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Accurate travel time prediction is essential for effective Intelligent Transportation Systems (ITSs). Unlike
traditional gradient-based methods, which may get trapped in local optima, metaheuristic algorithms efficiently
navigate complex optimization landscapes without needing derivative computations. This study compares two
metaheuristic algorithms—Wild Horse Optimization (WHO) and Coot Optimization Algorithm (COA)—for
optimizing the weights and biases of a Multilayer Perceptron (MLP) neural network to predict the Travel Time
Index (TTI). The MLP uses four input variables (traffic volume, weather, crash rate, and section length), one
hidden layer with 12 neurons, and one output neuron. The model was trained and tested on a dataset of 472
observations from Virginia’s transportation network (2014-2017), with input variables showing mean values of
1.19 (traffic volume), 6.92 mm (precipitation), 0.17 (crash rate), and 2.76 miles (section length), and standard
deviations of 0.20, 5.21, 0.12, and 1.64, respectively. Performance was assessed using Mean Squared Error
(MSE), Root Mean Squared Error (RMSE), and Correlation Coefficient (R). The WHO-optimized model out-
performed COA, achieving an MSE of 0.0026, RMSE of 0.0511, and R of 0.7516, compared to COA’s MSE of
0.0028, RMSE of 0.0533, and R of 0.7262. WHO also showed better computational efficiency (147 s vs. 160 s for
COA). These results highlight the WHO-MLP model’s superior accuracy and speed, making it ideal for real-time
navigation systems.

demand fluctuations, special events, physical bottlenecks, and traffic
control systems [46]. To evaluate the stability of a network in response

1. Introduction

Travel time plays a serious role in transportation network analysis
and is considered a pivotal variable in shaping user behavior, helping to
make informed decisions, and guiding traffic flow planning and man-
agement. With the rapid development of transportation infrastructure
and the proliferation of Intelligent Transportation Systems (ITSs), ac-
curate travel time prediction has emerged as a fundamental requirement
for enhancing the efficiency of these systems. However, traffic con-
gestion—a primary source of travel time variability and uncertainty—-
poses significant challenges to prediction accuracy [65].

The Federal Highway Administration (FHWA) identifies seven pri-
mary sources of congestion that are known to impact transportation
network performance: accidents, work zones, weather conditions,
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to travel time fluctuations, the concept of Travel Time Reliability (TTR)
has been introduced. Although a single origin could not be assigned to
the advent of TTR, travelers implicitly understood it and would buffer
their travel times to allow for unexpected delays. Travel times were not
always consistent, as early transportation research started to recognize.
An example is the study of Gaver in 1968, where he suggested a de-
parture time choice model in which passengers factored in a “head start
time” and took into account the variance of their travel time [21]. A
major step in quantifying and integrating reliability into transportation
analysis was taken by Jackson and Jucker in 1982. They introduced the
“Mean-Variance” framework, where a decision-maker tries to minimize
a sum of expected travel time and travel time variability [27].
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Table 1

Summary of Reviewed Studies Focusing Specifically on TTI in TTR Predictive Models.
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Reference  Category Methodology Scope Performance Measure/ Description

[80] Corridor level Statistical and analytical models Forecasting hourly TTI Robustness of Interacting Multiple Model (IMM) predictor
could be increased and could perform better than the other
predictors.

[81] Corridor level Statistical, analytical, and Traffic state forecasting Lower MAPE compared to other methods (0.94 for their

machine learning models model)

[82] Corridor level Statistical and analytical models =~ Combined linear forecasting techniques to 0.64 < MAPE < 1.86

predict TTI during peak and non-peak periods
[79]1 Corridor level Statistical and analytical models ~ IMM predictor for hourly TTI forecasting, 0.84 < MAPE < 1.45
superior stability, and robustness of IMM
[43] Network level Statistical and analytical models  Analyzing incident-induced congestion on TTI The results emphasize the role of incidents in increasing
variations by Spatio-temporal analysis and congestion.
visualization.

[4] Corridor level Statistical and analytical models  Calculating TTI to assess level of service (LOS)  An average TTI of 9.331, indicating poor service due to

checkpoints.

[13] Corridor level Statistical and analytical models  Developing a model based on field data on nonlinear regression models to R%=0.99

traffic volume, travel time, and road geometry  predict TTI RMSE = 4.20

[85] Network level Statistical and analytical models Using spatiotemporal data mining with GPS Forecasting models: Curve Fit, 0.61 <Validation

data from floating vehicles to predict TTI Exponential Smoothing, and RMSE< 0.87
Forest-based 0.57 <Forecast
RMSE<70
[73] Network level Machine learning methods Using Convolutional Neural Network (CNN) to 0.52<RMSE<1.10
predict TTI 0.08<MAPE<0.14

[8] Network level Statistical and analytical models  This study conducts a contrastive analysis of TTI variations under weather conditions using multivariate

regression models at different levels

[72] Network level Statistical and analytical models =~ Comparing traffic flow under non-precipitation =~ Maximum of the average TTI increases on the city scale

and rainy conditions under various rainfall intensities was between 3.3 %, and
10.8 %.
[3] Network level Multiple machine learning The proposed approach was also able to Developing a framework to forecast (TTI)
methods identify the effects of weather and seasonality They used machine learning models (regression): Ridge,
Linear, Lasso, DT and SVR, and Ridge was the best.
[6] Network level Statistical and analytical models Quantifying the impact of rainfall on traffic Quantile regression and statistical tests to quantify
mobility and TTR rainfall’s effect on travel time distribution in India.
The results found 457 % difference between maximum TTI
values during rainfall vs. normal conditions.

[61] Origin- Statistical and analytical Study of ridesharing data in three major US The TTI in the three cities typically ranged from 1.1 to 1.6.
Destination models+ Unsupervised machine metropolitan areas During peak traffic hours, the TTI reached its highest value
pairs learning (e.g., around 1.5-1.6 in Chicago and Los Angeles), while it

remained close to 1.1 during off-peak hours.

[16] Corridor level Statistical and analytical models  Evaluate TTR and identifying the factors TTR is significantly affected by several factors, including

affecting it. congestion, time of day, public holidays and characteristics
of the traffic flow.

[64] Corridor level Statistical and analytical models =~ Measurement and analysis of travel time and The highest TTI value was observed in Army Chanel

delays on specific routes during morning peak expressway link at 8.9 %.
periods
[67] Corridor level Statistical models The effect of the COVID-19 pandemic on TTR No differences in TTI values when TTDs are formulated

using a 5 min or 15 min aggregation interval

The significance of TTR was increasingly acknowledged in the 1990s
and 2000s, especially for freight and commuter transportation. The
study went on to investigate various theoretical frameworks, such as
“Scheduling Delays” and “Mean-Lateness,” for calculating the value of
TTR. Improved measurement and analysis of travel time variability was
also made possible by the development of increasingly complex data
collection techniques. Some of the studies conducted during this period
are the study of Small, Noland, and Koskenoja, where they evaluated
how a person’s socioeconomic characteristics affect their travel reli-
ability using a stated preference approach [59]. Another outstanding
study was conducted by Abdel-Aty, Kitamura, and Jovanis. They used a
stated preference survey to examine the impact of travel time variability
on route selection [1].

The promotion of TTR as a performance metric was greatly sup-
ported by the FHWA. In a report entitled “Traffic congestion and reli-
ability: Trends and advanced strategies for congestion mitigation”, the
growing problem of unreliable travel time was highlighted and strate-
gies to address it were suggested. According to the FHWA, TTR is
defined as “the consistency or predictability of travel times across different
time periods and days” [63]. Also, the National Cooperative Highway
Research Program (NCHRP) Report 311 further outlines three common
definitions of TTR:

e The discrepancy between expected and actual travel times caused by
non-recurring congestion;

o The variability in travel times observed over a large sample of daily
trips;

e The systemic impact of non-recurring congestion is quantified by the
intensity, duration, and spatial extent of congestion events [58].

Although defining definitions for TTR could pave the way toward
incorporating TTR into transportation and planning models, some sig-
nificant flaws in conventional transportation performance metrics such
as better justification for operations and management strategies and
economic impacts of unreliability paved the way toward defining nu-
merical measures for TTR [22,53]. The numerical metrics included
statistical measures such as standard deviation, coefficient of variation,
skewness, percentage change, and percentiles, as well as
performance-based indices like the Buffer Index (BI), Travel Time Index
(TTI), Planning Time Index (PTI), and congestion frequency index [11,
35]. Among them, the TTI is widely recognized as a critical metric for
assessing congestion severity. TTI is defined as the ratio of the average
actual travel time to the free-flow travel time and has been extensively
adopted in transportation research [49].

TTI was first introduced by Texas Transportation Institute, in their
"Urban Mobility Report". This measure was applied to 101 American
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cities on a yearly basis since 1982 [53]. Since its introduction, it has
been applied to studies trying to address various aspects of trans-
portation systems. Applications in planning and management are one of
these focuses and examples of the studies including but not limited to:
congestion monitoring [28], examining TTI to improve transportation
planning [38], and analyzing TTI to evaluate service quality of road
network sections [7]. Also, another category of studies, suggested new
approaches, measurements, or confirmed current approaches pertaining
to TTR and TTI. Examples of these studies are as follows: the study of Pu
who analytically explored relationships between TTI and other reli-
ability measures [49], or proposing a new travel time index (CMTT) that
incorporates TTI in equilibrium modeling [77]. Finally, some studies
focused on cutting-edge approaches, data sources, or collection tech-
niques for TTI analysis or application [18,32,66].

Another field of study, compatible with this research, is the appli-
cation of TTI in modeling TTR. Since the focus of this study is developing
a novel approach to model TTI, we only focus on studies that consider
TTI in their modeling process. These studies either develop or apply
models to predict the TTI or investigate how various factors affect TTI.
Further details on both of these categories are available in Table 1. In
this table, MAPE stands for Mean Absolute Percentage Error, RMSE
stands for Root Mean Squared Error, and SVR is Support Vector
Regression and DT as Decision Tree.

Upon deeply reviewing the studies, it was revealed that researchers
use state-of-the-art predictive methods, mostly machine learning, such
as CNNs, Least Squares Support Vector Machines (LS-SVMs), and IMM to
predict TTI with high accuracy. Statistical techniques like nonlinear
regression and spatiotemporal data mining, which use massive datasets
to reveal complex traffic dynamics, improve these strategies.

Classical statistical models predominantly rely on historical data and
assumptions about the stability of traffic patterns [47]. While methods
like historical averaging demonstrate reasonable performance under
stable, low-density traffic conditions [24], they struggle to adapt to
dynamic environments.

Linear regression models improve upon simpler approaches in un-
stable conditions by incorporating variables such as distance, stops, and
weather conditions; however, their accuracy is constrained by collin-
earity and interdependencies among predictors [2,19,33,78]. Time se-
ries models (e.g., ARIMA), which assume linear and stationary patterns,
achieve limited success in static scenarios but exhibit significant accu-
racy degradation when applied to real-time data or rapidly changing
conditions [9]. The Kalman filter represents a dynamic approach for
travel time estimation through state-space modeling and real-time data
integration. Extended variants like the Extended Kalman Filter (EKF)
have been developed to address the linearity constraints of standard
implementations, though challenges persist in complex traffic systems
[74]1.

Despite their widespread adoption, statistical models exhibit limited
effectiveness in real-time travel time forecasting due to their reliance on
linear assumptions, sensitivity to data noise, and inability to handle
complex, real-time data analysis. To address these limitations, machine
learning models have emerged as a viable and flexible alternative,
leveraging their capacity to discern nonlinear patterns and process vast
amounts of data effectively.

Among various methods, Artificial Neural Networks (ANNs) have
earned significant attention due to their ability to accurately model
dynamic traffic conditions and their key role in enhancing the perfor-
mance of intelligent transportation systems. Recent studies demonstrate
that ANNs, owing to their global approximation capabilities and high
computational power, outperform traditional methods and can effec-
tively address challenges such as multicollinearity. These advantages
have established ANNs as reliable tools for predicting traffic parameters,
earning them a prominent position in transportation engineering liter-
ature [17]. Also, ANNSs could prove themselves in traffic noise modelling
[12].

The ANNs have gradually proven themselves to be a reliable tool for
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modeling complex tasks and datasets, however, relatively fewer number
of studies applying them to TTR prediction, compared to travel time
prediction, shows room for further application. The study of Van Lint
et al. was among the first studies applying ANNs in TTR prediction. They
proposed a neural network model to forecast three characteristic per-
centiles, 10th, 50th, and 90th, claiming neural networks could be
applied as an effective tool for predicting these percentiles and were able
to make smooth estimates of characteristic percentiles [69]. It is widely
acknowledged that TTR should be included in the planning and opera-
tional models for metropolitan areas. The report of Liu and Haghani
defined this framework in Utah by using ANN to study how adverse
weather and crash events can alter TTR [37].

Among other studies focusing on TTR prediction by ANN, many
others focused on predicting TRR by various architectures of ANN
instead of defining conceptual frameworks. Amrutsamanvar et al.
focused on Indian urban roads and mentioned their developed model
could capture various values of TTR [5]. Similar to the previous study,
Afandizadeh et al. investigated the efficiency of multiple machine
learning methods (including ANN) on Virginia’s interstate network,
however in their studies, ANN could not outperform other machine
learning models [2,76]. Although they did not explicitly focus on the
failure result of ANN, we believe it could be due to small dataset (ANNs
usually require large datasets). Also, short-term TTR prediction by
reliability interval was first addressed in the study of Wu et al. on
corridor level in Texas [71].

Several novel architectures based on ANN have also been used as the
main modeling approach in TTR prediction studies. Constrained Long
Short-Term Memory (C-LSTM) quantile regression (LSTM is a type of
Recurrent Neural Network (RNN), developed to address the vanishing
gradient problem encountered by traditional RNNs) [36], a Generative
Adversarial Network (GAN) with LSTM for studying TTR at network
level by Shao et al. [56] and in peak periods [57]. Also, the Fitrnet (a
feedforward, fully connected neural network for regression) model [30]
was among the studies that utilized ANNs and related architectures for
predicting TRR.

Upon reviewing studies, it was revealed that although neural net-
works exhibit a strong capability to recognize complex patterns and
nonlinear relationships, there is no study on TTR prediction applying
Multilayer Perception (MLP).

MLP, a feedforward neural network with nonlinear activation func-
tions with fully connected neurons, has been widely used in many as-
pects of transportation, including travel time prediction (as already
stated, it is different from TTR prediction) [24], passenger flow pre-
diction [68], accident prediction [55], lateral movement prediction [75]
and many other topics.

To the best of authors’ knowledge, in the field of TTR prediction, the
Wild Horse Optimization (WHO) and Coot Optimization Algorithm
(COA) have not been used yet. Furthermore, it should be also noted their
rare application in the transportation context, such that the authors
could not find any research utilizing COA and could find only one
research on the capacitated vehicle routing problem [20] utilizing WHO.

The objective of this research is to design and evaluate a hybrid
framework that integrates metaheuristic algorithms, specifically WHO
and COA, to optimize the weights and biases of a MLP neural network for
precise travel time prediction within Virginia’s transportation network.

The specific objectives are as follows:

1. Enhancing Prediction Accuracy: Improving the MLP’s perfor-
mance in travel time prediction by minimizing errors through
optimal tuning of weights and biases using metaheuristic algorithms.

2. Avoiding Local Optima: Leveraging the exploration and exploita-
tion capabilities of WHO and COA to prevent entrapment in local
optima, thereby enhancing the model’s generalizability in Virginia.

3. Comparative Algorithm Evaluation: Conducting a comparative
assessment of WHO and COA’s performance in optimizing the MLP
based on statistical metrics (R, MSE, and RMSE), regression and
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Table 2
Sample data.
Link Length TCr (Total Crash AADT TTIL
(Mile) rate) Lane.mile  (Unitless)
0.8389 5.33 0.166771 0.422139 1.00
1.1905 5.33 0.199593 0.440901 1.03
1.0971 5.33 0.382892 0.459662 1.00
0.9004 5.33 0.375235 0.469043 1.01
0.8389 5.06 0.087835 0.444664 1.04

overlay plots, and convergence curves to identify the most effective
algorithm.

This research introduces several contributions by integrating the
novel and previously unapplied metaheuristic algorithms WHO and
COA with MLP neural networks for travel time prediction in Virginia,
offering the following key innovations:

1. Pioneering Application of WHO and COA in Transportation:
Utilizing the innovative WHO and COA algorithms for optimizing
MLP weights and biases in the context of travel time prediction, a
novel approach that has not been previously explored in this domain.

2. Hybrid Framework for Real-World Data: Developing a framework
that combines real-world data with MLP and metaheuristic algo-
rithms to deliver more accurate and practical predictions.

The remainder of this study is structured as follows:

Section 2 introduces the case study and details the dataset used in the
research. Section 3 provides an in-depth exploration of the fundamental
principles governing the MLP, WHO, and COA, covering their mecha-
nisms, applications, and the formulation of the optimization problem.
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Section 4 offers a comprehensive analysis of the experimental results,
evaluating performance through various metrics and plots, while high-
lighting key findings. Section 5 concludes the study, summarizing the
outcomes and proposing directions for future research.

2. Case study and data

In this study, TTI is used to show the variability of travel time. Also,
the study investigates the effect of four independent variables including
traffic volume (28DT-) weather ((RSP), total crash rate, TCr (by
considering total number of crashes, AADT and the length of each link in
the network) and section length (Link Length) on the existing reliability
index. In these variables, AADT is the Annual Average Daily Traffic,
Lane shows the number of lanes in the studied segment and PRCP rep-
resents total annual precipitation in mm for the specific segment.

All data were collected for 4 consecutive years, 2014 to 2017. The
aim of this study is to present a model for predicting TTR using MLP and
metaheuristic algorithms. TTR data, specifically TTI, was extracted from
INRIX. For this study, 472 observations, calculated as 118 sections in 4
years, indicating one annual observation per section per year was
collected.

Table 2 shows an example of data prepared for modeling.

Fig. 1 shows the spatial distribution of these segments across
Virginia.

Table 3 presents the statistical details of the dataset, including the
total number of observations, mean, standard deviation, minimum,
maximum, and the 25th, 50th (median), and 75th percentiles for each
feature. The dataset consists of 472 records and encompasses five traffic
performance-related features: PRCP/1000 (normalized precipitation
rate), Link Length, Total Rate, AADT/(Lane.mile) (average annual daily
traffic per lane-mile), and TTI. The normalized precipitation rate has a

Fig. 1. Spatial Location of Segments in Virginia Interstate.

Table 3
Statistical details of the data.
PRCP Link Length Total Rate AADT TTI
1000 Lane.mile
Count 472.000000 472.000000 472.000000 472.000000 472.000000
Mean 1.192785 2.763220 0.172488 6.922751 1.013962
Std 0.204408 1.639356 0.119722 5.206517 0.077206
Min 0.769700 0.660000 0.022046 0.371058 0.890000
25 % 1.042100 1.640000 0.091598 2.721088 0.980000
50 % 1.161950 2.325000 0.144107 5.431771 1.000000
75 % 1.325425 3.530000 0.214471 10.082861 1.010000
Max 2.044700 7.920000 0.866237 28.048780 1.670000
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Fig. 2. Correlation Matrix.

mean of 1.1928 and a standard deviation of 0.2044, indicating relatively
low variability, with values ranging from 0.7697 (minimum) to 2.0447
(maximum). Link Length averages 2.7632 miles, with a standard devi-
ation of 1.6394, reflecting considerable variation in path lengths,
ranging from 0.66 to 7.92 miles. The Total Rate, with a mean of 0.1725
and a standard deviation of 0.1197, exhibits a wide distribution, varying
from 0.0220 to 0.8662. AADT/(Lane.mile) has a mean of 6.9228, and its
high standard deviation of 5.2065 indicates significant variation in
traffic density, with values ranging from 0.3711 to 28.0488. Finally, the
TTI, with a mean of 1.0140 and a low standard deviation of 0.0772,
suggests relative stability, with values ranging from 0.89 to 1.67. The
25th, 50th, and 75th percentiles for each feature indicate a balanced
data distribution, offering valuable insights for analyzing traffic
behavior.

2.1. Correlation matrix analysis

The correlation matrix (Fig. 2) examines the relationship between
the dependent variable, TTI, and four independent variables: PRCP/
1000 (precipitation), Link Length, Total Rate, and AADT/Lane. Mile. TTI
shows a very weak negative correlation with PRCP/1000 (—0.07),
suggesting that precipitation has negligible impact on travel time.
Similarly, a weak negative correlation with Link Length (—0.15) in-
dicates that longer routes may slightly reduce TTI, possibly due to dif-
ferences in road design or traffic conditions. In contrast, TTI has a
moderately strong positive correlation with Total Rate (0.56), high-
lighting that higher rates significantly increase travel time, making it a
key predictor. TTI also exhibits a moderate positive correlation with
AADT/Lane. Mile (0.32), implying that higher traffic volumes
contribute to longer travel times, though less strongly than Total Rate.
Notably, a strong negative correlation (—0.70) between Link Length and
AADT/Lane. Mile suggests that longer routes tend to have lower traffic
density.

3. Research methods

This section begins by describing the MLP architecture and tackling
the optimization challenges of weights and biases in gradient-based
methods, followed by an introduction to the structure of metaheuristic
algorithms. It elaborates on the core mechanisms of metaheuristic al-
gorithms, such as WHO and COA, within the MLP framework. Addi-
tionally, it outlines the evaluation metrics used to measure the model’s
performance, providing a solid foundation for analyzing the proposed
approach.
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3.1. Multilayer perceptron (MLP)

The MLP, a form of artificial neural network, falls under the feed-
forward neural network class. It consists of processing units, known as
neurons, which convert input data to produce the intended output [40].

In an MLP, neurons are organized into three main layers: The input
layer, the first layer, consists of neurons that receive input data and
transmit it to the subsequent layer, with their number typically match-
ing the count of data features. The hidden layer, the next in sequence,
contains neurons that perform mathematical transformations on the
data. A MLP may include one or multiple hidden layers, depending on
the complexity of the task. The output layer, the final layer, processes
data from the hidden layer to produce the end result, with its neuron
count determined by the encoding of the expected output.

The MLP functions in a hierarchical, fully connected structure, with
each neuron in one layer linked to all neurons in the subsequent layer
through weighted connections. For instance, every neuron in the input
layer is connected to all neurons in the hidden layer.

Each connection between neurons has a specific weight, reflecting
how strongly one neuron influences another. Additionally, hidden and
output layer neurons incorporate a bias term (f)—a constant that fine-
tunes predictions by shifting the neuron’s activation threshold. This
bias can either amplify (if positive) or suppress (if negative) the neuron’s
output, shaping its overall response [34,48]. The core objective of
training an MLP is to determine the most effective combination of these
weights and biases.

The MLP architecture includes three primary components: an input
layer, a single hidden layer containing m neurons, and an output layer
with one neuron. The connection weights between the input and hidden
layers are defined as wj}, where i = {1,...,n} and j = {1,...,m} corre-
spond to the respective neurons in each layer. Similarly, the weights
linking the hidden layer to the output neuron are labeled wfl. Addi-

tionally, each neuron in the hidden and output layers has an associated
bias term: f; for the hidden layer and k = {1,...,m+1} for the output
neuron.

Neurons in the hidden layer perform computations through two
sequential operations: weighted summation followed by activation.
First, each neuron calculates its net input by summing the weighted
outputs from all connected neurons in the preceding layer and adding its
own bias term. This combined input for a given hidden neuron j is
mathematically represented by (1).

n
Sumf’ = wa§ x Xi + p; €))
i=0

The term w{j. corresponds to the connection weight between input
neuron i and hidden neuron j. The output value from neuron i, denoted
as X;, serves as input for neuron j. Additionally, each hidden neuron
jincorporates a bias term f;that adjusts its activation threshold.

The second processing stage applies a nonlinear transformation to
the summed input through an activation function. Typically imple-
mented as a sigmoid function, this crucial step introduces nonlinearity to
the network’s computations. For any given neuron, the activation output
is mathematically defined by (2).

yjH :f(Sumf) = 1

_ H
1+ e 5um

@

The value y}' represents the computed output of hidden neuron . This
output can then serve as input to either another hidden layer or the final
output layer. In the case of a single output neuron, the weighted sum-
mation is calculated using (3), where:

Sum =" 0% x Y + B 3
=0
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* yfis the output from hidden neuron j,
. wfl denotes the connection weight between hidden neuron j and the

output neuron, and
® f.41 is the bias term applied to the output neuron.

The ultimate output of the MLP for a given dataset instance is derived
from the activation operation of the output neuron, as outlined in (4).
¥ = flsum) = — @

14 e S

The primary objective in training an MLP is to determine the ideal set
of connection weights and bias values for both hidden and output layers
that collectively minimize the network’s MSE. In ANNSs, learning rep-
resents the adaptive process through which the system acquires pre-
dictive capabilities. For MLPs, this knowledge acquisition occurs during
training - a cyclical procedure where the network progressively fine-
tunes its weights and biases. These adjustments systematically reduce
discrepancies between the network’s predictions and target outputs,
enhancing performance in fundamental tasks like classification and
regression analysis.

The backpropagation algorithm, a widely adopted method for
training MLPs [70], begins by initializing weights and biases with
random values. The MLP processes a collection of labeled data (training
set) to produce an output, and the discrepancy between this output and
the target value is computed. This error is then propagated backward to
refine the weights and biases. The process repeats until the error reaches
an acceptable threshold [34].

While these traditional approaches are generally effective, they can
encounter issues, such as extended periods of unchanging error levels or
getting trapped in local optima. Their performance also depends heavily
on the initial weight settings and the tuning of momentum and learning
rate, where suboptimal choices may lead to divergence [41].

The performance of MLPs depends greatly on the precise tuning of
weights and hyperparameters. Conventional gradient-based techniques,
such as backpropagation, are widely used but often face challenges like
becoming stuck in local optima or converging prematurely. To address
these limitations, metaheuristic algorithms have emerged as powerful
tools for optimizing MLP weights and hyperparameters. These algo-
rithms provide global search abilities, operate non-deterministically,
and function without gradients, offering greater flexibility than tradi-
tional approaches. They are particularly effective in solving complex,
high-dimensional, nonlinear problems [15].

Recently, metaheuristic techniques have emerged as effective alter-
natives to backpropagation. These iterative algorithms efficiently pro-
duce high-quality solutions and are highly adaptable, requiring no
specialized knowledge to tackle a wide range of problems [26,31,62].
Research demonstrates that metaheuristics excel in optimizing MLP
models, effectively handling large sets of weights and biases [14,60].

3.2. Wild horse optimization (WHO)

The WHO algorithm is a swarm-based metaheuristic algorithm
introduced in 2021 by Naruei and Keynia. It addresses optimization
problems by mimicking the social structure and fourfold behaviors of
wild horses. Each individual in the population is considered a horse, and
its position in the search space represents a candidate. The modeling
process includes 4 main steps:

1. Herding and Social Structure: The population is divided into several
groups (herds), each led by a dominant male horse (Stallion). The
remaining mares and foals are evenly distributed among the groups.
The selection of the stallion (leader) is initially random and then
optimized based on fitness.

2. Grazing Behavior: In this phase, members of each group (foals and
mares) search for food around their group’s stallion. This behavior
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serves as a local exploitation mechanism, allowing the group to
explore near the current best solution (represented by the stallion’s
position).

3. Mating Behavior: A unique behavior in wild horses involves foals
separating from the main herd before sexual maturity to avoid
mating with parents or siblings. In the algorithm, this mechanism is
modeled as a crossover operator between horses from different
groups, enabling the algorithm to escape local optima traps and
explore new regions of the search space.

4. Group Leadership and Competition: The leaders of each group
(stallions) guide their members toward the best available region,
modeled as a waterhole. Stallions compete with each other to access
this waterhole, which enhances the optimization process [45].

The mathematical formulation of the aforesaid steps can be followed
in the next subsection.

3.2.1. Mathematical formulation of WHO

The WHO algorithm uses a set of mathematical equations to simulate
the aforementioned behaviors. The next steps are from the following
resources: [23,39,83,84]

The first step is to model grazing behavior. The position of group
members (non-stallion horses) is updated based on the position of their
group’s stallion. This movement toward the stallion simulates an
exploitative search.

Xg; = 27 x cos(27R) x (Stallionc;_j —X‘@) + Stalliong; (5)

In which, X%, ; is the position of the i th horse in the j-th group at the
current iteration, Stalliong; is the position of the stallion in the j-th
group, R is a random number between —2 and 2 and Z is an adaptive
parameter.

The second stage is mating behavior. This phase, aimed at preventing
premature convergence and increasing population diversity, is simu-
lated using a mean crossover operator and performed with a fixed
probability called PC (Crossover Percentage). The mathematical
formulation is as follows:

Xg,; = Crossover <X‘é7i,X“G J>, Crossover = Mean where (6)

The third stage, group leadership and competition, is a stage where
stallions lead their group members towards the best overall solution
(WH, Waterhole).

Stalliong; — {ZZ x cos(27RZ) x EWH - Stalllonc_j; +WH if rand > 0.5

27 x cos(2nRZ) x (WH — Stalliongj) — WH if rand < 0.5
)

It should be mentioned that Stalliong; shows new candidate position
for the stallion of the jth group, Stalliong; is the current position of
stallion and WH is the location of the water fountain, which is the global
best solution.

The last stage, exchange and selection of leaders, ensures that lead-
ership always rests with the best individual in the herd. If the fitness of a
non-stallion horse is better than the current stallion, that horse will
replace the stallion.

XlGj lff(XlGJ) < f(Stalliong)

_ ®)
Stalliong; if f(X’G J.) > f(Stalliong)

Stalliong; =

3.3. Coot optimization algorithm (COA)

The Coot Optimization Algorithm (COA) is a nature-inspired meta-
heuristic algorithm based on the collective behavior of coot birds on
water surfaces. It models key behaviors of these birds to address opti-
mization problems. These behaviors include four main mechanisms that
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Step 1: Initialization
- Set algorithm parameters

Fitness Evaluation
- Compute cost function (e.g., MSE) for each horse

~,

\

Main Optimization Loop
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Step 2: Grouping & Leader Selection
- Divide horses into herds
- Select dominant stallion for each herd

End
- Return best weights & biases of MLP

Update Global Best (Waterhole)
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- Compete for the Waterhole

Exchange & Select Leaders
- Replace stallion if better horse is found

Fig. 3. Flowchart of WHO in Optimizing MLP.

enable the algorithm to perform both exploration (broad search) and
exploitation (local search).

The first stage is random movement. Coots move randomly on the
water surface to search for and discover new food resources. This
behavior enhances the algorithm’s exploration process, allowing it to
escape local optima traps. After this step, chain movements happen.
Coots often move in a chain-like manner, following one another. This
behavior is modeled using the average position of two coots, helping the
algorithm move toward higher-quality regions. Based on this, adjust-
ment of position happens. This stage refers to fact that each coot adjusts
its position relative to its group leader and moves toward them. This
behavior facilitates exploitative search around the best local solutions
(represented by the leaders). Finally, group leaders, representing the
best local solutions, move toward the global best solution. This mech-
anism ensures the convergence of the entire population toward the
global optimum [44]. The mathematical formulation of the aforesaid
steps can be followed in the next subsection.

3.3.1. Mathematical formulation of COA

The following equations will be used for simulating the aforesaid
behaviors. The following description is taken from these references: [25,
44,52].

First, the population of coots is randomly initialized within the upper
and lower bounds of the search space.

Cootpos(i) = rand(1,d) x (ub—1b) +1b )

In the equation, cootpos(i) is the position of ith coot, d is the
dimension of problem and ub and Ib represent the upper and lower
bounds of search space. Following previous equation, the position of
each coot is updated using random movement.

COOtpOS(i)neW = COOtpOS(i)curren[ + A X R2 X (Q - COOq)OS(i)Cu”em) (10)

Cootpos(i),,, is the updated position of ith coot, Q is a randomly
generated position within the search range and A is a decreasing
parameter that reduces with iterations, balancing exploration and
exploitation.

The second stage of formulation is chain movement modeling. The
position of each coot is updated using the average of its position and the
previous coot in the chain.

Cootpos(i) = 0.5 x [Cootpos(i — 1) + Cootpos(i)] 11

Then, adjustment of position happens. Every coot updates its posi-
tion based on the position of its group leader.

Cootpos(i) = leaderpos(k) + 2 x R1 x cos(2zR)

% (leaderpos(k) — Cootpos(i)) 12)

In the above equation, the R and R1 are random numbers. Finally,
group leaders move toward the global best solution (gBest) to accelerate
the convergence process. In this equation, R3 and R4 are random
numbers and B is a descending parameter that decreases with repeti-
tions.
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B x R3 x cos(27R) x (gBest — leaderpos(i) + gBest)

leaderpos(i) = {B x R3 x cos(2zR) x (gBest — leaderpos(i) — gBest)

if R4>05
ifR4<05
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3.4. Formulating MLP weights and biases as an optimization problem

Optimizing weights and biases in MLP networks for regression
problems faces challenges such as getting trapped in local minima,
sensitivity to initial values, and slow convergence. Gradient-based
methods, like gradient descent, may exhibit unstable performance due
to the non-linear nature of the cost function and data noise, particularly
in high-dimensional regression tasks. Metaheuristic algorithms like
WHO and COA address these issues by exploring diverse weight and bias
configurations to find optimal solutions. This process is executed in nine
steps:

1. Initialize the MLP Structure:

o Define the architecture of the MLP, including the number of input
neurons (based on data features), hidden layers and neurons
(based on problem complexity), and output neurons (based on the
expected output encoding).

2. Generate Initial Population:

o Create a randomly initial set of weight and bias configurations for
the MLP.

o Each of weight and bias sets represents a candidate solution (e.g., a
horse in WHO or a bird in COA).

3. Apply Weights and Biases to MLP:

o Assign each candidate weight and bias sets to the connections
between the inputs, hidden, and output layers of the MLP.

. Evaluate Weight and Bias Sets:

o Train the MLP using the training dataset with each of weight and
bias sets.

o Compute the objective function, such as MSE, to measure the
prediction accuracy of each weight and bias sets based on the
MLP’s performance on the training data.

. Run Metaheuristic Optimization:

o Apply the WHO or COA algorithm to iteratively update the weight
and bias sets:
= Exploration Phase: Broadly search the weight and bias
spaces to identify promising regions for new solutions.
= Exploitation Phase: Refine the current weight and bias
sets to improve solution quality.

- Create random bird population (MLP weights & biases)

Step 1: Initialization
- Set algorithm parameters

Fitness Evaluation
Compute cost function (e.g., MSE) for each bird

~,

(

Main Optimization Loop

Iteration until stopping criterion [Stop condition met

A 4
Step 2: Leader Selection
Select best birds as group leaders

(

End
- Return best weights & biases of MLP

[ Update Global Best (gBest)

Store bird with minimum cost

Update Bird Positions
- Random movement
- Chain movement towards previous bird
- Position adjustment based on group leader
- Leaders move towards gBest

Check & Update Leaders
Replace if better bird is found

AN
{

Fig. 4. Flowchart of COA in Optimizing MLP.
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Table 4
Selected main parameters and values.

Common Parameter Description Selected Value
Max_Iter Number of Iterations of Algorithm 400

N Population Size 40

Objective Function Error Function MSE

Table 5
Selected Parameters for the MLP Architecture.
Parameter Value
Number of Data Samples 472
Training Size 70 %
Testing Size 30 %
Number of Hidden Layer Neurons 12
Number of Hidden Layers 1
Number of Input Layer Neurons 4
Number of Output Neurons 1
Hidden Layer Activation Function Tansig
Output Layer Activation Function Purelin
Table 6
Software and Hardware Specifications.
CPU AMD EPYC 7763 64-Core Processor

RAM 32 GB
Operating System Windows 10 Pro
Modeling Software MATLAB 2023

o Update the weights and biases based on the specific mechanisms of

WHO (e.g., herd movement) or COA (e.g., coot flock behavior).
6. Iterate Until Convergence:

o Repeat steps 3-5 for a predefined number of iterations or until the
objective function (e.g., MSE) converges to a satisfactory mini-
mum, indicating optimized weights and biases.

7. Select Optimal Weights and Biases:

o Identify the weight and bias sets with the lowest error (best

objective function value) as the final solution.
8. Test:

o Apply the optimized weights and biases to the MLP and evaluate its
performance on a separate test dataset to confirm prediction ac-
curacy and generalization.

9. Analyze Results:

o Compare the performance of WHO and COA in terms of conver-
gence speed, error reduction, and MLP prediction accuracy to
assess their effectiveness in optimizing.

To better illustrate how the two aforesaid algorithms, WHO and COA
can be utilized in the case of this paper, two figures, Figs. 3 and 4 are
presented.

3.5. Models configuration and optimization settings

In this sub section, travel time data modeling was performed based
on the methodology outlined in the previous section. Travel time pre-
diction is a critical issue in traffic management, intelligent trans-
portation systems, and route planning, requiring accurate and reliable
models.

Neural networks, such as the MLP, are well-suited for this task due to
their ability to model nonlinear relationships between variables. How-
ever, the performance of these networks heavily depends on optimal
weights and biases. Weights and biases in a neural network determine
the influence of each input on the output (predicted travel time).

Optimizing weights and biases by minimizing the error function
enhances prediction accuracy and prevents issues such as overfitting or
poor generalization to new data. Metaheuristic algorithms, such as the
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WHO and COA offer significant advantages over traditional methods (e.
g., gradient descent) in optimizing neural network for travel time
prediction.

First, these algorithms do not require computing the derivative of the
objective function, which is highly beneficial in complex problems like
travel time prediction, where the error function may be non-
differentiable due to multiple nonlinear variables. Second, meta-
heuristic algorithms excel at escaping local optima, which is crucial in
travel time prediction given the diverse patterns and noise. Gradient-
based methods may get trapped in local optima, failing to identify
optimal weights and biases for accurate travel time prediction. Third,
these algorithms can simultaneously explore multiple weight/bias sets
through parallel search, which is highly efficient for optimizing in high-
dimensional data. Finally, the flexibility of these algorithms in adjusting
parameters (e.g., population size or iteration count) enables adaptation
to various travel time prediction scenarios.

In the WHO and COA, the number of iterations and the initial pop-
ulation size played a crucial role in balancing accuracy and computa-
tional efficiency. The initial population in both algorithms consisted of
40 solutions (horses in WHO and coot birds in COA), randomly gener-
ated within the search space, and with 400 iterations, optimal explo-
ration and exploitation were ensured for complex problems.

Table 4 shows the values selected to the main parameters of each
algorithm for the study.

To model a system with four independent variables and one depen-
dent variable, the MLP was configured with four neurons in the input
layer and one neuron in the output layer. A single hidden layer was
adopted, as it typically provides adequate accuracy for most nonlinear
problems while maintaining computational efficiency.

The number of neurons in the hidden layer was determined through
careful empirical analysis to strike a balance between model complexity
and performance. Increasing the number of hidden neurons could lead
to overfitting and increased sensitivity to noise in the dataset, resulting
in an overly complex network. Conversely, having too few neurons
might hinder the network’s ability to learn effectively. Therefore, the
number of hidden neurons was iteratively adjusted to minimize the
difference between actual and predicted outputs while achieving the
target error level. Through trial and error and evaluation of results, the
number of neurons selected for the neural network was set to 12.

Transfer functions were employed to map input signals to outputs:
the hyperbolic tangent (tanh) function was selected for the hidden layer
due to its effectiveness in capturing nonlinear relationships, while a
linear function (Purelin) was applied in the output layer to ensure direct
correspondence with the dependent variable.

Tanh, an S-shaped nonlinear function, maps inputs to values between
—1 and 1, making it suitable for hidden layers as it centers data and
enables stronger gradients during backpropagation. In contrast, purelin
outputs the input directly without transformation (f(x) = x). While tanh
introduces nonlinearity for complex pattern learning, purelin is typically
used in output layers for regression tasks where unbounded, continuous
outputs are needed.

Table 5 provides the architectural details of the neural network.

In the metaheuristic approaches of WHO and COA, the calculation of
weights and biases for optimizing a neural network with four input
nodes, one hidden layer with 12 neurons, and a single output node is
performed iteratively using metaheuristic search: the weights from the
input to the hidden layer (4 x 12 = 48), weights from the hidden layer to
the output (12 x 1 = 12), biases for the 12 hidden neurons, and one bias
for the output neuron, totaling 73 parameters per individual in a pop-
ulation of 40, resulting in 2920 parameters per iteration.

In WHO, these parameters are refined through the dynamic behavior
of wild horse groups, where individuals within subgroups gravitate to-
ward the group leader (the individual with the lowest MSE) while inter-
group migrations introduce diversity, striking a balance between
exploitation (updating based on the best solution) and exploration
(random perturbations).
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Table 7
Modeling Results for COA-MLP and WHO-MLP.
Algorithm Metric Train Set Test Set All Data
COA MSE 0.0028 0.0029 0.0028
RMSE 0.0530 0.0541 0.0533
R (%) 0.7429 0.7213 0.7262
Time (Seconds) 160.7993
WHO MSE 0.0026 0.0025 0.0026
RMSE 0.0515 0.0502 0.0511
R (%) 0.7592 0.7628 0.7516
Time (Seconds) 147.4705

Conversely, in COA, parameter improvement is driven by the coor-
dinated movements of coot birds, encompassing chain-like movements
toward the leader and random diving-like searches, which enhance
exploration of the search space. In both algorithms, the best individual,
comprising 73 parameters, is carried forward to the next generation, and
the entire population’s 2920 parameters are updated using fitness-
driven strategies (based on MSE), ensuring gradual convergence to-
ward optimal weights and biases that minimize error.

In this study, the experiments were conducted using the software and
hardware specifications outlined in Table 6.

3.6. Evaluation metrics

To thoroughly assess the forecasting model’s accuracy, three key
metrics were employed. These metrics provide a detailed assessment of
the model’s predictive capability from various perspectives, with their
respective formulas presented (Egs. (14) to 16).

In these formulas, y, represents the actual value of the variable, y,,.
denotes the predicted value, ¥, is the mean of the actual values, Y is
the mean of the predicted values, and n indicates the number of
collected data points.

1. R (Correlation Coefficient): The correlation coefficient is calcu-
lated using a specific formula. It ranges from +1 (ind Y-axis label:
indicating perfect positive correlation) to —1 (indicating perfect
negative correlation). This measure is determined by assessing the
degree of association between two variables relative to their
maximum possible impact. Known as the Pearson correlation, this
coefficient is a widely used metric in data analysis.

1 Vace = Yact) (ypre - ypre)
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2. MSE (Mean Squared Error): Calculates the average of squared dif-
ferences between predicted and actual values. By squaring errors,
MSE ensures positive and negative deviations do not cancel out,
while heavily penalizing larger errors. Its values range from 0 (per-
fect fit) to infinity, with units in squared data terms.

MSE = % 2111: (Ypre - Yact>2

(15)

3. RMSE (Root Mean Square Error): Represents the square root of
MSE, converting error values back to the original data units. Like
MSE, lower RMSE values indicate better accuracy, but its unit con-
sistency makes errors more interpretable for practical applications.

RMSE = |1 Z (e~ Ya) 16)

4. Numerical results and discussion

This section first introduces the parameters and configurations
considered for the MLP, WHO and COA, followed by a detailed analysis
of the results for each model individually, comparing their performance
using various evaluation metrics.

4.1. Analysis results

This section focuses on analyzing the results of the models, providing
a detailed evaluation of their performance.

4.1.1. R, MSE and RMSE metrics

Table 7 shows the results obtained from the hybrid models. The WHO
demonstrated outstanding performance in optimizing neural network
for travel time prediction in this study. The MSE for the train, test, and
all datasets was reported as 0.0026, 0.0025, and 0.0026, respectively.
These low values indicate high model accuracy in travel time prediction
and the algorithm’s ability to find weights and biases that minimize
prediction error. The slight reduction in MSE for the test data (0.0025)
compared to the train data (0.0026) suggests desirable model general-

R= 5 2 a4 ization, which is critical for predicting travel times. The RMSE for the
n = n =
%Zl (Vact = Vact) %21 (yPre - Ypre) train, test, and all datasets was calculated as 0.0515, 0.0502, and
0.0511, respectively, confirming minimal deviation of predictions from
«10°
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Fig. 5. Convergence Curves.
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actual travel times. The R for the train, test, and all datasets was 0.7592,
0.7628, and 0.7516, respectively, indicating that the model explains
75.92 %, 76.28 %, and 75.16 % of the variance in travel times. These
values reflect good alignment for travel time prediction, though an R
below 0.8 suggests potential for improvement.

The COA also delivered acceptable performance in travel time pre-
diction but performed slightly worse than WHO. The MSE for the train,
test, and all datasets was 0.0028, 0.0029, and 0.0028, respectively,
indicating higher error compared to WHO. This difference may lead to
less accurate travel time predictions, especially for test data (e.g., new
routes or varying traffic conditions). The RMSE values for the train, test,
and all datasets were 0.0530, 0.0541, and 0.0533, respectively, showing
greater deviation than WHO. The R for the train and test datasets in COA
was 0.7429 and 0.7213, respectively, demonstrating less ability to
explain travel time variance compared to WHO.

In terms of computational efficiency, WHO outperformed COA with a
computational time of 147 s compared to 160 s for COA. This difference,
despite identical iteration (400) and population sizes (40), highlights
WHO’s superior efficiency. In travel time prediction applications,
particularly real-time systems like dynamic route planning, lower
computational time is crucial, as users expect rapid responses for

11

decision-making.

4.1.2. Convergence curves

The convergence results (Fig. 5) of the WHO and COA methods are
compared based on key metrics such as final best cost, convergence
speed, stability, and overall efficiency. The WHO method achieves a
superior final best cost of 0.0026582 at iteration 401, approximately 5.7
% lower than COA’s final cost of 0.0028187, indicating WHO’s better
precision in reaching an optimal solution. In terms of convergence
speed, WHO demonstrates faster initial progress, reducing the cost to
0.0053931 by iteration 10 and 0.0038909 by iteration 50, while COA
starts slower, maintaining a cost of 0.008405 until iteration 15 but
showing significant improvements in the mid-range (iterations 50-150),
reaching 0.0037373 by iteration 100. However, WHO regains the lead in
later iterations with steady improvements. Regarding stability, WHO
exhibits longer periods of cost stagnation (e.g., iterations 13-29 at
0.0047146), suggesting occasional entrapment in local optima, but
maintains smoother transitions overall. COA, conversely, shows larger
cost jumps (e.g., from 0.0073811 to 0.0060842 at iteration 28), indi-
cating better escape from local optima but with more fluctuations in
later stages. Overall, WHO is more suitable for problems requiring high
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precision due to its lower final cost and stable improvements, while COA
excels in mid-range exploration and escaping local optima, making it
preferable for problems needing broader search capabilities.

4.1.3. Regression plots

The regression analysis of the Figs. 6 and 7, illustrates the model’s
performance across different datasets. The top-left plot represents the
train data, where a high degree of alignment between the model’s pre-
dictions and actual values is evident. This is quantified by a regression
coefficient (R) of approximately 0.76 for the model optimized using the
WHO, indicating robust training accuracy. In contrast, the model opti-
mized with the COA achieves a train accuracy with an R value of
approximately 0.74, demonstrating that WHO outperforms COA. The R
values for the test and all datasets, shown in the remaining plots, are
nearly identical to those of the train data for the WHO-optimized model,
suggesting consistent performance across all data subsets. With close
approximation, the network’s predictions align well with the target
outputs, supporting the hypothesis that the neural network, particularly
when optimized with the WHO, is an effective model for travel time
prediction.
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4.1.4. Overlay plots

The overlay between the neural network model’s predictions and
actual values was analyzed. The neural network model, optimized using
the WHO, accurately captures the trends across the test, and all datasets.

In Figs. 8 and 9, the black curve represents the target or actual values
and the red curve represents the predicted or output values for the WHO
and COA, respectively. The minimal discrepancy between target and
output values, reflects low prediction error and highlights the model’s
high accuracy and robustness. Notably, the WHO demonstrates superior
performance and closer alignment with actual values compared to the
COA in both the test and all datasets, underscoring the effectiveness of
WHO in optimizing the neural network for time travel prediction.

4.1.5. Comparative performance analysis of metaheuristic algorithms

In this section, to evaluate the effectiveness of the models presented
in this study, the results are compared with several other algorithms.
The selected algorithms are Ant Colony Optimization (ACO) [10,50],
Genetic Algorithm (GA) [29], and Particle Swarm Optimization (PSO)
[54]. ACO mimics the behavior of a colony of real foraging ants to find
the most cost-effective path. The shortest or most optimal path is
discovered through the stigmergy process. This is a social network
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Fig. 8. WHO Overlay Plots.

mechanism in which pheromones guide agents toward promising solu-
tions. ACO is designed to address the most challenging combinatorial
optimization problems as well as network applications, such as routing
and load balancing. GA is a search algorithm based on the concepts of
natural selection and genetics (crossover and mutation). PSO mimics the
collective behavior of birds or fish searching for food. In PSO, each
particle in a swarm does not exchange materials with other particles. A
particle is influenced by its current position, the best position in the
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swarm, and its velocity.

The results of Table 8 show a comparative evaluation of the out-
comes of these five metaheuristic algorithms. WHO exhibits the best
performance across all metrics, achieving the lowest MSE (0.0026 on all
data) and RMSE (0.0511 on all data) while maintaining the highest
correlation coefficient (R = 0.7516 on all data). COA follows closely,
with slightly higher errors (MSE = 0.0028, RMSE = 0.0533 on all data)
and a marginally lower R (0.7262 on all data). In contrast, ACO, PSO,
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Fig. 9. COA Overlay Plots.

and GA show noticeably weaker performance. PSO performs better than
ACO and GA, with an MSE of 0.0035 and RMSE of 0.0593 on all data,
and an R of 0.68, but it still lags behind COA and WHO. ACO and GA
exhibit the poorest results, with GA having the highest errors (MSE =
0.0039, RMSE = 0.0626 on all data) and the lowest correlation (R = 0.65
on all data), followed closely by ACO (MSE = 0.0037, RMSE = 0.061, R
= 0.66 on all data). Across train, test, and full datasets, WHO shows
better optimization, likely because it explores the solution space more

efficiently, while GA and ACO converge slower and tune parameters less
effectively for this MLP.

The execution times shown in Fig. 10 provide a comparative analysis
of five metaheuristic algorithms. WHO demonstrates the fastest perfor-
mance with an execution time of 147.47 s, indicating its efficiency in
navigating the solution space. COA follows closely with a time of 160.79
s, still performing well but slightly slower than WHO, likely due to
differences in their search mechanisms. PSO, with an execution time of
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Table 8
Comparison of MLP Optimization Performance Using Metaheuristic Algorithms.
Algorithm Metric Train Set Test Set All Data
COA MSE 0.0028 0.0029 0.0028
RMSE 0.053 0.0541 0.0533
R (%) 0.7429 0.7213 0.7262
WHO MSE 0.0026 0.0025 0.0026
RMSE 0.0515 0.0502 0.0511
R (%) 0.7592 0.7628 0.7516
ACO MSE 0.0037 0.0038 0.0037
RMSE 0.0608 0.0616 0.061
R (%) 0.67 0.65 0.66
PSO MSE 0.0035 0.0036 0.0035
RMSE 0.0591 0.06 0.0593
R (%) 0.69 0.67 0.68
GA MSE 0.0039 0.004 0.0039
RMSE 0.0624 0.0632 0.0626
R (%) 0.66 0.64 0.65

175.8 s, is noticeably slower than both WHO and COA, reflecting its
reliance on iterative particle updates, which introduces additional
computational overhead. ACO and GA exhibit the longest execution
times at 195.7 and 200.4 s, respectively. The slower performance of ACO
can be attributed to its complex pheromone-based search process, while
GA'’s extended runtime stems from its computationally intensive oper-
ations, such as selection, crossover, and mutation. These results high-
light WHO’s superior efficiency for this specific MLP optimization task,
while ACO and GA are hindered by their higher computational
complexity.

5. Conclusions and future studies

Accurate travel time prediction is essential for ITSs. Traditional
gradient-based methods, such as backpropagation, often get trapped in
local optima, limiting their performance. Metaheuristic algorithms offer
a robust alternative by exploring global solution spaces efficiently
without derivatives. This study evaluated five nature-inspired algo-
rithms—WHO, COA, ACO, PSO, and GA—for optimizing the weights
and biases of an MLP to predict the TTI. The MLP model used four inputs
(traffic volume, weather, crash rate, and section length), one hidden
layer with 12 neurons, and one output neuron. It was trained on 472
observations from Virginia’s transportation network (2014-2017).
Weights and biases are encoded into vectors as candidate solutions, with
fitness evaluated by Mean Squared Error (MSE). The metaheuristic al-
gorithms iteratively minimize MSE, refining the MLP’s parameters and
avoiding local optima. Results highlighted WHO’s superior perfor-
mance, achieving an MSE of 0.0026, RMSE of 0.0511, and R of 0.7516,
alongside a computational time of 147 s. COA followed with slightly
weaker performance, recording an MSE of 0.0028, RMSE of 0.0533, R of
0.7262, and a computational time of 160 s. In contrast, ACO, PSO, and
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GA demonstrated notably poorer performance. PSO achieved an MSE of
0.0035, RMSE of 0.0593, and R of 0.68, with a computational time of
175.8 s, indicating moderate performance but slower convergence
compared to WHO and COA. ACO performed worse, with an MSE of
0.0037, RMSE of 0.061, R of 0.66, and a longer computational time of
195.7 s, reflecting its higher computational complexity. GA exhibited
the weakest results, with an MSE of 0.0039, RMSE of 0.0626, R of 0.65,
and the highest computational time of 200.4 s, likely due to its
computationally intensive operations like crossover and mutation.
WHO’s efficiency and higher accuracy make it particularly well-suited
for real-time applications, such as intelligent navigation systems and
urban traffic management, where precise travel time predictions under
varying conditions are critical. COA, while effective, shows slower
convergence and occasional plateaus, which may reduce reliability in
complex scenarios. ACO, PSO, and GA, with their higher errors and
longer computational times, are less suitable for such demanding ap-
plications due to their limited optimization efficiency. To enhance the
performance of these models, several strategies are proposed. Opti-
mizing algorithmic settings, such as adjusting population size or itera-
tion count, can enhance the balance between accuracy and
computational speed for time-sensitive applications. Improving neural
network design by increasing the number of neurons or incorporating
advanced activation functions can boost predictive accuracy. Addi-
tionally, developing hybrid models by combining metaheuristic algo-
rithms like WHO or COA with methods such as ACO, PSO, GA, or the Red
Deer Algorithm (RDA) [51] can improve performance. Furthermore,
incorporating permutation feature importance [42] can be explored to
analyze the relative importance of features, enabling better feature se-
lection and model refinement for improved predictive outcomes.
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