measure of the faithfulness with which g;; models p;; is the KullbackLeibler

divergence (which is in this case equal to the cross-entropy up to an additive
constant). The Kullback-Leibler divergence, Dy, , is @ measure of how one probability
distribution is different from a second, reference probability distribution.

)

Lower the KL divergence value, the better we have matched the true distribution with
our approximation.

Dk (P || Q) = ZP log<



SNE minimizes the sum of Kullback-Leibler divergences over all datapoints using a
gradient descent method.

C =Y KL(P||0;) = Zzp,,loo”"’

qjli

P; represents the conditional probability distribution over all other datapoints given
datapoint x; , and Q; represents the conditional probability distribution over all other
map points given map point y;.

It is not likely that there is a single value of ¢; that is optimal for all datapoints in the
data set because the density of the data is likely to vary. In dense regions, a smaller
value of o; is usually more appropriate than in sparser regions. SNE performs a binary
search for the value of o; that produces a P; with a fixed perplexity that is specified by
the user.

H(F;) = _ijlilogzpﬂi Perp(P;) = 2 H(P)
J
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Some questions

Similarity in high dimension
 Why radial basis function (exponential)?
Focus on local geometry.
This is why t-SNE can be . Foas
interpreted as topology-based. , t oo
- — d o ;'klo‘ o
1 - ~ -
« Why probabilities? - «F
Small distance does not mean proximity Sulhe N
on manifold. N
2) N
- . 2\ BN
Probabilities are appropriate to model S\g‘_
this uncertainty. o\ L
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Some questions

How do you choose oi?

The entropy of Pi increases with ai.

Uniform probabelity
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Some questions

« How do you choose ci?

Perplexity, a smooth measure of the number of neighbors.

Entropy of 1.055
Perplexity of 2.078

HP)= —> Pi = log, Pi

Prep(p) == 2H(')) '\4)1'1..\ 05

Entropy of 3.800
Perplexity of 13.929

37



The minimization of the cost function in Equation 2 is performed using a gradient
descent method.

g — 22(pj|i —4qjli JrPilj o ql'lj)(y" —){,-)
; .

The current gradient is added to an exponentially decaying sum of previous gradients
in order to determine the changes in the coordinates of the map points at each iteration
of the gradient search.

-~ SC o o
(1) — oy(t—1) (1—1) _ r(t—2)
7 = D g ) (7D o)
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In this section, we first discuss the symmetric version of SNE

As an alternative to minimizing the sum of the Kullback-Leibler divergences between the
conditional probabilities P;; and Qj;, it is also possible to minimize a single Kullback-

Leibler divergence between a joint probability distribution, P, in the high-dimensional
space and a joint probability distribution, Q, in the low-dimensional space

Pij
C=KL(P||Q) = ZZP{/IOECI—.}.
i ij

We refer to this type of SNE as symmetric SNE, because it has the property that
Pij = Pji and qij = qji for v i, j

o exp(—|vi—yill?) - exp(—
_ i)
Zk;él exp (—||vk — i ”z)

x; —x;[|*/20°)
Yiz1€Xp (—||xx —x;|%/26?)

qij
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But this causes problems when a high-dimensional datapoint xi is an outlier.

Pai*Pj - ’ - -
We set P;; = % This ensures that 2 ; P;; = ﬁ for all datapoints xi, as a result of

which each datapoint xi makes a significant contribution to the cost function.

=4 = ai) (i —
5y, g,(pj q‘/>(y YJ)

The main advantage of the symmetric version of SNE is the simpler form of its gradient,
which is faster to compute.
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In t-SNE, we employ a Student t-distribution with one degree of freedom as the heavy-
tailed distribution in the low-dimensional map.

(] + [lyi — ""/’”2) )

Siu (1 e =x12) ™

The gradient of the Kullback-Leibler divergence between P and the Student-t based
joint probability distribution Q:
oC

= =43Py — i) (1+ i =il 0 =)
. J

 What are the differences between SNE and t-SNE?
 Why we should use t-SNE instead of SNE?
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Pseudo Code

Algorithm 1: Simple version of t-Distributed Stochastic Neighbor Embedding.

Data: data set X = {x1,x2,....X, },

cost function parameters: perplexity Perp,

optimization parameters: number of iterations 7', learning rate 1, momentum o(7).
Result: low-dimensional data representation 9"'") = {y|.y5, ...y, }.

begin
compute pairwise affinities p;; with perplexity Perp (using Equation 1)
" PP,
set p;;j = 5=l

sample initial solution Y'Y = {y|,y3.....y,} from N/(0, 10-47)

for 1=/ to 7 do
compute low-dimensional affinities g;; (using Equation 4)

compute gradient gf\. (using Equation 5)

set ) = 9=V gy +a(r) (7D - 90=2)

end
end
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Visualizations of 6,000 handwritten digits from the MNIST data set.
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Visualizations of the Olivetti faces data set.

.
v ':' .
" e v ° v' 4“‘:‘: N .
‘ta a® . L
» - < L . .
N Y L L
o » . -
» A LR - (O v & < a ‘e . 2 T o o
A . v L ‘e 2% a* » ®
? & v 2 ‘> . . >
- ~ 4 . . « ey
Vo < ¢ oo« R AR T g
. . 3 e wo . . >
rJd . o . “ - . »
L) ’ 1 Q'. . Q. Y LI I s wmn * o LN :
fo A, . * - ¢ . - < - + “ . '. Vv °’l. <
.
"?‘ ": ¥ ‘. iy 0 b A4 ol 0’.. . * N Ten vy : 5
~ »
¥ - L) . .l . L L A v
* B - o A .' p LN -':'\ - ™e"ea ':
- ». "R -y = PO :0 < e« * b
A . & o s o . ® - * - °
g o ® * ‘j at . * A, ‘z‘AGA PP .o
e » L
‘. " - "’ - a “‘ o* £ e o rh P, 4 1{ . . ®
L™ . - - - A
. < s > - - & ry v Ag *ah t W ea 7
41. +* o A v I o,° .‘ Y <
La - B a d -~ B . 4
s ‘t - b 4 - V¥ - > Ve
> * - .y y ¥ Y - ¥ v
:’ <$ | 3 . LK ] - v
v
L c v Yy
L -
(a) Visualization by t-SNE. (b) Visualization by Sammon mapping.
L J
LR
-
- . ©
4
<
-
v
"
ha
<
.

L J
<« LY A
e *
/‘-"!‘a
..f « "
- s <4
4 -

(c) Visualization by Isomap. (d) Visualization by LLE.



Important Application

The Deep Learning Algorithms mimic the cognitive capabilities of the human brain
and the Interpretability of Deep Learning Algorithms has been an important area of
research since the start of the Deep Learning era

I'rue output = Dog
Why Dog ?
O : da
OUTPUT wmp | Why not somthing else?
» 1 < VO How to automatically verify it?

P - y I . N 9
NPUT o ; How to trust the network

Oroxen 1 \ Wrong output = Cat

How to find out this is a failure
pomnt?

How to improve the network?
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Important Application

ConvNets can be interpreted as gradually transforming the images into a
representation in which the classes are separable by a linear classifier. We can get a
rough idea about the topology of this space by embedding images into low dimensions
and t-SNE is one powerful technique that can be used for embedding high-
dimensional vectors in a low-dimensional space while preserving the pairwise
distances of the points.

>3
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Important Application

To produce an embedding, take a set of images and Forward propagating each image
through a trained ConvNet to extract a vector for each image class (e.g. in AlexNet the
4096-dimensional vector right before the classifier can be used for embedding) and
then plug the vectors into t-SNE and get a 2-dimensional vector for each image.
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Important Application

Images that are nearby each other are also close in the CNN representation space,
which implies that CNN “sees” them as being very similar.
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PCA vs t-SNE

you will see the output of PCA on the Fashion-MNIST dataset to compare it with t-SNE.
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PCA vs t-SNE

some key differences between PCA and t-SNE can be noted as follows:

t-SNE is computationally expensive and can take several hours on million-sample
datasets where PCA will finish in seconds or minutes.

PCA it is a mathematical technique, but t-SNE is a probabilistic one.

Linear dimensionality reduction algorithms, like PCA, concentrate on placing dissimilar
data points far apart in a lower dimension representation. But in order to represent high
dimension data on low dimension, non-linear manifold, it is essential that similar data
points must be represented close together, which is something t-SNE does not PCA.

*Sometimes in t-SNE different runs with the same hyperparameters may produce
different results hence multiple plots must be observed before making any assessment
with t-SNE, while this is not the case with PCA.

*Since PCA is a linear algorithm, it will not be able to interpret the complex polynomial
relationship between features while t-SNE is made to capture exactly that.

50



References

. CE-717: Machine Learning _ Sharif University of Technology _ Fall 2020 _ Soleymani

. www.en.wikipedia.org/wiki/Principal_component_analysis

. www.cs.tau.ac.il/~rshamir/abdbm/pres/17/PCA.pdf

. https://heartbeat.fritz.ai/understanding-the-mathematics-behind-principal-component-analysis-efd7c9ff0bb3

. https://www.youtube.com/watch?v=NEaUSP4YerM

. https:/en.wikipedia.org/wiki/T-distributed _stochastic_neighbor_embedding

. https://towardsdatascience.com/t-sne-clearly-explained-d84c537f53a

. https:/www.datacamp.com/community/tutorials/introduction-t-sne

. https://www.researchgate.net/post/Does-Random-Projection-have-advantages-over-PCA

. https:/medium.com/@lwj.liuwenjing/how-to-get-eigenfaces-a9caeeba8767

. https:/www.jmir.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf?
fbclid=lwAR0OBgg1eA5TFMg0ZeCQXsloL6PKrVXUFaskUKtg6yBhVXAFFvZA6yQiYx-M

. https:/medium.com/analytics-vidhya/deep-learning-visualization-and-interpretation-of-neural-
networks-2f3f82f501¢c5

51


http://www.en.wikipedia.org/wiki/Principal_component_analysis
http://www.cs.tau.ac.il/~rshamir/abdbm/pres/17/PCA.pdf
https://heartbeat.fritz.ai/understanding-the-mathematics-behind-principal-component-analysis-efd7c9ff0bb3
https://www.youtube.com/watch?v=NEaUSP4YerM
https://en.wikipedia.org/wiki/T-distributed_stochastic_neighbor_embedding
https://towardsdatascience.com/t-sne-clearly-explained-d84c537f53a
https://www.datacamp.com/community/tutorials/introduction-t-sne
https://www.researchgate.net/post/Does-Random-Projection-have-advantages-over-PCA
https://medium.com/@lwj.liuwenjing/how-to-get-eigenfaces-a9caeeba8767
https://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf?fbclid=IwAR0Bgg1eA5TFmqOZeCQXsIoL6PKrVXUFaskUKtg6yBhVXAFFvZA6yQiYx-M
https://medium.com/analytics-vidhya/deep-learning-visualization-and-interpretation-of-neural-networks-2f3f82f501c5

Any Questions?!




