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A B S T R A C T

Accurate travel time prediction is essential for effective Intelligent Transportation Systems (ITSs). Unlike 
traditional gradient-based methods, which may get trapped in local optima, metaheuristic algorithms efficiently 
navigate complex optimization landscapes without needing derivative computations. This study compares two 
metaheuristic algorithms—Wild Horse Optimization (WHO) and Coot Optimization Algorithm (COA)—for 
optimizing the weights and biases of a Multilayer Perceptron (MLP) neural network to predict the Travel Time 
Index (TTI). The MLP uses four input variables (traffic volume, weather, crash rate, and section length), one 
hidden layer with 12 neurons, and one output neuron. The model was trained and tested on a dataset of 472 
observations from Virginia’s transportation network (2014–2017), with input variables showing mean values of 
1.19 (traffic volume), 6.92 mm (precipitation), 0.17 (crash rate), and 2.76 miles (section length), and standard 
deviations of 0.20, 5.21, 0.12, and 1.64, respectively. Performance was assessed using Mean Squared Error 
(MSE), Root Mean Squared Error (RMSE), and Correlation Coefficient (R). The WHO-optimized model out
performed COA, achieving an MSE of 0.0026, RMSE of 0.0511, and R of 0.7516, compared to COA’s MSE of 
0.0028, RMSE of 0.0533, and R of 0.7262. WHO also showed better computational efficiency (147 s vs. 160 s for 
COA). These results highlight the WHO-MLP model’s superior accuracy and speed, making it ideal for real-time 
navigation systems.

1. Introduction

Travel time plays a serious role in transportation network analysis 
and is considered a pivotal variable in shaping user behavior, helping to 
make informed decisions, and guiding traffic flow planning and man
agement. With the rapid development of transportation infrastructure 
and the proliferation of Intelligent Transportation Systems (ITSs), ac
curate travel time prediction has emerged as a fundamental requirement 
for enhancing the efficiency of these systems. However, traffic con
gestion—a primary source of travel time variability and uncertainty—
poses significant challenges to prediction accuracy [65].

The Federal Highway Administration (FHWA) identifies seven pri
mary sources of congestion that are known to impact transportation 
network performance: accidents, work zones, weather conditions, 

demand fluctuations, special events, physical bottlenecks, and traffic 
control systems [46]. To evaluate the stability of a network in response 
to travel time fluctuations, the concept of Travel Time Reliability (TTR) 
has been introduced. Although a single origin could not be assigned to 
the advent of TTR, travelers implicitly understood it and would buffer 
their travel times to allow for unexpected delays. Travel times were not 
always consistent, as early transportation research started to recognize. 
An example is the study of Gaver in 1968, where he suggested a de
parture time choice model in which passengers factored in a “head start 
time” and took into account the variance of their travel time [21]. A 
major step in quantifying and integrating reliability into transportation 
analysis was taken by Jackson and Jucker in 1982. They introduced the 
“Mean-Variance” framework, where a decision-maker tries to minimize 
a sum of expected travel time and travel time variability [27].
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The significance of TTR was increasingly acknowledged in the 1990s 
and 2000s, especially for freight and commuter transportation. The 
study went on to investigate various theoretical frameworks, such as 
“Scheduling Delays” and “Mean-Lateness,” for calculating the value of 
TTR. Improved measurement and analysis of travel time variability was 
also made possible by the development of increasingly complex data 
collection techniques. Some of the studies conducted during this period 
are the study of Small, Noland, and Koskenoja, where they evaluated 
how a person’s socioeconomic characteristics affect their travel reli
ability using a stated preference approach [59]. Another outstanding 
study was conducted by Abdel-Aty, Kitamura, and Jovanis. They used a 
stated preference survey to examine the impact of travel time variability 
on route selection [1].

The promotion of TTR as a performance metric was greatly sup
ported by the FHWA. In a report entitled “Traffic congestion and reli
ability: Trends and advanced strategies for congestion mitigation”, the 
growing problem of unreliable travel time was highlighted and strate
gies to address it were suggested. According to the FHWA, TTR is 
defined as “the consistency or predictability of travel times across different 
time periods and days” [63]. Also, the National Cooperative Highway 
Research Program (NCHRP) Report 311 further outlines three common 
definitions of TTR: 

• The discrepancy between expected and actual travel times caused by 
non-recurring congestion;

• The variability in travel times observed over a large sample of daily 
trips;

• The systemic impact of non-recurring congestion is quantified by the 
intensity, duration, and spatial extent of congestion events [58].

Although defining definitions for TTR could pave the way toward 
incorporating TTR into transportation and planning models, some sig
nificant flaws in conventional transportation performance metrics such 
as better justification for operations and management strategies and 
economic impacts of unreliability paved the way toward defining nu
merical measures for TTR [22,53]. The numerical metrics included 
statistical measures such as standard deviation, coefficient of variation, 
skewness, percentage change, and percentiles, as well as 
performance-based indices like the Buffer Index (BI), Travel Time Index 
(TTI), Planning Time Index (PTI), and congestion frequency index [11,
35]. Among them, the TTI is widely recognized as a critical metric for 
assessing congestion severity. TTI is defined as the ratio of the average 
actual travel time to the free-flow travel time and has been extensively 
adopted in transportation research [49].

TTI was first introduced by Texas Transportation Institute, in their 
"Urban Mobility Report". This measure was applied to 101 American 

Table 1 
Summary of Reviewed Studies Focusing Specifically on TTI in TTR Predictive Models.

Reference Category Methodology Scope Performance Measure/ Description

[80] Corridor level Statistical and analytical models Forecasting hourly TTI Robustness of Interacting Multiple Model (IMM) predictor 
could be increased and could perform better than the other 
predictors.

[81] Corridor level Statistical, analytical, and 
machine learning models

Traffic state forecasting Lower MAPE compared to other methods (0.94 for their 
model)

[82] Corridor level Statistical and analytical models Combined linear forecasting techniques to 
predict TTI during peak and non-peak periods

0.64 < MAPE < 1.86

[79] Corridor level Statistical and analytical models IMM predictor for hourly TTI forecasting, 
superior stability, and robustness of IMM

0.84 < MAPE < 1.45

[43] Network level Statistical and analytical models Analyzing incident-induced congestion on TTI 
variations by Spatio-temporal analysis and 
visualization.

The results emphasize the role of incidents in increasing 
congestion.

[4] Corridor level Statistical and analytical models Calculating TTI to assess level of service (LOS) An average TTI of 9.331, indicating poor service due to 
checkpoints.

[13] Corridor level Statistical and analytical models Developing a model based on field data on 
traffic volume, travel time, and road geometry

nonlinear regression models to 
predict TTI

R2 = 0.99 
RMSE = 4.20

[85] Network level Statistical and analytical models Using spatiotemporal data mining with GPS 
data from floating vehicles to predict TTI

Forecasting models: Curve Fit, 
Exponential Smoothing, and 
Forest-based

0.61 <Validation 
RMSE< 0.87 
0.57<Forecast 
RMSE<70

[73] Network level Machine learning methods Using Convolutional Neural Network (CNN) to 
predict TTI

0.52<RMSE<1.10 
0.08<MAPE<0.14

[8] Network level Statistical and analytical models This study conducts a contrastive analysis of TTI variations under weather conditions using multivariate 
regression models at different levels

[72] Network level Statistical and analytical models Comparing traffic flow under non-precipitation 
and rainy conditions

Maximum of the average TTI increases on the city scale 
under various rainfall intensities was between 3.3 %, and 
10.8 %.

[3] Network level Multiple machine learning 
methods

The proposed approach was also able to 
identify the effects of weather and seasonality

Developing a framework to forecast (TTI) 
They used machine learning models (regression): Ridge, 
Linear, Lasso, DT and SVR, and Ridge was the best.

[6] Network level Statistical and analytical models Quantifying the impact of rainfall on traffic 
mobility and TTR

Quantile regression and statistical tests to quantify 
rainfall’s effect on travel time distribution in India. 
The results found 457 % difference between maximum TTI 
values during rainfall vs. normal conditions.

[61] Origin- 
Destination 
pairs

Statistical and analytical 
models+ Unsupervised machine 
learning

Study of ridesharing data in three major US 
metropolitan areas

The TTI in the three cities typically ranged from 1.1 to 1.6. 
During peak traffic hours, the TTI reached its highest value 
(e.g., around 1.5–1.6 in Chicago and Los Angeles), while it 
remained close to 1.1 during off-peak hours.

[16] Corridor level Statistical and analytical models Evaluate TTR and identifying the factors 
affecting it.

TTR is significantly affected by several factors, including 
congestion, time of day, public holidays and characteristics 
of the traffic flow.

[64] Corridor level Statistical and analytical models Measurement and analysis of travel time and 
delays on specific routes during morning peak 
periods

The highest TTI value was observed in Army Chanel 
expressway link at 8.9 %.

[67] Corridor level Statistical models The effect of the COVID-19 pandemic on TTR No differences in TTI values when TTDs are formulated 
using a 5 min or 15 min aggregation interval
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cities on a yearly basis since 1982 [53]. Since its introduction, it has 
been applied to studies trying to address various aspects of trans
portation systems. Applications in planning and management are one of 
these focuses and examples of the studies including but not limited to: 
congestion monitoring [28], examining TTI to improve transportation 
planning [38], and analyzing TTI to evaluate service quality of road 
network sections [7]. Also, another category of studies, suggested new 
approaches, measurements, or confirmed current approaches pertaining 
to TTR and TTI. Examples of these studies are as follows: the study of Pu 
who analytically explored relationships between TTI and other reli
ability measures [49], or proposing a new travel time index (CMTT) that 
incorporates TTI in equilibrium modeling [77]. Finally, some studies 
focused on cutting-edge approaches, data sources, or collection tech
niques for TTI analysis or application [18,32,66].

Another field of study, compatible with this research, is the appli
cation of TTI in modeling TTR. Since the focus of this study is developing 
a novel approach to model TTI, we only focus on studies that consider 
TTI in their modeling process. These studies either develop or apply 
models to predict the TTI or investigate how various factors affect TTI. 
Further details on both of these categories are available in Table 1. In 
this table, MAPE stands for Mean Absolute Percentage Error, RMSE 
stands for Root Mean Squared Error, and SVR is Support Vector 
Regression and DT as Decision Tree.

Upon deeply reviewing the studies, it was revealed that researchers 
use state-of-the-art predictive methods, mostly machine learning, such 
as CNNs, Least Squares Support Vector Machines (LS-SVMs), and IMM to 
predict TTI with high accuracy. Statistical techniques like nonlinear 
regression and spatiotemporal data mining, which use massive datasets 
to reveal complex traffic dynamics, improve these strategies.

Classical statistical models predominantly rely on historical data and 
assumptions about the stability of traffic patterns [47]. While methods 
like historical averaging demonstrate reasonable performance under 
stable, low-density traffic conditions [24], they struggle to adapt to 
dynamic environments.

Linear regression models improve upon simpler approaches in un
stable conditions by incorporating variables such as distance, stops, and 
weather conditions; however, their accuracy is constrained by collin
earity and interdependencies among predictors [2,19,33,78]. Time se
ries models (e.g., ARIMA), which assume linear and stationary patterns, 
achieve limited success in static scenarios but exhibit significant accu
racy degradation when applied to real-time data or rapidly changing 
conditions [9]. The Kalman filter represents a dynamic approach for 
travel time estimation through state-space modeling and real-time data 
integration. Extended variants like the Extended Kalman Filter (EKF) 
have been developed to address the linearity constraints of standard 
implementations, though challenges persist in complex traffic systems 
[74].

Despite their widespread adoption, statistical models exhibit limited 
effectiveness in real-time travel time forecasting due to their reliance on 
linear assumptions, sensitivity to data noise, and inability to handle 
complex, real-time data analysis. To address these limitations, machine 
learning models have emerged as a viable and flexible alternative, 
leveraging their capacity to discern nonlinear patterns and process vast 
amounts of data effectively.

Among various methods, Artificial Neural Networks (ANNs) have 
earned significant attention due to their ability to accurately model 
dynamic traffic conditions and their key role in enhancing the perfor
mance of intelligent transportation systems. Recent studies demonstrate 
that ANNs, owing to their global approximation capabilities and high 
computational power, outperform traditional methods and can effec
tively address challenges such as multicollinearity. These advantages 
have established ANNs as reliable tools for predicting traffic parameters, 
earning them a prominent position in transportation engineering liter
ature [17]. Also, ANNs could prove themselves in traffic noise modelling 
[12].

The ANNs have gradually proven themselves to be a reliable tool for 

modeling complex tasks and datasets, however, relatively fewer number 
of studies applying them to TTR prediction, compared to travel time 
prediction, shows room for further application. The study of Van Lint 
et al. was among the first studies applying ANNs in TTR prediction. They 
proposed a neural network model to forecast three characteristic per
centiles, 10th, 50th, and 90th, claiming neural networks could be 
applied as an effective tool for predicting these percentiles and were able 
to make smooth estimates of characteristic percentiles [69]. It is widely 
acknowledged that TTR should be included in the planning and opera
tional models for metropolitan areas. The report of Liu and Haghani 
defined this framework in Utah by using ANN to study how adverse 
weather and crash events can alter TTR [37].

Among other studies focusing on TTR prediction by ANN, many 
others focused on predicting TRR by various architectures of ANN 
instead of defining conceptual frameworks. Amrutsamanvar et al. 
focused on Indian urban roads and mentioned their developed model 
could capture various values of TTR [5]. Similar to the previous study, 
Afandizadeh et al. investigated the efficiency of multiple machine 
learning methods (including ANN) on Virginia’s interstate network, 
however in their studies, ANN could not outperform other machine 
learning models [2,76]. Although they did not explicitly focus on the 
failure result of ANN, we believe it could be due to small dataset (ANNs 
usually require large datasets). Also, short-term TTR prediction by 
reliability interval was first addressed in the study of Wu et al. on 
corridor level in Texas [71].

Several novel architectures based on ANN have also been used as the 
main modeling approach in TTR prediction studies. Constrained Long 
Short-Term Memory (C-LSTM) quantile regression (LSTM is a type of 
Recurrent Neural Network (RNN), developed to address the vanishing 
gradient problem encountered by traditional RNNs) [36], a Generative 
Adversarial Network (GAN) with LSTM for studying TTR at network 
level by Shao et al. [56] and in peak periods [57]. Also, the Fitrnet (a 
feedforward, fully connected neural network for regression) model [30] 
was among the studies that utilized ANNs and related architectures for 
predicting TRR.

Upon reviewing studies, it was revealed that although neural net
works exhibit a strong capability to recognize complex patterns and 
nonlinear relationships, there is no study on TTR prediction applying 
Multilayer Perception (MLP).

MLP, a feedforward neural network with nonlinear activation func
tions with fully connected neurons, has been widely used in many as
pects of transportation, including travel time prediction (as already 
stated, it is different from TTR prediction) [24], passenger flow pre
diction [68], accident prediction [55], lateral movement prediction [75] 
and many other topics.

To the best of authors’ knowledge, in the field of TTR prediction, the 
Wild Horse Optimization (WHO) and Coot Optimization Algorithm 
(COA) have not been used yet. Furthermore, it should be also noted their 
rare application in the transportation context, such that the authors 
could not find any research utilizing COA and could find only one 
research on the capacitated vehicle routing problem [20] utilizing WHO.

The objective of this research is to design and evaluate a hybrid 
framework that integrates metaheuristic algorithms, specifically WHO 
and COA, to optimize the weights and biases of a MLP neural network for 
precise travel time prediction within Virginia’s transportation network.

The specific objectives are as follows: 

1. Enhancing Prediction Accuracy: Improving the MLP’s perfor
mance in travel time prediction by minimizing errors through 
optimal tuning of weights and biases using metaheuristic algorithms.

2. Avoiding Local Optima: Leveraging the exploration and exploita
tion capabilities of WHO and COA to prevent entrapment in local 
optima, thereby enhancing the model’s generalizability in Virginia.

3. Comparative Algorithm Evaluation: Conducting a comparative 
assessment of WHO and COA’s performance in optimizing the MLP 
based on statistical metrics (R, MSE, and RMSE), regression and 
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overlay plots, and convergence curves to identify the most effective 
algorithm.

This research introduces several contributions by integrating the 
novel and previously unapplied metaheuristic algorithms WHO and 
COA with MLP neural networks for travel time prediction in Virginia, 
offering the following key innovations: 

1. Pioneering Application of WHO and COA in Transportation: 
Utilizing the innovative WHO and COA algorithms for optimizing 
MLP weights and biases in the context of travel time prediction, a 
novel approach that has not been previously explored in this domain.

2. Hybrid Framework for Real-World Data: Developing a framework 
that combines real-world data with MLP and metaheuristic algo
rithms to deliver more accurate and practical predictions.

The remainder of this study is structured as follows:
Section 2 introduces the case study and details the dataset used in the 

research. Section 3 provides an in-depth exploration of the fundamental 
principles governing the MLP, WHO, and COA, covering their mecha
nisms, applications, and the formulation of the optimization problem. 

Section 4 offers a comprehensive analysis of the experimental results, 
evaluating performance through various metrics and plots, while high
lighting key findings. Section 5 concludes the study, summarizing the 
outcomes and proposing directions for future research.

2. Case study and data

In this study, TTI is used to show the variability of travel time. Also, 
the study investigates the effect of four independent variables including 
traffic volume ( AADT

Lane.mile ), weather (PRCP
1000), total crash rate, TCr (by 

considering total number of crashes, AADT and the length of each link in 
the network) and section length (Link Length) on the existing reliability 
index. In these variables, AADT is the Annual Average Daily Traffic, 
Lane shows the number of lanes in the studied segment and PRCP rep
resents total annual precipitation in mm for the specific segment.

All data were collected for 4 consecutive years, 2014 to 2017. The 
aim of this study is to present a model for predicting TTR using MLP and 
metaheuristic algorithms. TTR data, specifically TTI, was extracted from 
INRIX. For this study, 472 observations, calculated as 118 sections in 4 
years, indicating one annual observation per section per year was 
collected.

Table 2 shows an example of data prepared for modeling.
Fig. 1 shows the spatial distribution of these segments across 

Virginia.
Table 3 presents the statistical details of the dataset, including the 

total number of observations, mean, standard deviation, minimum, 
maximum, and the 25th, 50th (median), and 75th percentiles for each 
feature. The dataset consists of 472 records and encompasses five traffic 
performance-related features: PRCP/1000 (normalized precipitation 
rate), Link Length, Total Rate, AADT/(Lane.mile) (average annual daily 
traffic per lane-mile), and TTI. The normalized precipitation rate has a 

Table 2 
Sample data.

Link Length 
(Mile)

TCr (Total Crash 
rate)

AADT
Lane.mile

TTI 
(Unitless)

0.8389 5.33 0.166771 0.422139 1.00
1.1905 5.33 0.199593 0.440901 1.03
1.0971 5.33 0.382892 0.459662 1.00
0.9004 5.33 0.375235 0.469043 1.01
0.8389 5.06 0.087835 0.444664 1.04

Fig. 1. Spatial Location of Segments in Virginia Interstate.

Table 3 
Statistical details of the data.

PRCP
1000

Link Length Total Rate AADT
Lane.mile

TTI

Count 472.000000 472.000000 472.000000 472.000000 472.000000
Mean 1.192785 2.763220 0.172488 6.922751 1.013962
Std 0.204408 1.639356 0.119722 5.206517 0.077206
Min 0.769700 0.660000 0.022046 0.371058 0.890000
25 % 1.042100 1.640000 0.091598 2.721088 0.980000
50 % 1.161950 2.325000 0.144107 5.431771 1.000000
75 % 1.325425 3.530000 0.214471 10.082861 1.010000
Max 2.044700 7.920000 0.866237 28.048780 1.670000
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mean of 1.1928 and a standard deviation of 0.2044, indicating relatively 
low variability, with values ranging from 0.7697 (minimum) to 2.0447 
(maximum). Link Length averages 2.7632 miles, with a standard devi
ation of 1.6394, reflecting considerable variation in path lengths, 
ranging from 0.66 to 7.92 miles. The Total Rate, with a mean of 0.1725 
and a standard deviation of 0.1197, exhibits a wide distribution, varying 
from 0.0220 to 0.8662. AADT/(Lane.mile) has a mean of 6.9228, and its 
high standard deviation of 5.2065 indicates significant variation in 
traffic density, with values ranging from 0.3711 to 28.0488. Finally, the 
TTI, with a mean of 1.0140 and a low standard deviation of 0.0772, 
suggests relative stability, with values ranging from 0.89 to 1.67. The 
25th, 50th, and 75th percentiles for each feature indicate a balanced 
data distribution, offering valuable insights for analyzing traffic 
behavior.

2.1. Correlation matrix analysis

The correlation matrix (Fig. 2) examines the relationship between 
the dependent variable, TTI, and four independent variables: PRCP/ 
1000 (precipitation), Link Length, Total Rate, and AADT/Lane. Mile. TTI 
shows a very weak negative correlation with PRCP/1000 (− 0.07), 
suggesting that precipitation has negligible impact on travel time. 
Similarly, a weak negative correlation with Link Length (− 0.15) in
dicates that longer routes may slightly reduce TTI, possibly due to dif
ferences in road design or traffic conditions. In contrast, TTI has a 
moderately strong positive correlation with Total Rate (0.56), high
lighting that higher rates significantly increase travel time, making it a 
key predictor. TTI also exhibits a moderate positive correlation with 
AADT/Lane. Mile (0.32), implying that higher traffic volumes 
contribute to longer travel times, though less strongly than Total Rate. 
Notably, a strong negative correlation (− 0.70) between Link Length and 
AADT/Lane. Mile suggests that longer routes tend to have lower traffic 
density.

3. Research methods

This section begins by describing the MLP architecture and tackling 
the optimization challenges of weights and biases in gradient-based 
methods, followed by an introduction to the structure of metaheuristic 
algorithms. It elaborates on the core mechanisms of metaheuristic al
gorithms, such as WHO and COA, within the MLP framework. Addi
tionally, it outlines the evaluation metrics used to measure the model’s 
performance, providing a solid foundation for analyzing the proposed 
approach.

3.1. Multilayer perceptron (MLP)

The MLP, a form of artificial neural network, falls under the feed
forward neural network class. It consists of processing units, known as 
neurons, which convert input data to produce the intended output [40].

In an MLP, neurons are organized into three main layers: The input 
layer, the first layer, consists of neurons that receive input data and 
transmit it to the subsequent layer, with their number typically match
ing the count of data features. The hidden layer, the next in sequence, 
contains neurons that perform mathematical transformations on the 
data. A MLP may include one or multiple hidden layers, depending on 
the complexity of the task. The output layer, the final layer, processes 
data from the hidden layer to produce the end result, with its neuron 
count determined by the encoding of the expected output.

The MLP functions in a hierarchical, fully connected structure, with 
each neuron in one layer linked to all neurons in the subsequent layer 
through weighted connections. For instance, every neuron in the input 
layer is connected to all neurons in the hidden layer.

Each connection between neurons has a specific weight, reflecting 
how strongly one neuron influences another. Additionally, hidden and 
output layer neurons incorporate a bias term (β)—a constant that fine- 
tunes predictions by shifting the neuron’s activation threshold. This 
bias can either amplify (if positive) or suppress (if negative) the neuron’s 
output, shaping its overall response [34,48]. The core objective of 
training an MLP is to determine the most effective combination of these 
weights and biases.

The MLP architecture includes three primary components: an input 
layer, a single hidden layer containing m neurons, and an output layer 
with one neuron. The connection weights between the input and hidden 
layers are defined as ωH

i,j, where i = {1,…, n} and j = {1,…,m} corre
spond to the respective neurons in each layer. Similarly, the weights 
linking the hidden layer to the output neuron are labeled ωO

j,1. Addi
tionally, each neuron in the hidden and output layers has an associated 
bias term: βk for the hidden layer and k = {1,…,m+1} for the output 
neuron.

Neurons in the hidden layer perform computations through two 
sequential operations: weighted summation followed by activation. 
First, each neuron calculates its net input by summing the weighted 
outputs from all connected neurons in the preceding layer and adding its 
own bias term. This combined input for a given hidden neuron j is 
mathematically represented by (1). 

SumH
j =

∑n

i=0
ωH

i,j × Xi + βj (1) 

The term ωH
i,j corresponds to the connection weight between input 

neuron i and hidden neuron j. The output value from neuron i, denoted 
as Xi, serves as input for neuron j. Additionally, each hidden neuron 
jincorporates a bias term βjthat adjusts its activation threshold.

The second processing stage applies a nonlinear transformation to 
the summed input through an activation function. Typically imple
mented as a sigmoid function, this crucial step introduces nonlinearity to 
the network’s computations. For any given neuron, the activation output 
is mathematically defined by (2). 

yH
j = f

(
SumH

j

)
=

1
1 + e− SumH

j
(2) 

The value yH
j represents the computed output of hidden neuron j. This 

output can then serve as input to either another hidden layer or the final 
output layer. In the case of a single output neuron, the weighted sum
mation is calculated using (3), where: 

SumO
1 =

∑m

j=0
ωO

j,1 × yH
j + βm+1 (3) 

Fig. 2. Correlation Matrix.
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• yH
j is the output from hidden neuron j,

• ωO
j,1 denotes the connection weight between hidden neuron j and the 

output neuron, and
• βm+1 is the bias term applied to the output neuron.

The ultimate output of the MLP for a given dataset instance is derived 
from the activation operation of the output neuron, as outlined in (4). 

yO
1 = f

(
SumO

1
)
=

1
1 + e− SumO

1
(4) 

The primary objective in training an MLP is to determine the ideal set 
of connection weights and bias values for both hidden and output layers 
that collectively minimize the network’s MSE. In ANNs, learning rep
resents the adaptive process through which the system acquires pre
dictive capabilities. For MLPs, this knowledge acquisition occurs during 
training - a cyclical procedure where the network progressively fine- 
tunes its weights and biases. These adjustments systematically reduce 
discrepancies between the network’s predictions and target outputs, 
enhancing performance in fundamental tasks like classification and 
regression analysis.

The backpropagation algorithm, a widely adopted method for 
training MLPs [70], begins by initializing weights and biases with 
random values. The MLP processes a collection of labeled data (training 
set) to produce an output, and the discrepancy between this output and 
the target value is computed. This error is then propagated backward to 
refine the weights and biases. The process repeats until the error reaches 
an acceptable threshold [34].

While these traditional approaches are generally effective, they can 
encounter issues, such as extended periods of unchanging error levels or 
getting trapped in local optima. Their performance also depends heavily 
on the initial weight settings and the tuning of momentum and learning 
rate, where suboptimal choices may lead to divergence [41].

The performance of MLPs depends greatly on the precise tuning of 
weights and hyperparameters. Conventional gradient-based techniques, 
such as backpropagation, are widely used but often face challenges like 
becoming stuck in local optima or converging prematurely. To address 
these limitations, metaheuristic algorithms have emerged as powerful 
tools for optimizing MLP weights and hyperparameters. These algo
rithms provide global search abilities, operate non-deterministically, 
and function without gradients, offering greater flexibility than tradi
tional approaches. They are particularly effective in solving complex, 
high-dimensional, nonlinear problems [15].

Recently, metaheuristic techniques have emerged as effective alter
natives to backpropagation. These iterative algorithms efficiently pro
duce high-quality solutions and are highly adaptable, requiring no 
specialized knowledge to tackle a wide range of problems [26,31,62]. 
Research demonstrates that metaheuristics excel in optimizing MLP 
models, effectively handling large sets of weights and biases [14,60].

3.2. Wild horse optimization (WHO)

The WHO algorithm is a swarm-based metaheuristic algorithm 
introduced in 2021 by Naruei and Keynia. It addresses optimization 
problems by mimicking the social structure and fourfold behaviors of 
wild horses. Each individual in the population is considered a horse, and 
its position in the search space represents a candidate. The modeling 
process includes 4 main steps: 

1. Herding and Social Structure: The population is divided into several 
groups (herds), each led by a dominant male horse (Stallion). The 
remaining mares and foals are evenly distributed among the groups. 
The selection of the stallion (leader) is initially random and then 
optimized based on fitness.

2. Grazing Behavior: In this phase, members of each group (foals and 
mares) search for food around their group’s stallion. This behavior 

serves as a local exploitation mechanism, allowing the group to 
explore near the current best solution (represented by the stallion’s 
position).

3. Mating Behavior: A unique behavior in wild horses involves foals 
separating from the main herd before sexual maturity to avoid 
mating with parents or siblings. In the algorithm, this mechanism is 
modeled as a crossover operator between horses from different 
groups, enabling the algorithm to escape local optima traps and 
explore new regions of the search space.

4. Group Leadership and Competition: The leaders of each group 
(stallions) guide their members toward the best available region, 
modeled as a waterhole. Stallions compete with each other to access 
this waterhole, which enhances the optimization process [45].

The mathematical formulation of the aforesaid steps can be followed 
in the next subsection.

3.2.1. Mathematical formulation of WHO
The WHO algorithm uses a set of mathematical equations to simulate 

the aforementioned behaviors. The next steps are from the following 
resources: [23,39,83,84]

The first step is to model grazing behavior. The position of group 
members (non-stallion horses) is updated based on the position of their 
group’s stallion. This movement toward the stallion simulates an 
exploitative search. 

Xi
G,j = 2Z × cos(2πR) ×

(
StallionG,j − Xi

G,j

)
+ StallionG,j (5) 

In which, Xi
G,j is the position of the i th horse in the j-th group at the 

current iteration, StallionG,j is the position of the stallion in the j-th 
group, R is a random number between − 2 and 2 and Z is an adaptive 
parameter.

The second stage is mating behavior. This phase, aimed at preventing 
premature convergence and increasing population diversity, is simu
lated using a mean crossover operator and performed with a fixed 
probability called PC (Crossover Percentage). The mathematical 
formulation is as follows: 

XP
G,j = Crossover

(
Xq

G,i,X
z
G,j

)
, Crossover = Mean where (6) 

The third stage, group leadership and competition, is a stage where 
stallions lead their group members towards the best overall solution 
(WH, Waterhole). 

StallionG,j =

{
2Z × cos(2πRZ) ×

(
WH − StallionG,j

)
+ WH if rand > 0.5

2Z × cos(2πRZ) ×
(
WH − StallionG,j

)
− WH if rand ≤ 0.5

(7) 

It should be mentioned that StallionG,j shows new candidate position 
for the stallion of the jth group, StallionG,j is the current position of 
stallion and WH is the location of the water fountain, which is the global 
best solution.

The last stage, exchange and selection of leaders, ensures that lead
ership always rests with the best individual in the herd. If the fitness of a 
non-stallion horse is better than the current stallion, that horse will 
replace the stallion. 

StallionG,j =

⎧
⎨

⎩

Xi
G,j if f

(
Xi

G,j

)
< f

(
StallionG,j

)

StallionG,j if f
(

Xi
G,j

)
≥ f

(
StallionG,j

) (8) 

3.3. Coot optimization algorithm (COA)

The Coot Optimization Algorithm (COA) is a nature-inspired meta
heuristic algorithm based on the collective behavior of coot birds on 
water surfaces. It models key behaviors of these birds to address opti
mization problems. These behaviors include four main mechanisms that 
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enable the algorithm to perform both exploration (broad search) and 
exploitation (local search).

The first stage is random movement. Coots move randomly on the 
water surface to search for and discover new food resources. This 
behavior enhances the algorithm’s exploration process, allowing it to 
escape local optima traps. After this step, chain movements happen. 
Coots often move in a chain-like manner, following one another. This 
behavior is modeled using the average position of two coots, helping the 
algorithm move toward higher-quality regions. Based on this, adjust
ment of position happens. This stage refers to fact that each coot adjusts 
its position relative to its group leader and moves toward them. This 
behavior facilitates exploitative search around the best local solutions 
(represented by the leaders). Finally, group leaders, representing the 
best local solutions, move toward the global best solution. This mech
anism ensures the convergence of the entire population toward the 
global optimum [44]. The mathematical formulation of the aforesaid 
steps can be followed in the next subsection.

3.3.1. Mathematical formulation of COA
The following equations will be used for simulating the aforesaid 

behaviors. The following description is taken from these references: [25,
44,52].

First, the population of coots is randomly initialized within the upper 
and lower bounds of the search space. 

Cootpos(i) = rand(1, d) × (ub − lb) + lb (9) 

In the equation, cootpos(i) is the position of ith coot, d is the 
dimension of problem and ub and lb represent the upper and lower 
bounds of search space. Following previous equation, the position of 
each coot is updated using random movement. 

Cootpos(i)new = Cootpos(i)current + A × R2 × (Q − Cootpos(i)current) (10) 

Cootpos(i)new is the updated position of ith coot, Q is a randomly 
generated position within the search range and A is a decreasing 
parameter that reduces with iterations, balancing exploration and 
exploitation.

The second stage of formulation is chain movement modeling. The 
position of each coot is updated using the average of its position and the 
previous coot in the chain. 

Cootpos(i) = 0.5 × [Cootpos(i − 1)+Cootpos(i)] (11) 

Then, adjustment of position happens. Every coot updates its posi
tion based on the position of its group leader. 

Cootpos(i) = leaderpos(k) + 2 × R1 × cos(2πR)

× (leaderpos(k) − Cootpos(i)) (12) 

In the above equation, the R and R1 are random numbers. Finally, 
group leaders move toward the global best solution (gBest) to accelerate 
the convergence process. In this equation, R3 and R4 are random 
numbers and B is a descending parameter that decreases with repeti
tions.  

Fig. 3. Flowchart of WHO in Optimizing MLP.
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3.4. Formulating MLP weights and biases as an optimization problem

Optimizing weights and biases in MLP networks for regression 
problems faces challenges such as getting trapped in local minima, 
sensitivity to initial values, and slow convergence. Gradient-based 
methods, like gradient descent, may exhibit unstable performance due 
to the non-linear nature of the cost function and data noise, particularly 
in high-dimensional regression tasks. Metaheuristic algorithms like 
WHO and COA address these issues by exploring diverse weight and bias 
configurations to find optimal solutions. This process is executed in nine 
steps: 

1. Initialize the MLP Structure: 
○ Define the architecture of the MLP, including the number of input 

neurons (based on data features), hidden layers and neurons 
(based on problem complexity), and output neurons (based on the 
expected output encoding).

2. Generate Initial Population: 

○ Create a randomly initial set of weight and bias configurations for 
the MLP.

○ Each of weight and bias sets represents a candidate solution (e.g., a 
horse in WHO or a bird in COA).

3. Apply Weights and Biases to MLP: 
○ Assign each candidate weight and bias sets to the connections 

between the inputs, hidden, and output layers of the MLP.
4. Evaluate Weight and Bias Sets: 

○ Train the MLP using the training dataset with each of weight and 
bias sets.

○ Compute the objective function, such as MSE, to measure the 
prediction accuracy of each weight and bias sets based on the 
MLP’s performance on the training data.

5. Run Metaheuristic Optimization: 
○ Apply the WHO or COA algorithm to iteratively update the weight 

and bias sets: 
▪ Exploration Phase: Broadly search the weight and bias 

spaces to identify promising regions for new solutions.
▪ Exploitation Phase: Refine the current weight and bias 

sets to improve solution quality.

Fig. 4. Flowchart of COA in Optimizing MLP.

leaderpos(i) =
{

B × R3 × cos(2πR) × (gBest − leaderpos(i) + gBest) if R4 > 0.5
B × R3 × cos(2πR) × (gBest − leaderpos(i) − gBest) if R4 ≤ 0.5 (13) 
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○ Update the weights and biases based on the specific mechanisms of 
WHO (e.g., herd movement) or COA (e.g., coot flock behavior).

6. Iterate Until Convergence: 
○ Repeat steps 3–5 for a predefined number of iterations or until the 

objective function (e.g., MSE) converges to a satisfactory mini
mum, indicating optimized weights and biases.

7. Select Optimal Weights and Biases: 
○ Identify the weight and bias sets with the lowest error (best 

objective function value) as the final solution.
8. Test: 

○ Apply the optimized weights and biases to the MLP and evaluate its 
performance on a separate test dataset to confirm prediction ac
curacy and generalization.

9. Analyze Results: 
○ Compare the performance of WHO and COA in terms of conver

gence speed, error reduction, and MLP prediction accuracy to 
assess their effectiveness in optimizing.

To better illustrate how the two aforesaid algorithms, WHO and COA 
can be utilized in the case of this paper, two figures, Figs. 3 and 4 are 
presented.

3.5. Models configuration and optimization settings

In this sub section, travel time data modeling was performed based 
on the methodology outlined in the previous section. Travel time pre
diction is a critical issue in traffic management, intelligent trans
portation systems, and route planning, requiring accurate and reliable 
models.

Neural networks, such as the MLP, are well-suited for this task due to 
their ability to model nonlinear relationships between variables. How
ever, the performance of these networks heavily depends on optimal 
weights and biases. Weights and biases in a neural network determine 
the influence of each input on the output (predicted travel time).

Optimizing weights and biases by minimizing the error function 
enhances prediction accuracy and prevents issues such as overfitting or 
poor generalization to new data. Metaheuristic algorithms, such as the 

WHO and COA offer significant advantages over traditional methods (e. 
g., gradient descent) in optimizing neural network for travel time 
prediction.

First, these algorithms do not require computing the derivative of the 
objective function, which is highly beneficial in complex problems like 
travel time prediction, where the error function may be non- 
differentiable due to multiple nonlinear variables. Second, meta
heuristic algorithms excel at escaping local optima, which is crucial in 
travel time prediction given the diverse patterns and noise. Gradient- 
based methods may get trapped in local optima, failing to identify 
optimal weights and biases for accurate travel time prediction. Third, 
these algorithms can simultaneously explore multiple weight/bias sets 
through parallel search, which is highly efficient for optimizing in high- 
dimensional data. Finally, the flexibility of these algorithms in adjusting 
parameters (e.g., population size or iteration count) enables adaptation 
to various travel time prediction scenarios.

In the WHO and COA, the number of iterations and the initial pop
ulation size played a crucial role in balancing accuracy and computa
tional efficiency. The initial population in both algorithms consisted of 
40 solutions (horses in WHO and coot birds in COA), randomly gener
ated within the search space, and with 400 iterations, optimal explo
ration and exploitation were ensured for complex problems.

Table 4 shows the values selected to the main parameters of each 
algorithm for the study.

To model a system with four independent variables and one depen
dent variable, the MLP was configured with four neurons in the input 
layer and one neuron in the output layer. A single hidden layer was 
adopted, as it typically provides adequate accuracy for most nonlinear 
problems while maintaining computational efficiency.

The number of neurons in the hidden layer was determined through 
careful empirical analysis to strike a balance between model complexity 
and performance. Increasing the number of hidden neurons could lead 
to overfitting and increased sensitivity to noise in the dataset, resulting 
in an overly complex network. Conversely, having too few neurons 
might hinder the network’s ability to learn effectively. Therefore, the 
number of hidden neurons was iteratively adjusted to minimize the 
difference between actual and predicted outputs while achieving the 
target error level. Through trial and error and evaluation of results, the 
number of neurons selected for the neural network was set to 12.

Transfer functions were employed to map input signals to outputs: 
the hyperbolic tangent (tanh) function was selected for the hidden layer 
due to its effectiveness in capturing nonlinear relationships, while a 
linear function (Purelin) was applied in the output layer to ensure direct 
correspondence with the dependent variable.

Tanh, an S-shaped nonlinear function, maps inputs to values between 
− 1 and 1, making it suitable for hidden layers as it centers data and 
enables stronger gradients during backpropagation. In contrast, purelin 
outputs the input directly without transformation (f(x) = x). While tanh 
introduces nonlinearity for complex pattern learning, purelin is typically 
used in output layers for regression tasks where unbounded, continuous 
outputs are needed.

Table 5 provides the architectural details of the neural network.
In the metaheuristic approaches of WHO and COA, the calculation of 

weights and biases for optimizing a neural network with four input 
nodes, one hidden layer with 12 neurons, and a single output node is 
performed iteratively using metaheuristic search: the weights from the 
input to the hidden layer (4 × 12 = 48), weights from the hidden layer to 
the output (12 × 1 = 12), biases for the 12 hidden neurons, and one bias 
for the output neuron, totaling 73 parameters per individual in a pop
ulation of 40, resulting in 2920 parameters per iteration.

In WHO, these parameters are refined through the dynamic behavior 
of wild horse groups, where individuals within subgroups gravitate to
ward the group leader (the individual with the lowest MSE) while inter- 
group migrations introduce diversity, striking a balance between 
exploitation (updating based on the best solution) and exploration 
(random perturbations).

Table 4 
Selected main parameters and values.

Common Parameter Description Selected Value

Max_Iter Number of Iterations of Algorithm 400
N Population Size 40
Objective Function Error Function MSE

Table 5 
Selected Parameters for the MLP Architecture.

Parameter Value

Number of Data Samples 472
Training Size 70 %
Testing Size 30 %
Number of Hidden Layer Neurons 12
Number of Hidden Layers 1
Number of Input Layer Neurons 4
Number of Output Neurons 1
Hidden Layer Activation Function Tansig
Output Layer Activation Function Purelin

Table 6 
Software and Hardware Specifications.

CPU AMD EPYC 7763 64-Core Processor
RAM 32 GB
Operating System Windows 10 Pro
Modeling Software MATLAB 2023

N. Khorshidi et al.                                                                                                                                                                                                                              Transportation Engineering 22 (2025) 100395 

9 



Conversely, in COA, parameter improvement is driven by the coor
dinated movements of coot birds, encompassing chain-like movements 
toward the leader and random diving-like searches, which enhance 
exploration of the search space. In both algorithms, the best individual, 
comprising 73 parameters, is carried forward to the next generation, and 
the entire population’s 2920 parameters are updated using fitness- 
driven strategies (based on MSE), ensuring gradual convergence to
ward optimal weights and biases that minimize error.

In this study, the experiments were conducted using the software and 
hardware specifications outlined in Table 6.

3.6. Evaluation metrics

To thoroughly assess the forecasting model’s accuracy, three key 
metrics were employed. These metrics provide a detailed assessment of 
the model’s predictive capability from various perspectives, with their 
respective formulas presented (Eqs. (14) to 16).

In these formulas, yact represents the actual value of the variable, ypre 

denotes the predicted value, yact is the mean of the actual values, ypre is 
the mean of the predicted values, and n indicates the number of 
collected data points. 

1. R (Correlation Coefficient): The correlation coefficient is calcu
lated using a specific formula. It ranges from +1 (ind Y-axis label: 
indicating perfect positive correlation) to − 1 (indicating perfect 
negative correlation). This measure is determined by assessing the 
degree of association between two variables relative to their 
maximum possible impact. Known as the Pearson correlation, this 
coefficient is a widely used metric in data analysis. 

R =

1
n
∑n

1(yact − yact)
(

ypre − ypre

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

1(yact − yact)
2

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
n
∑n

1

(
ypre − ypre

)2
√ (14) 

2. MSE (Mean Squared Error): Calculates the average of squared dif
ferences between predicted and actual values. By squaring errors, 
MSE ensures positive and negative deviations do not cancel out, 
while heavily penalizing larger errors. Its values range from 0 (per
fect fit) to infinity, with units in squared data terms. 

MSE =
1
n
∑n

1

(
ypre − yact

)2
(15) 

3. RMSE (Root Mean Square Error): Represents the square root of 
MSE, converting error values back to the original data units. Like 
MSE, lower RMSE values indicate better accuracy, but its unit con
sistency makes errors more interpretable for practical applications. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

1

(
ypre − yact

)2
√

(16) 

4. Numerical results and discussion

This section first introduces the parameters and configurations 
considered for the MLP, WHO and COA, followed by a detailed analysis 
of the results for each model individually, comparing their performance 
using various evaluation metrics.

4.1. Analysis results

This section focuses on analyzing the results of the models, providing 
a detailed evaluation of their performance.

4.1.1. R, MSE and RMSE metrics
Table 7 shows the results obtained from the hybrid models. The WHO 

demonstrated outstanding performance in optimizing neural network 
for travel time prediction in this study. The MSE for the train, test, and 
all datasets was reported as 0.0026, 0.0025, and 0.0026, respectively. 
These low values indicate high model accuracy in travel time prediction 
and the algorithm’s ability to find weights and biases that minimize 
prediction error. The slight reduction in MSE for the test data (0.0025) 
compared to the train data (0.0026) suggests desirable model general
ization, which is critical for predicting travel times. The RMSE for the 
train, test, and all datasets was calculated as 0.0515, 0.0502, and 
0.0511, respectively, confirming minimal deviation of predictions from 

Table 7 
Modeling Results for COA-MLP and WHO-MLP.

Algorithm Metric Train Set Test Set All Data

COA MSE 0.0028 0.0029 0.0028
RMSE 0.0530 0.0541 0.0533
R ( %) 0.7429 0.7213 0.7262
Time (Seconds) 160.7993

WHO MSE 0.0026 0.0025 0.0026
RMSE 0.0515 0.0502 0.0511
R ( %) 0.7592 0.7628 0.7516
Time (Seconds) 147.4705

Fig. 5. Convergence Curves.
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actual travel times. The R for the train, test, and all datasets was 0.7592, 
0.7628, and 0.7516, respectively, indicating that the model explains 
75.92 %, 76.28 %, and 75.16 % of the variance in travel times. These 
values reflect good alignment for travel time prediction, though an R 
below 0.8 suggests potential for improvement.

The COA also delivered acceptable performance in travel time pre
diction but performed slightly worse than WHO. The MSE for the train, 
test, and all datasets was 0.0028, 0.0029, and 0.0028, respectively, 
indicating higher error compared to WHO. This difference may lead to 
less accurate travel time predictions, especially for test data (e.g., new 
routes or varying traffic conditions). The RMSE values for the train, test, 
and all datasets were 0.0530, 0.0541, and 0.0533, respectively, showing 
greater deviation than WHO. The R for the train and test datasets in COA 
was 0.7429 and 0.7213, respectively, demonstrating less ability to 
explain travel time variance compared to WHO.

In terms of computational efficiency, WHO outperformed COA with a 
computational time of 147 s compared to 160 s for COA. This difference, 
despite identical iteration (400) and population sizes (40), highlights 
WHO’s superior efficiency. In travel time prediction applications, 
particularly real-time systems like dynamic route planning, lower 
computational time is crucial, as users expect rapid responses for 

decision-making.

4.1.2. Convergence curves
The convergence results (Fig. 5) of the WHO and COA methods are 

compared based on key metrics such as final best cost, convergence 
speed, stability, and overall efficiency. The WHO method achieves a 
superior final best cost of 0.0026582 at iteration 401, approximately 5.7 
% lower than COA’s final cost of 0.0028187, indicating WHO’s better 
precision in reaching an optimal solution. In terms of convergence 
speed, WHO demonstrates faster initial progress, reducing the cost to 
0.0053931 by iteration 10 and 0.0038909 by iteration 50, while COA 
starts slower, maintaining a cost of 0.008405 until iteration 15 but 
showing significant improvements in the mid-range (iterations 50–150), 
reaching 0.0037373 by iteration 100. However, WHO regains the lead in 
later iterations with steady improvements. Regarding stability, WHO 
exhibits longer periods of cost stagnation (e.g., iterations 13–29 at 
0.0047146), suggesting occasional entrapment in local optima, but 
maintains smoother transitions overall. COA, conversely, shows larger 
cost jumps (e.g., from 0.0073811 to 0.0060842 at iteration 28), indi
cating better escape from local optima but with more fluctuations in 
later stages. Overall, WHO is more suitable for problems requiring high 

Fig. 6. The WHO Regression Plots.
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precision due to its lower final cost and stable improvements, while COA 
excels in mid-range exploration and escaping local optima, making it 
preferable for problems needing broader search capabilities.

4.1.3. Regression plots
The regression analysis of the Figs. 6 and 7, illustrates the model’s 

performance across different datasets. The top-left plot represents the 
train data, where a high degree of alignment between the model’s pre
dictions and actual values is evident. This is quantified by a regression 
coefficient (R) of approximately 0.76 for the model optimized using the 
WHO, indicating robust training accuracy. In contrast, the model opti
mized with the COA achieves a train accuracy with an R value of 
approximately 0.74, demonstrating that WHO outperforms COA. The R 
values for the test and all datasets, shown in the remaining plots, are 
nearly identical to those of the train data for the WHO-optimized model, 
suggesting consistent performance across all data subsets. With close 
approximation, the network’s predictions align well with the target 
outputs, supporting the hypothesis that the neural network, particularly 
when optimized with the WHO, is an effective model for travel time 
prediction.

4.1.4. Overlay plots
The overlay between the neural network model’s predictions and 

actual values was analyzed. The neural network model, optimized using 
the WHO, accurately captures the trends across the test, and all datasets.

In Figs. 8 and 9, the black curve represents the target or actual values 
and the red curve represents the predicted or output values for the WHO 
and COA, respectively. The minimal discrepancy between target and 
output values, reflects low prediction error and highlights the model’s 
high accuracy and robustness. Notably, the WHO demonstrates superior 
performance and closer alignment with actual values compared to the 
COA in both the test and all datasets, underscoring the effectiveness of 
WHO in optimizing the neural network for time travel prediction.

4.1.5. Comparative performance analysis of metaheuristic algorithms
In this section, to evaluate the effectiveness of the models presented 

in this study, the results are compared with several other algorithms. 
The selected algorithms are Ant Colony Optimization (ACO) [10,50], 
Genetic Algorithm (GA) [29], and Particle Swarm Optimization (PSO) 
[54]. ACO mimics the behavior of a colony of real foraging ants to find 
the most cost-effective path. The shortest or most optimal path is 
discovered through the stigmergy process. This is a social network 

Fig. 7. The COA Regression Plots.
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mechanism in which pheromones guide agents toward promising solu
tions. ACO is designed to address the most challenging combinatorial 
optimization problems as well as network applications, such as routing 
and load balancing. GA is a search algorithm based on the concepts of 
natural selection and genetics (crossover and mutation). PSO mimics the 
collective behavior of birds or fish searching for food. In PSO, each 
particle in a swarm does not exchange materials with other particles. A 
particle is influenced by its current position, the best position in the 

swarm, and its velocity.
The results of Table 8 show a comparative evaluation of the out

comes of these five metaheuristic algorithms. WHO exhibits the best 
performance across all metrics, achieving the lowest MSE (0.0026 on all 
data) and RMSE (0.0511 on all data) while maintaining the highest 
correlation coefficient (R = 0.7516 on all data). COA follows closely, 
with slightly higher errors (MSE = 0.0028, RMSE = 0.0533 on all data) 
and a marginally lower R (0.7262 on all data). In contrast, ACO, PSO, 

Fig. 8. WHO Overlay Plots.
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and GA show noticeably weaker performance. PSO performs better than 
ACO and GA, with an MSE of 0.0035 and RMSE of 0.0593 on all data, 
and an R of 0.68, but it still lags behind COA and WHO. ACO and GA 
exhibit the poorest results, with GA having the highest errors (MSE =
0.0039, RMSE = 0.0626 on all data) and the lowest correlation (R = 0.65 
on all data), followed closely by ACO (MSE = 0.0037, RMSE = 0.061, R 
= 0.66 on all data). Across train, test, and full datasets, WHO shows 
better optimization, likely because it explores the solution space more 

efficiently, while GA and ACO converge slower and tune parameters less 
effectively for this MLP.

The execution times shown in Fig. 10 provide a comparative analysis 
of five metaheuristic algorithms. WHO demonstrates the fastest perfor
mance with an execution time of 147.47 s, indicating its efficiency in 
navigating the solution space. COA follows closely with a time of 160.79 
s, still performing well but slightly slower than WHO, likely due to 
differences in their search mechanisms. PSO, with an execution time of 

Fig. 9. COA Overlay Plots.
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175.8 s, is noticeably slower than both WHO and COA, reflecting its 
reliance on iterative particle updates, which introduces additional 
computational overhead. ACO and GA exhibit the longest execution 
times at 195.7 and 200.4 s, respectively. The slower performance of ACO 
can be attributed to its complex pheromone-based search process, while 
GA’s extended runtime stems from its computationally intensive oper
ations, such as selection, crossover, and mutation. These results high
light WHO’s superior efficiency for this specific MLP optimization task, 
while ACO and GA are hindered by their higher computational 
complexity.

5. Conclusions and future studies

Accurate travel time prediction is essential for ITSs. Traditional 
gradient-based methods, such as backpropagation, often get trapped in 
local optima, limiting their performance. Metaheuristic algorithms offer 
a robust alternative by exploring global solution spaces efficiently 
without derivatives. This study evaluated five nature-inspired algo
rithms—WHO, COA, ACO, PSO, and GA—for optimizing the weights 
and biases of an MLP to predict the TTI. The MLP model used four inputs 
(traffic volume, weather, crash rate, and section length), one hidden 
layer with 12 neurons, and one output neuron. It was trained on 472 
observations from Virginia’s transportation network (2014–2017). 
Weights and biases are encoded into vectors as candidate solutions, with 
fitness evaluated by Mean Squared Error (MSE). The metaheuristic al
gorithms iteratively minimize MSE, refining the MLP’s parameters and 
avoiding local optima. Results highlighted WHO’s superior perfor
mance, achieving an MSE of 0.0026, RMSE of 0.0511, and R of 0.7516, 
alongside a computational time of 147 s. COA followed with slightly 
weaker performance, recording an MSE of 0.0028, RMSE of 0.0533, R of 
0.7262, and a computational time of 160 s. In contrast, ACO, PSO, and 

GA demonstrated notably poorer performance. PSO achieved an MSE of 
0.0035, RMSE of 0.0593, and R of 0.68, with a computational time of 
175.8 s, indicating moderate performance but slower convergence 
compared to WHO and COA. ACO performed worse, with an MSE of 
0.0037, RMSE of 0.061, R of 0.66, and a longer computational time of 
195.7 s, reflecting its higher computational complexity. GA exhibited 
the weakest results, with an MSE of 0.0039, RMSE of 0.0626, R of 0.65, 
and the highest computational time of 200.4 s, likely due to its 
computationally intensive operations like crossover and mutation. 
WHO’s efficiency and higher accuracy make it particularly well-suited 
for real-time applications, such as intelligent navigation systems and 
urban traffic management, where precise travel time predictions under 
varying conditions are critical. COA, while effective, shows slower 
convergence and occasional plateaus, which may reduce reliability in 
complex scenarios. ACO, PSO, and GA, with their higher errors and 
longer computational times, are less suitable for such demanding ap
plications due to their limited optimization efficiency. To enhance the 
performance of these models, several strategies are proposed. Opti
mizing algorithmic settings, such as adjusting population size or itera
tion count, can enhance the balance between accuracy and 
computational speed for time-sensitive applications. Improving neural 
network design by increasing the number of neurons or incorporating 
advanced activation functions can boost predictive accuracy. Addi
tionally, developing hybrid models by combining metaheuristic algo
rithms like WHO or COA with methods such as ACO, PSO, GA, or the Red 
Deer Algorithm (RDA) [51] can improve performance. Furthermore, 
incorporating permutation feature importance [42] can be explored to 
analyze the relative importance of features, enabling better feature se
lection and model refinement for improved predictive outcomes.
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Table 8 
Comparison of MLP Optimization Performance Using Metaheuristic Algorithms.

Algorithm Metric Train Set Test Set All Data

COA MSE 0.0028 0.0029 0.0028
RMSE 0.053 0.0541 0.0533
R ( %) 0.7429 0.7213 0.7262

WHO MSE 0.0026 0.0025 0.0026
RMSE 0.0515 0.0502 0.0511
R ( %) 0.7592 0.7628 0.7516

ACO MSE 0.0037 0.0038 0.0037
RMSE 0.0608 0.0616 0.061
R ( %) 0.67 0.65 0.66

PSO MSE 0.0035 0.0036 0.0035
RMSE 0.0591 0.06 0.0593
R ( %) 0.69 0.67 0.68

GA MSE 0.0039 0.004 0.0039
RMSE 0.0624 0.0632 0.0626
R ( %) 0.66 0.64 0.65

Fig. 10. Execution Time Comparison of Metaheuristic Algorithms for MLP Optimization.

N. Khorshidi et al.                                                                                                                                                                                                                              Transportation Engineering 22 (2025) 100395 

15 



Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.

Data availability

The authors will make available, upon reasonable request, the data 
and code that support the findings of this study.

References

[1] M.A. Abdel-Aty, R. Kitamura, P.P. Jovanis, Investigating effect of travel time 
variability on route choice using repeated-measurement stated preference data, 
Transp. Res. Rec (1493) (1995) 39–45. https://stars.library.ucf.edu/scopus 
1990/2064.

[2] S. Afandizadeh Zargari, N. Amoei Khorshidi, H. Mirzahossein, N. Kalantari, 
Comparative approach for predicting travel time reliability (a case study of 
Virginia interstate), Innov. Infrastruct. Solut. 6 (4) (2021) 229, https://doi.org/ 
10.1007/s41062-021-00597-8.

[3] Y. Ai, Y. Yu, W. Pu, L. Gao, Y. Ren, Network-level travel time prediction 
considering the effects of weather and seasonality, in: International Conference on 
Transportation and Development 2023, 2023.

[4] R. Al-Rubaee, N. Al-Etabi, J. Alsaffar, S. Al-Fadhili, Effects of checkpoints on urban 
travel time, in: IOP Conference Series: Materials Science and Engineering, 2018.

[5] R. Amrutsamanvar, G. Joshi, S.S. Arkatkar, R.S. Chalumuri, Empirical travel time 
reliability assessment of Indian urban roads, in: Recent Advances in Traffic 
Engineering: Select Proceedings of RATE 2018, 2020.

[6] S. Banik, L. Vanajakshi, Impact of rainfall on traffic mobility and reliability under 
Indian traffic conditions, Transp. dev. econ. 10 (2) (2024) 29, https://doi.org/ 
10.1007/s40890-024-00219-9.

[7] A. Bennecke, B. Friedrich, M. Friedrich, J. Lohmiller, Time-dependent service 
quality of network sections, Procedia-Soc. Behav. Sci. 16 (2011) 364–373, https:// 
doi.org/10.1016/j.sbspro.2011.04.457.

[8] H. Bi, Z. Ye, H. Zhu, Data-driven analysis of weather impacts on urban traffic 
conditions at the city level, Urban. Clim 41 (2022) 101065, https://doi.org/ 
10.1016/j.uclim.2021.101065.

[9] D. Billings, J.-S. Yang, Application of the ARIMA models to urban roadway travel 
time prediction-a case study, in: 2006 IEEE International Conference on Systems, 
Man and Cybernetics, 2006.

[10] X. Chen, L. Yu, T. Wang, A. Liu, X. Wu, B. Zhang, Z. Lv, Z. Sun, Artificial 
intelligence-empowered path selection: a survey of ant colony optimization for 
static and mobile sensor networks, IEEe Access 8 (2020) 71497–71511, https:// 
doi.org/10.1109/ACCESS.2020.2984329.

[11] Z. Chen, W. Fan, Data analytics approach for travel time reliability pattern analysis 
and prediction, J. Mod. Transp. 27 (4) (2019) 250–265, https://doi.org/10.1007/ 
s40534-019-00195-6.

[12] F. Cirianni, G. Leonardi, Artificial neural network for traffic noise modelling, ARPN 
J. Eng. Appl. Sci. 10 (22) (2015) 10413–10419. http://www.arpnjournals.org/je 
as/research_papers/rp_2015/jeas_1215_3079.pdf.

[13] M. CP, K. Karuppanagounder, Performance prediction model for urban dual 
carriageway using travel time-based indices, Transp. dev. econ. 6 (1) (2020) 2, 
https://doi.org/10.1007/s40890-019-0090-8.

[14] S. Ding, C. Su, J. Yu, An optimizing BP neural network algorithm based on genetic 
algorithm, Artif. Intell. Rev 36 (2011) 153–162, https://doi.org/10.1007/s10462- 
011-9208-z.

[15] T. Dokeroglu, E. Sevinc, T. Kucukyilmaz, A. Cosar, A survey on new generation 
metaheuristic algorithms, Comput. Ind. Eng 137 (2019) 106040, https://doi.org/ 
10.1016/j.cie.2019.106040.

[16] D. Doley, A.K. Maurya, An assessment of travel time dependability in urban 
corridors: guwahati City case Study, in: 2024 16th International Conference on 
COMmunication Systems & NETworkS (COMSNETS), 2024.

[17] M. Dougherty, A review of neural networks applied to transport, Transp. Res. C: 
Emerg. Technol. 3 (4) (1995) 247–260, https://doi.org/10.1016/0968-090X(95) 
00009-8.

[18] A.M. El Amrani, M. Fri, O. Benmoussa, N. Rouky, A deep reinforcement learning 
framework for last-mile delivery with public transport and traffic-aware 
integration: a case study in Casablanca, Infrastruct. (Basel) 10 (5) (2025) 112, 
https://doi.org/10.3390/infrastructures10050112.

[19] L. Elefteriadou, X. Cui, A framework for defining and estimating travel time 
reliability. https://trid.trb.org/View/801806, 2007.

[20] C. Fang, Y. Cai, Y. Wu, A discrete wild horse optimizer for capacitated vehicle 
routing problem, Sci. Rep 14 (1) (2024) 21277, https://doi.org/10.1038/s41598- 
024-72242-0.

[21] D.P. Gaver Jr, Headstart strategies for combating congestion, Transp. Sci. 2 (2) 
(1968) 172–181, https://doi.org/10.1287/trsc.2.2.172.

[22] P. Goodwin, The economic costs of road traffic congestion. https://discovery.ucl.ac 
.uk/id/eprint/1259/, 2004.
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