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“For, you see, so many out-of-the-way

things had happened lately, that Alice

had begun to think that very few things

indeed were really impossible.”

— Chapter 1, Down the Rabbit-Hole
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Foreword

This book is an introduction to the topic of (deep) neural
networks, the core technique at the hearth of large
language models, generative artificial intelligence - and
many other applications. Because the term neural comes
with a lot of historical baggage, and because neural
networks are simply compositions of differentiable
primitives, I refer to them – when feasible – with the
simpler term differentiable models.

In 2009, I stumbled almost by chance upon a paper by
Yoshua Bengio on the power of ‘deep’ networks [Ben09],
at the same time when automatic differentiation libraries
like Theano [ARAA+16] were becoming popular. Like
Alice, I had stumbled upon a strange programming realm -
a differentiable wonderland where simple things, such as
selecting an element, were incredibly hard, and other
things, such as recognizing cats, were amazingly simple.

I have spent more than ten years reading about,
implementing, and teaching these ideas. This book is a
rough attempt at condensing something of what I have
learned in the process, with a focus on their design and
most common components. Because the field is evolving
quickly, I have tried to strike a good balance between
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theory and code, historical considerations and recent
trends. I assume the reader has some exposure to machine
learning and linear algebra, but I try to cover the
preliminaries when necessary.

Gather round, friends:
it’s time for our beloved
Alice’s Adventures in a

differentiable wonderland
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1 | Introduction

Neural networks have become an integral component of
our everyday’s world, either openly (in the guise of large
language models, LLMs), or hidden from view, by
powering countless technologies and scientific discoveries
including drones, cars, search engines, molecular design,
and recommender systems [WFD+23]. As we will see, all
of this has been done by relying on a very small set of
guiding principles and components, forming the core of
this book, while the research focus has shifted to scaling
them up to the limits of what is physically possible.

The power of scaling is embodied in the relatively recent
concept of neural scaling laws, which in turn has been
instrumental in driving massive investments in artificial
intelligence (AI) [KMH+20, HBE+24]: informally, for
practically any task, simultaneously increasing data,
compute power, and the size of the models – almost
always – results in a predictable increase in accuracy.
Stated in another way, the compute power required to
achieve a given accuracy for a task is decreasing by a
constant factor per period of time [HBE+24]. The
tremendous power of combining simple, general-purpose
tools with exponentially increased computational power in
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Figure F.1.1: Training cost (in US dollars) of notable AI models
released from 2016. Training cost is correlated to the three key
factors of scaling laws: size of the datasets, compute power, and
size of the models. As performance steadily increases, variations in
modeling become asymptotically less significant [HBE+24]. Data
reproduced from the Stanford AI Index Report 2024.2

AI was called the bitter lesson by R. Sutton.1

If we take scaling laws as given, we are left with an almost
magical tool. In a nutshell, neural networks are optimized
to approximate some probability distribution given data
drawn from it. In principle, this approximation may fail:
for example, modern neural networks are so large that
they can easily memorize all the data they are shown
[ZBH+21] and transform into a trivial look-up table.
Instead, trained models are shown to generalize well even
to tasks that are not explicitly considered in the training
data [ASA+23]. In fact, as the size of the datasets
increases, the concept of what is in-distribution and what
is out-of-distribution blurs, and large-scale models show
hints of strong generalization capabilities and a

1
http://www.incompleteideas.net/IncIdeas/BitterLesson.html.

2
https://hai.stanford.edu/research/ai-index-report
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Chapter 1: Introduction 3

fascinating low dependency on pure memorization, i.e.,
overfitting [PBE+22].

The emergence of extremely large models that can be
leveraged for a variety of downstream tasks (sometimes
called foundation models), coupled with a vibrant
open-source community,3 has also shifted how we interact
with these models. Many tasks can now be solved by
simply prompting (i.e., interacting with text or visual
instructions) a pre-trained model found on the web
[ASA+23], with the internals of the model remaining a
complete black-box. From a high-level perspective, this is
similar to a shift from having to programs your libraries in,
e.g., C++, towards relying on open-source or commercial
software whose source code is not accessible. The
metaphor is not as far fetched as it may seems: nowadays,
few teams worldwide have the compute and the technical
expertise to design and release truly large-scale models
such as the Llama LLMs [TLI+23], just like few companies
have the resources to build enterprise CRM software.

And in the same way, just like open-source software
provides endless possibilities for customizing or designing
from scratch your programs, customer-grade hardware
and a bit of ingenuity gives you a vast array of options to
experiment with differentiable models, from fine-tuning
them for your tasks [LTM+22] to merging models
[AHS23], quantizing them for low-power hardware,
testing their robustness, or even designing completely new
variants and ideas. For all of this, you need to look ‘under
the hood’ and understand how these models process and
manipulate data internally, with all their tricks and
idiosincrasies that are born from experience and
debugging. This book is an entry point into this world: if,

3
https://huggingface.co/

3

https://huggingface.co/


4 Introduction

like Alice, you are naturally curious, I hope you will
appreciate the journey.

About this book

We assume our readers are familiar with the basics of
machine learning (ML), and more specifically supervised
learning (SL). SL can be used to solve complex tasks by
gathering data on a desired behavior, and ‘training’
(optimizing) systems to approximate that behavior. This
deceptively simple idea is extremely powerful: for
example, image generation can be turned into the
problem of collecting a sufficiently large collection of
images with their captions; simulating the English
language becomes the task of gathering a large collection
of text and learning to predict a sentence from the
preceding ones; and diagnosing an X-ray becomes
equivalent to having a large database of scans with the
associated doctors’ decision (Figure F.1.2).

In general, learning is a search problem. We start by
defining a program with a large number of
degree-of-freedoms (that we call parameters), and we
manipulate the parameters until the model performance is
satisfying. To make this idea practical, we need efficient
ways of searching for the optimal configuration even in the
presence of millions (or billions, or trillions) of parameters.
As the name implies, differentiable models do this by
restricting the selection of the model to differentiable
components, i.e., mathematical functions that we can
differentiate. Being able to compute a derivative of a
high-dimensional function (a gradient) means knowing
what happens if we slightly perturb their parameters,
which in turn leads to automatic routines for their

4
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Image 
captioning

Paris

"What is the capital
of France?"

Image
generation

"An image of the
Tour Eiffel"

Audio query
answering

"An image of the
Tour Eiffel"

Figure F.1.2: Most tasks can be categorized based on the desired
input - output we need: image generation wants an image (an
ordered grid of pixels) from a text (a sequence of characters),
while the inverse (image captioning) is the problem of generating a
caption from an image. As another example, audio query answering
requires a text from an audio (another ordered sequence, this time
numerical). Fascinatingly, the design of the models follow similar
specifications in all cases.

optimization (most notably, automatic differentiation
and gradient descent). Describing this setup is the topic
of the first part of the book (Part I, Compass and Needle),
going from Chapter 2 to Chapter 6.

By viewing neural networks as simply compositions of
differentiable primitives we can ask two basic questions
(Figure F.1.3): first, what data types can we handle as
inputs or outputs? And second, what sort of primitives can
we use? Differentiability is a strong requirement that does
not allow us to work directly with many standard data
types, such as characters or integers, which are
fundamentally discrete and hence discontinuous. By
contrast, we will see that differentiable models can work
easily with more complex data represented as large arrays
(what we will call tensors) of numbers, such as images,

5



6 Introduction

def my_program(x: tensor) -> tensor:
    ...
    ...

    ...

    return y

Input types

Output types

Differentiable
primitives

Figure F.1.3: Neural networks are sequences of differentiable
primitives which operate on structured arrays (tensors): each
primitive can be categorized based on its input/output signature,
which in turn defines the rules for composing them.

which can be manipulated algebraically by basic
compositions of linear and nonlinear transformations.

In the second part of the book we focus on a prototypical
example of differentiable component, the convolutional
operator (Part II, from Chapter 7 until Chapter 9).
Convolutions can be applied whenever our data can be
represented by an ordered sequence of elements: these
include, among others, audio, images, text, and video.
Along the way we also introduce a number of useful
techniques to design deep (a.k.a., composed of many steps
in sequence) models, as long as several important ideas
such as text tokenization, autoregressive generation of
sequences, and causal modeling, which form the basis for
state-of-the-art LLMs.

The third part of the book (Part III, Down the Rabbit
Hole) continues our exploration of differentiable models by
considering alternative designs for sets (most importantly
attention layers and transformer models in Chapter 10
and 11), graphs (Chapter 12), and finally recurrent layers
for temporal sequences (Chapter 13).

6



Chapter 1: Introduction 7

The book is complemented by a website4 where I collect
additional chapters and material on topics of interest that
do not focus on a specific type of data, including generative
modeling, conditional computation, transfer learning,
and explainability. These chapters are more research-
oriented in nature and can be read in any order. Hopefully
they will be part of a second volume if time allows.

In the land of differentiability

Neural networks have a long and rich history. The name
itself is a throwback to early attempts at modeling
(biological) neurons in the 20th century, and similar
terminology has remained pervasive: to be consistent with
existing frameworks, in the upcoming chapters we may
refer to neurons, layers, or, e.g., activations. After multiple
waves of interest, the period between 2012 and 2017 saw
an unprecedented rise in complexity in the networks
spurred by large-scale benchmarks and competitions, most
notably the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) that we cover in Chapter 9. A second
major wave of interest came from the introduction of
transformers (Chapter 10) in 2017: just like computer
vision was overtaken by convolutional models a few years
before, natural language processing was overtaken by
transformers in a very short period. Further improvements
in these years were done for videos, graphs (Chapter 12),
and audio, culminating in the current excitement around
LLMs, multimodal networks, and generative models.5

4
https://sscardapane.it/alice-book

5This is not the place for a complete historical overview of modern
neural networks; for the interested reader, I refer to [Met22] as a great
starting point.
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8 Introduction

This period paralleled a quick evolution in terminology,
from the connectionism of the 80s [RHM86] to the use of
deep learning for referring to modern networks in
opposition to the smaller, shallower models of the past
[Ben09, LBH15]. Despite this, all these terms remain
inexorably vague, because modern (artificial) networks
retain almost no resemblance to biological neural
networks and neurology [ZER+23]. Looking at modern
neural networks, their essential characteristic is being
composed of differentiable blocks: for this reason, in this
book I prefer the term differentiable models when
feasible. Viewing neural networks as differentiable models
leads directly to the wider topic of differentiable
programming, an emerging discipline that blends
computer science and optimization to study differentiable
computer programs more broadly [BR24].6

As we travel through this land of differentiable models, we
are also traveling through history: the basic concepts of
numerical optimization of linear models by gradient
descent (covered in Chapter 4) were known since at least
the XIX century [Sti81]; so-called “fully-connected
networks” in the form we use later on can be dated back
to the 1980s [RHM86]; convolutional models were known
and used already at the end of the 90s [LBBH98].7

6Like many, I was inspired by a ‘manifesto’ published by
Y. LeCun on Facebook in 2018: https://www.facebook.com/yann.

lecun/posts/10155003011462143. For the connection between neural
networks and open-source programming (and development) I am
also thankful to a second manifesto, published by C. Raffel in
2021: https://colinraffel.com/blog/a-call-to-build-models-like-we-

build-open-source-software.html.
7For a history of NNs up to this period through interviews to some

of the main characters, see [AR00]; for a large opinionated history
there is also an annotated history of neural networks by J. Schmidhuber:
https://people.idsia.ch/~juergen/deep-learning-history.html.
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Figure F.1.4: AI hype - except it is 1958, and the US psychologist
Frank Rosenblatt has gathered up significant media attention with
his studies on “perceptrons”, one of the first working prototypes of
neural networks.

However, it took many decades to have sufficient data and
power to realize how well they can perform given enough
data and enough parameters.

While we do not have space to go in-depth on all possible
topics (also due to how quickly the research is progressing),
I hope the book provides enough material to allow the
reader to easily navigate the most recent literature.

Notation and symbols

The fundamental data type when dealing with
differentiable models is a tensor,8 which we define as an
n dimensional array of objects, typically real-valued
numbers. With apologies to any mathematician reading
us, we call n the rank of the tensor. The notation in the
book varies depending on n:

8In the scientific literature, tensors have a more precise definition
as multilinear operators [Lim21], while the objects we use in the book
are simpler multidimensional arrays. Although a misnomer, the use of
tensor is so widespread that we keep this convention here.

9



10 Introduction

Scalar Vector Matrix n-dimensional array

Figure F.1.5: Fundamental data types: scalars, vectors, matrices,
and generic n-dimensional arrays. We use the name tensors to
refer to them. n is called the rank of the tensor. We show the vector
as a row for readability, but in the text we assume all vectors are
column vectors.

1. A single-item tensor (n= 0) is just a single value (a
scalar). For scalars, we use lowercase letters, such
as x or y .9

2. Columns of values (n= 1) are vectors. For vectors
we use a lowercase bold font, such as x. The
corresponding row vector is denoted by x⊤ when we
need to distinguish them. We can also ignore the
transpose for readability, if clear from context.

3. Rectangular array of values (n = 2) are matrices.
We use an uppercase bold font, such as X or Y.

4. No specific notation is used for n > 2. We avoid
calligraphic symbols such as X , that we reserve for
sets or probability distributions.

For working with tensors, we use a variety of indexing
strategies described better in Section 2.1. In most cases,
understanding an algorithm or an operation boils down
to understanding the shape of each tensor involved. To

9If you are wondering, scalars are named like this because they can
be written as scalar multiples of one. Also, I promise to reduce the
number of footnotes from now on.

10



Chapter 1: Introduction 11

denote the shape concisely, we use the following notation:

X ∼ (b, h, w, 3)

This is a rank-4 tensor with shape (b, h, w, 3). Some
dimensions can be pre-specified (e.g., 3), while other
dimensions can be denoted by variables. We use the same
symbol to denote drawing from a probability distribution,
e.g., ϵ ∼N (0,1), but we do this rarely and the meaning
of the symbol should always be clear from context. Hence,
x ∼ (d) will substitute the more common x ∈ Rd , and
similarly for X ∼ (n, d) instead of X ∈ Rn×d . Finally, we
may want to constrain the elements of a tensor, for which
we use a special notation:

1. x ∼ Binary(c) denotes a tensor with only binary
values, i.e., elements from the set {0,1}.

2. x∼∆(a) denotes a vector belonging to the so-called
simplex, i.e., x i ≥ 0 and

∑

i x i = 1. For tensors with
higher rank, e.g., X ∼ ∆(n, c), we assume the
normalization is applied with respect to the last
dimension (e.g., in this case each row of Xi belongs
to the simplex).

Additional notation is introduced along each chapter when
necessary. We also have a few symbols on the side:

• A bottle to emphasize some definitions. We have
many definitions, especially in the early chapters,
and we use this symbol to visually discriminate the
most important ones.

• A clock for sections we believe crucial to understand
the rest of the book – please do not skip these!

• On the contrary, a teacup for more relaxed sections –

11



12 Introduction

these are generally discursive and mostly optional in
relation to the rest of the book.

Final thoughts before departing

The book stems from my desire to give a coherent form
to my lectures for Neural Networks for Data Science
Applications, a course I have been teaching in the Master
Degree in Data Science at Sapienza University of Rome for
a few years. The core chapters of the book constitute the
main part of the course, while the remaining chapters are
topics that I cover on and off depending on the year. Some
parts have been supplemented by additional courses I have
taught (or I intend to teach), including parts of Neural
Networks for Computer Engineering, an introduction to
machine learning for Telecommunication Engineering, plus
a few tutorials, PhD courses, and summer schools over the
years.

There are already a number of excellent (and recent) books
on the topic of modern, deep neural networks, including
[Pri23, ZLLS23, BB23, Fle23, HR22]. This book covers a
similar content to all of these in the beginning, while the
exposition and some additional parts (or a few sections
in the advanced chapters) intersect less, and they depend
mostly on my research interests. I hope I can provide
an additional (and complementary) viewpoint on existing
material.

As my choice of name suggests, understanding
differentiable programs comes from both theory and
coding: there is a constant interplay between how we
design models and how we implement them, with topics
like automatic differentiation being the best example. The

12
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current resurgence of neural networks (roughly from 2012
onwards) can be traced in large part to the availability of
powerful software libraries, going from Theano
[ARAA+16] to Caffe, Chainer, and then directly to the
modern iterations of TensorFlow, PyTorch, and JAX,
among others. I try whenever possible to connect the
discussion to concepts from existing programming
frameworks, with a focus on PyTorch and JAX. The book is
not a programming manual, however, and I refer to the
documentation of the libraries for a complete introduction
to each of them.

Before moving on, I would like to list a few additional
things this book is not. First, I have tried to pick up a few
concepts that are both (a) common today, and (b) general
enough to be of use in the near future. However, I cannot
foresee the future and I do not strive for completeness,
and several parts of these chapters may be incomplete or
outdated by the time you read them. Second, for each
concept I try to provide a few examples of variations that
exist in the literature (e.g., from batch normalization to
layer normalization). However, keep in mind that
hundreds more exist: I invite you for this to an exploration
of the many pages of Papers With Code. Finally, this is a
book on the fundamental components of differentiable
models, but implementing them at scale (and making
them work) requires both engineering sophistication and
(a bit of) intuition. I cover little on the hardware side, and
for the latter nothing beats experience and opinionated
blog posts.10

10See for example this blog post by A. Karpathy: http://karpathy.

github.io/2019/04/25/recipe/, or his recent Zero to Hero video series:
https://karpathy.ai/zero-to-hero.html.

13
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Part I

Compass and needle

“Would you tell me, please, which way I

ought to go from here?”

“That depends a good deal on where

you want to get to,” said the Cat.

“I don’t much care where” said Alice.

“Then it doesn’t matter which way you

go,” said the Cat.

— Chapter 6, Pig and Pepper

15





2 | Mathematical
preliminaries

About this chapter

We compress here the mathematical concepts required to
follow the book. We assume prior knowledge on all these
topics, focusing more on describing specific notation and
giving a cohesive overview. When possible, we stress
the relation between some of this material (e.g., tensors)
and their implementation in practice.

The chapter is composed of three parts that follow
sequentially from each other, starting from linear algebra,
moving to the definition of gradients for n-dimensional
objects, and finally how we can optimize functions by
exploiting such gradients. A self-contained overview of
probability theory is given in Appendix A, with a focus on
the maximum likelihood principle.

This chapter is full of content and definitions: bear with
me for a while!

17



18 Linear algebra

2.1 Linear algebra

We recall here some basic concepts from linear algebra that
will be useful in the following (and to agree on a shared
notation). Most of the book revolves around the idea of a
tensor.

Definition D.2.1 (Tensors)

A tensor X is an n-dimensional array of elements of the
same type. In the book we use:

X ∼ (s1, s2, . . . , sn)

to quickly denote the shape of the tensor.

For n = 0 we obtain scalars (single values), while we
have vectors for n = 1, matrices for n = 2, and higher-
dimensional arrays otherwise. Recall that we use lowercase
x for scalars, lowercase bold x for vectors, uppercase bold
X for matrices. Tensors in the sense described here are
fundamental in deep learning because they are well suited
to a massively-parallel implementation, such as using GPUs
or more specialized hardware (e.g., TPUs, IPUs).

A tensor is described by the type of its elements and its
shape. Most of our discussion will be centered around
tensors of floating-point values (the specific format of which
we will consider later on), but they can also be defined
for integers (e.g., in classification) or for strings (e.g., for
text). Tensors can be indexed to get slices (subsets) of
their values, and most conventions from NumPy indexing1

1If you want a refresher: https://numpy.org/doc/stable/user/basics.

indexing.html. For readability in the book we index from 1, not from
0. See also the exercises at the end of the chapter.

18

https://numpy.org/doc/stable/user/basics.indexing.html
https://numpy.org/doc/stable/user/basics.indexing.html


Chapter 2: Mathematical preliminaries 19

apply. For simple equations we use pedices: for example,
for a 3-dimensional tensor X ∼ (a, b, c) we can write X i to
denote a slice of size (b, c) or X i jk for a single scalar. We
use commas for more complex expressions, such as X i,:, j:k

to denote a slice of size (b, k− j). When necessary to avoid
clutter, we use a light-gray notation:

[X ]i jk

to visually split the indexing part from the rest, where the
argument of [ • ] can also be an expression.

2.1.1 Common vector operations

We are mostly concerned with models that can be written
as composition of differentiable operations. In fact, the
majority of our models will consist of basic compositions of
sums, multiplications, and some additional non-linearities
such as the exponential exp(x), sines and cosines, and
square roots.

Vectors x ∼ (d) are examples of 1-dimensional tensors.
Linear algebra books are concerned with distinguishing
between column vectors x and row vectors x⊤, and we will
try to adhere to this convention as much as possible. In
code this is trickier, because row and column vectors
correspond to 2-dimensional tensors of shape (1, d) or
(d, 1), which are different from 1-dimensional tensors of
shape (d). This is important to keep in mind because most
frameworks implement broadcasting rules2 inspired by
NumPy, giving rise to non-intuitive behaviors. See Box
C.2.1 for an example of a very common error arising in

2In a nutshell, broadcasting aligns the tensors’ shape from the right,
and repeats a tensor whenever possible to match the two shapes:
https://numpy.org/doc/stable/user/basics.broadcasting.html.
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import torch
x = torch.randn((4, 1)) # "Column"
y = torch.randn((4,)) # 1D tensor
print((x + y).shape)
# [Out]: (4,4) (because of broadcasting!)

Box C.2.1: An example of (probably incorrect) broadcasting,
resulting in a matrix output from an elementwise operation on two
vectors due to their shapes. The same result can be obtained in
practically any framework (NumPy, TensorFlow, JAX, ...).

implicit broadcasting of tensors’ shapes.

Vectors possess their own algebra (which we call a vector
space), in the sense that any two vectors x and y of the
same shape can be linearly combined z = ax+by to provide
a third vector:

zi = ax i + b yi

If we understand a vector as a point in d-dimensional
Euclidean space, the sum is interpreted by forming a
parallelogram, while the distance of a vector from the
origin is given by the Euclidean (ℓ2) norm:

∥x∥=
√

√

∑

i

x2
i

The squared norm ∥x∥2 is of particular interest, as it
corresponds to the sum of the elements squared. The
fundamental vector operation we are interested in is the
inner product (or dot product), which is given by
multiplying the two vectors element-wise, and summing
the resulting values.
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Definition D.2.2 (Inner product)

The inner product between two vectors x,y∼ (d) is given
by the expression:

〈x,y〉= x⊤y=
∑

i

x i yi (E.2.1)

The notation 〈•,•〉 is common in physics, and we use it
sometimes for clarity. Importantly, the dot product between
two vectors is a scalar. For example, if x = [0.1,0,−0.3]
and y= [−4.0, 0.05,0.1]:

〈x,y〉= −0.4+ 0− 0.03= −0.43

A simple geometric interpretation of the dot product is
given by its relation with the angle α between the two
vectors:

x⊤y= ∥x∥∥y∥ cos(α) (E.2.2)

Hence, for two normalized vectors such that ∥·∥= 1, the
dot product is equivalent to the cosine of their angle, in
which case we call the dot product the cosine similarity.
The cosine similarity cos(α) oscillates between 1 (two
vectors pointing in the same direction) and −1 (two
vectors pointing in opposite directions), with the special
case of 〈x,y〉 = 0 giving rise to orthogonal vectors
pointing in perpendicular directions. Looking at this from
another direction, for two normalized vectors (having
unitary norm), if we fix x, then:

y∗ = arg max 〈x,y〉= x (E.2.3)
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where arg max denotes the operation of finding the value
of x corresponding to the highest possible value of its
argument. From (E.2.3) we see that, to maximize the dot
product, the second vector must equal the first one. This is
important, because in the following chapters x will
represent an input, while w will represent (adaptable)
parameters, so that the dot product is maximized
whenever x ‘resonates’ with w (template matching).

We close with two additional observations that will be
useful. First, we can write the sum of the elements of a
vector as its dot product with a vector 1 composed entirely
of ones, 1= [1,1, . . . , 1]⊤:

〈x,1〉=
d
∑

i=1

x i

Second, the distance between two vectors can also be
written in terms of their dot products:

∥x− y∥2 = 〈x,x〉+ 〈y,y〉 − 2〈x,y〉

The case y= 0 gives us ∥x∥2 = 〈x,x〉. Both equations can
be useful when writing equations or in the code.

2.1.2 Common matrix operations

In the 2-dimensional case we have matrices:

X=





X11 · · · X1d
...

. . .
...

Xn1 · · · Xnd



∼ (n, d)
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In this case we can talk about a matrix with n rows and d
columns. Of particular importance for the following, a
matrix can be understood as a stack of n vectors
(x1,x2, . . . ,xn), where the stack is organized in a row-wise
fashion:

X=





x⊤1
...

x⊤n





We say that X represents a batch of data vectors. As we will
see, it is customary to define models (both mathematically
and in code) to work on batched data of this kind. A
fundamental operation for matrices is multiplication:

Definition D.2.3 (Matrix multiplication)

For any two matrices X ∼(a,b) and Y ∼ (b, c) of
compatible shape, matrix multiplication Z = XY, with
Z∼ (a, c) is defined element-wise as:

Zi j = 〈Xi,Y
⊤
j 〉 (E.2.4)

i.e., the element (i, j) of the product is the dot product
between the i-th row of X and the j-th column of Y.

As a special case, if the second term is a vector we have a
matrix-vector product:

z=Wx (E.2.5)

If we interpret X as a batch of vectors, matrix
multiplication XW⊤ is a simple vectorized way of
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computing n dot products as in (E.2.5), one for each row
of X, with a single linear algebra operation. As another
example, matrix multiplication of a matrix by its
transpose, XX⊤ ∼ (n, n), is a vectorized way to compute all
possible dot products of pairs of rows of X simultaneously.

We close by mentioning a few additional operations on
matrices that will be important.

Definition D.2.4 (Hadamard multiplication)

For two matrices of the same shape, the Hadamard
multiplication is defined element-wise as:

[X⊙ Y]i j = X i jYi j

While Hadamard multiplication does not have all the
interesting algebraic properties of standard matrix
multiplication, it is commonly used in differentiable
models for performing masking operations (e.g., setting
some elements to zero) or scaling operations.
Multiplicative interactions have also become popular in
some recent families of models, as we will see next.

Sometimes we write expressions such as exp(X), which
are to be interpreted as element-wise applications of the
operation:

[exp(X)]i j = exp(X i j) (E.2.6)

By comparison, “true” matrix exponentiation is defined for
a squared matrix as:
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X = torch.randn((5, 5))
# Element-wise exponential
X = torch.exp(X)
# Matrix exponential
X = torch.linalg.matrix_exp(X)

Box C.2.2: Difference between the element-wise exponential of a
matrix and the matrix exponential as defined in linear algebra
textbooks. Specialized linear algebra operations are generally
encapsulated in their own sub-package.

mat-exp(X) =
∞
∑

k=0

1
k!

Xk (E.2.7)

Importantly, (E.2.6) can be defined for tensors of any shape,
while (E.2.7) is only valid for (squared) matrices. This is
why all frameworks, like PyTorch, have specialized modules
that collect all matrix-specific operations, such as inverses
and determinants. See Box C.2.2 for an example.

Finally, we can write reduction operations (sum, mean, ...)
across axes without specifying lower and upper indices, in
which case we assume that the summation runs along the
full axis:

∑

i

Xi =
n
∑

i=1

Xi

In PyTorch and other frameworks, reduction operations
correspond to methods having an axis argument:

r = X.sum(axis=1)
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On the definition of matrix multiplication

Why is matrix multiplication defined as (E.2.4) and not
as Hadamard multiplication? Consider a vector x and
some generic function f defined on it. The function is
said to be linear if f (αx1 + βx2) = α f (x1) + β f (x2).
Any such function can be represented as a matrix A
(this can be seen by extending the two vectors in a
basis representation). Then, the matrix-vector product
Ax corresponds to function application, f (x) = Ax,
and matrix multiplication AB corresponds to function
composition f ◦ g, where ( f ◦ g)(x) = f (g(x)) and
g(x) = Bx.

Computational complexity

I will use matrix multiplication to introduce the topic of
complexity of an operation. Looking at (E.2.4), we see that
computing the matrix Z∼ (a, c) from the input arguments
X ∼ (a, b) and Y ∼ (b, c) requires ac inner products of
dimension b if we directly apply the definition (what we
call the time complexity), while the memory requirement
for a sequential implementation is simply the size of the
output matrix (what we call instead the space complexity).

To abstract away from the specific hardware details,
computer science focuses on the so-called big-O notation,
from the German ordnung (which stands for order of
approximation). A function f (x) is said to be O (g(x)),
where we assume both inputs and outputs are
non-negative, if we can find a constant c and a value x0

such that:

f (x)≤ cg(x) for any x ≥ x0 (E.2.8)
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meaning that as soon as x grows sufficiently large, we can
ignore all factors in our analysis outside of g(x). This is
called an asymptotic analysis. Hence, we can say that a
naive implementation of matrix multiplication is O (abc),
growing linearly with respect to all three input parameters.
For two square matrices of size (n, n) we say matrix
multiplication is cubic in the input dimension.

Reasoning in terms of asymptotic complexity is important
(and elegant), but choosing an algorithm only in terms of
big-O complexity does not necessarily translate to
practical performance gains, which depends on many
details such as what hardware is used, what parallelism is
supported, and so on.3 As an example, it is known that the
best asymptotic algorithm for multiplying two square
matrices of size (n, n) scales as O (nc) for a constant
c < 2.4 [CW82], which is much better than the cubic
O (n3) requirement of a naive implementation. However,
these algorithms are much harder to parallelize efficiently
on highly-parallel hardware such as GPUs, making them
uncommon in practice.

Note that from the point of view of asymptotic complexity,
having access to a parallel environment with k processors
has no impact, since it can only provide (at best) a constant
1
k speedup over a non-parallel implementation. In addition,
asymptotic complexity does not take into consideration the
time it takes to move data from one location to the other,

3When you call a specific primitive in a linear algebra framework,
such as matrix multiplication A @ B in PyTorch, the specific low-
level implementation that is executed (the kernel) depends on the
run-time hardware, through a process known as dispatching. Hence,
the same code can run via a GPU kernel, a CPU kernel, a TPU kernel,
etc. This is made even more complex by compilers such as XLA (https:
//openxla.org/xla), which can optimize code by fusing and optimizing
operations with a specific target hardware in mind.
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which can become the major bottleneck in many situations.4

In these cases, we say the implementation is memory-bound
as opposed to compute-bound. Practically, this can only be
checked by running a profiler over the code. We will see
that analyzing the complexity of an algorithm is far from
trivial due to the interplay of asymptotic complexity and
observed complexity.

2.1.3 Higher-order tensor operations

Vectors and matrices are interesting because they allow us
to define a large number of operations which are undefined
or complex in higher dimensions (e.g., matrix exponentials,
matrix multiplication, determinants, ...). When moving to
higher dimensions, most of the operations we are interested
into are either batched variants of matrix operations, or
specific combinations of matrix operations and reduction
operations.

As an example of the former, consider two tensors X ∼
(n, a, b) and Y ∼ (n, b, c). Batched matrix multiplication
(BMM) is defined as:

[BMM(X , Y )]i = XiYi ∼ (n, a, c) (E.2.9)

Operations in most frameworks operate transparently on
batched versions of their arguments, which are assumed
like in this case to be leading dimensions (the first
dimensions). For example, batched matrix multiplication
in PyTorch is the same as standard matrix multiplication,
see Box C.2.3.

As an example of a reduction operation, consider two

4
https://docs.nvidia.com/deeplearning/performance/dl-

performance-gpu-background/index.html
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X = torch.randn((4, 5, 2))
Y = torch.randn((4, 2, 3))
(torch.matmul(X, Y)).shape # Or X @ Y
# [Out]: (4, 5, 3)

Box C.2.3: BMM in PyTorch is equivalent to standard matrix
multiplication. Practically every operation is implemented to run
on generically batched inputs.

tensors X , Y ∼ (a, b, c). A generalized version of the dot
product (GDT) can be written as:

GDT(X , Y ) =
∑

i, j,k

[X ⊙ Y ]i jk (E.2.10)

which is simply a dot product over the ‘flattened’ versions
of its inputs. This brief overview covers most of the tensor
operations we will use in the rest of the book, with
additional material introduced when necessary.

2.1.4 Einstein’s notation

This is an optional section that covers einsum,5 a set of
conventions that allows the user to specify practically
every tensor operation (including reductions, sums,
multiplications) with a simple syntax based on text strings.

To introduce the notation, let us consider again the two
examples shown before in (E.2.9) and (E.2.10), writing
down explicitly all the axes:

5
https://numpy.org/doc/stable/reference/generated/numpy.einsum.

html
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# Batched matrix multiply
M = torch.einsum('ijz,izk->ijk', A, B)
# Generalized dot product
M = torch.einsum('ijk,ijk->', A, B)

Box C.2.4: Examples of using einsum in PyTorch.

Mi jk =
∑

z

Ai jzBizk (E.2.11)

M =
∑

i

∑

j

∑

k

X i jkYi jk (E.2.12)

In line with Einstein’s notation,6 we can simplify the two
equations by removing the sums, under the convention
that any index appearing on the right but not on the left is
summed over:

Mi jk = Ai jzBizk ≜
∑

z

Ai jzBizk (E.2.13)

M = X i jkYi jk ≜
∑

i

∑

j

∑

k

X i jkYi jk (E.2.14)

Then, we can condense the two definitions by isolating the
indices in a unique string (where the operands are now on
the left):

• ‘ijz,izk→ijk’ (batched matrix multiply);

• ‘ijk,ijk→’ (generalized dot product).

6The notation we use is a simplified version which ignores the
distinction between upper and lower indices: https://en.wikipedia.

org/wiki/Einstein_notation.

30

https://en.wikipedia.org/wiki/Einstein_notation
https://en.wikipedia.org/wiki/Einstein_notation


Chapter 2: Mathematical preliminaries 31

M = jax.numpy.einsum('ijz,izk->ijk', A, B)

Box C.2.5: Example of using einsum in JAX - compare with Box
C.2.4.

There is a direct one-to-one correspondence between the
definitions in (E.2.13)-(E.2.14) and their simplified string
definition. This is implemented in most frameworks in the
einsum operation, see Box C.2.4.

The advantage of this notation is that we do not need to
remember the API of a framework to implement a given
operation; and translating from one framework to the
other is transparent because the einsum syntax is
equivalent. For example, PyTorch has several matrix
multiplication methods, including matmul and bmm, with
different broadcasting rules and shape constraints, and
einsum provides a uniform syntax for all of them. In
addition, the einsum definition of our batched matrix
multiplication is identical to, e.g., the definition in JAX,
see Box C.2.5.

Working with transposed axes is also simple. For example,
for A∼ (n, a, b) and B ∼ (n, c, b), a batched multiplication
of [A]i times [B⊤]i is obtained by switching the
corresponding axes in the einsum definition:

M = torch.einsum('ijz,ikz->ijk', A, B)

Because of these reasons, einsum and its generalizations
(like the popular einops7 package) have gained a wide
popularity recently.

7
http://einops.rocks
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2.2 Gradients and Jacobians

As the name differentiable implies, gradients play a pivotal
role in the book, providing a way to optimize our models
through semi-automatic mechanisms deriving from
gradient descent. We recall here some basic definitions
and concepts concerning differentiation of multi-valued
functions. We focus on properties that will be essential for
later, partially at the expense of mathematical precision.

2.2.1 Derivatives of scalar functions

Starting from a simple function y = f (x)with a scalar input
and a scalar output, its derivative is defined as follows.

Definition D.2.5 (Derivative) The derivative of f (x)
is defined as:

f ′(x) = lim
h→0

f (x + h)− f (x)
h

(E.2.15)

We use a variety of notation to denote derivatives: ∂ will
denote generically derivatives and gradients of any
dimension (vectors, matrices); ∂x or ∂

∂ x to highlight the
input argument we are differentiating with respect to
(when needed); while f ′(x) is specific to scalar functions
and it is sometimes called Lagrange’s notation.

We are not concerned here about the existence of the
derivative of the function (which is not guaranteed
everywhere even for a continuous function), which we
assume as given. We will only touch upon this point when
discussing derivatives of non-smooth functions, such as
f (x) = |x | in 0 later on in Chapter 6.
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Figure F.2.1: Plot
of the function
f (x) = x2 − 1.5x,
shown along with the
derivatives on two
separate points.
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Derivatives of simple functions can be obtained by direct
application of the definition, e.g., the derivatives of a
polynomial, logarithm, or sine should be familiar:

∂ x p = px p−1

∂ log(x) =
1
x

∂ sin(x) = cos(x)

Geometrically, the derivative can be understood as the slope
of the tangent passing through a point, or equivalently as
the best first-order approximation of the function itself in
that point, as shown in Figure F.2.1. This is a fundamental
point of view, because the slope of the line tells us how the
function is evolving in a close neighborhood: for a positive
slope, the function is increasing on the right and decreasing
on the left (again, for a sufficiently small interval), while
for a negative slope the opposite is true. As we will see,
this insight extends to vector-valued functions.

We recall some important properties of derivatives that
extend to the multi-dimensional case:

• Linearity: the derivative is linear, so the derivative
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of a sum is the sum of derivatives:

∂
�

f (x) + g(x)
�

= f ′(x) + g ′(x) .

• Product rule:

∂
�

f (x)g(x)
�

= f ′(x)g(x) + f (x)g ′(x) ,

• Chain rule: the derivative of function composition is
given by multiplying the corresponding derivatives:

∂
�

f (g(x))
�

= f ′(g(x))g ′(x) (E.2.16)

2.2.2 Gradients and directional derivatives

Consider now a function y = f (x) taking a vector x∼ (d)
as input. Talking about infinitesimal perturbations here
does not make sense unless we specify the direction of this
perturbation (while in the scalar case we only had “left” and
“right”, in this case we have infinite possible directions in
the Euclidean space). In the simplest case, we can consider
moving along the i-th axis, keeping all other values fixed:

∂x i
f (x) =

∂ y
∂ x i

= lim
h→0

f (x+ hei)− f (x)
h

, (E.2.17)

where ei ∼ (d) is the i-th basis vector (the i-th row of the
identity matrix):

[ei] j =

¨

1 if i = j
0 otherwise

(E.2.18)

(E.2.17) is called a partial derivative. Stacking all partial
derivatives together gives us a d-dimensional vector called
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the gradient of the function.

Definition D.2.6 (Gradient)

The gradient of a function y = f (x) is given by:

∇ f (x) = ∂ f (x) =





∂x1
f (x)
...

∂xd
f (x)



 (E.2.19)

Because gradients are fundamental, we use the special
notation ∇ f (x) to distinguish them. What about
displacements in a general direction v? In this case we
obtain the directional derivative:

Dv f (x) = lim
h→0

f (x+ hv)− f (x)
h

, (E.2.20)

Movement in space can be decomposed by considering
individual displacements along each axis, hence it is easy
to prove that the directional derivative is given by the dot
product of the gradient with the displacement vector v:

Dv f (x) = 〈∇ f (x),v〉=
∑

i

∂x i
f (x)vi (E.2.21)

Displacement on the i-th axis

Hence, knowing how to compute the gradient of a function
is enough to compute all possible directional derivatives.

2.2.3 Jacobians

Let us now consider the generic case of a function y = f (x)
with a vector input x∼ (d) as before, and this time a vector
output y ∼ (o). As we will see, this is the most general
case we need to consider. Because we have more than one
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output, we compute a gradient for each output, and their
stack provides an (o, d) matrix we call the Jacobian of f .

Definition D.2.7 (Jacobian) The Jacobian matrix of
a function y= f (x), x∼ (d), y∼ (o) is given by:

∂ f (x) =







∂ y1
∂ x1

. . . ∂ y1
∂ xd

... . . . ...
∂ yo
∂ x1

. . . ∂ yo
∂ xd






∼ (o, d) (E.2.22)

We recover the gradient for o = 1, and the standard
derivative for d = o = 1. Jacobians inherit all the
properties of derivatives: importantly, the Jacobian of a
composition of functions is now a matrix multiplication of
the corresponding individual Jacobians:

∂ [ f (g(x))] = [∂ f (•)]∂ g(x) (E.2.23)

where the first derivative is evaluated in g(x) ∼ (h). See
[PP08, Chapter 2] for numerical examples of worked out
gradients and Jacobians. Like in the scalar case, gradients
and Jacobians can be understood as linear functions
tangent to a specific point. In particular, the gradient is
the best “first-order approximation” in the following sense.
For a point x0, the best linear approximation in an
infinitesimal neighborhood of f (x0) is given by:

ef (x) = f (x0) + 〈 ∂ f (x0) , x− x0 〉

Slope of the line

Displacement from x0

This is called Taylor’s theorem. See Box C.2.6 and Figure
F.2.2 for a visualization in the scalar case f (x) = x2−1.5x .
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# Generic function
f = lambda x: x**2-1.5*x

# Derivative (computed manually for now)
df = lambda x: 2*x-1.5

# Linearization at 0.5
x = 0.5
f_lin = lambda h: f(x) + df(x)*(h-x)

# Numerical check
print(f(x + 0.01)) # -0.5049
print(f_lin(x + 0.01)) # -0.5050

Box C.2.6: Example of computing a first-order approximation
(scalar case). The result is plotted in Figure F.2.2.

On the dimensionality of the Jacobians

We close with a pedantic note on dimensionality that will
be useful in the following. Consider the following function:

y=Wx

When viewed as a function of x, the derivative is, as before,
an (o, d) matrix, and it can be shown that:

∂x [Wx] =W

When viewed as a function of W, instead, the input is itself
an (o, d) matrix, and the “Jacobian” in this case has shape
(o, o, d) (see box in the following page). However, we can
always imagine an identical (isomorphic) function taking
as input the vectorized version of W, vect(W) ∼ (od), in
which case the Jacobian will be a matrix of shape (o, od).
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Figure F.2.2: The
function f (x) =
x2−1.5x and its first-
order approximation
shown in 0.5.
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Working out the Jacobian

To compute the Jacobian ∂WWx, we can rewrite the
expression element-wise as:

yi =
∑

j

Wi j x j

from which we immediately find that:

∂ yi

∂Wi j
= x j (E.2.24)

Note that to materialize the Jacobian explicitly (store it
in memory), we would need a lot of repeated values. As
we will see in Chapter 6, this can be avoided because,
in practice, we only care about the application of the
Jacobian on another tensor.

This quick example clarifies what we mean by our
statement that working with vector inputs and outputs is
enough from a notational point of view. However, it will
be important to keep this point in mind in Chapter 6,
when we will use matrix Jacobians for simplicity of
notation (in particular, to avoid the proliferation of
indices), but the sizes of these Jacobians may “hide” inside
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the actual shapes of the inputs and the outputs, most
importantly the batch sizes. Importantly, we will see in
Chapter 6 that explicit computation of Jacobians can be
avoided in practice by considering the so-called
vector-Jacobian products. This can also be formalized by
viewing Jacobians as abstract linear maps - see [BR24] for
a formal overview of this topic.

2.3 Gradient descent

To understand the usefulness of having access to gradients,
consider the problem of minimizing a generic function f (x),
with x∼ (d):

x∗ = arg min
x

f (x) (E.2.25)

where, similarly to arg max, argmin f (x) denotes the
operation of finding the value of x corresponding to the
lowest possible value of f (x). We assume the function has
a single output (single-objective optimization), and that
the domain over which we are optimizing x is
unconstrained.

In the rest of the book x will encode the parameters of our
model, and f will describe the performance of the model
itself on our data, a setup called supervised learning that
we introduce in the next chapter. We can consider
minimizing instead of maximizing with no loss of
generality, since minimizing f (x) is equivalent to
maximizing − f (x) and vice versa (to visualize this, think
of a function in 1D and rotate it across the x-axis,
picturing what happens to its low points).

In very rare cases, we may be able to express the solution
in closed-form (we will see one example in the context of
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least-squares optimization in Section 4.1.2). In general,
however, we are forced to resort to iterative procedures.
Suppose we start from a random guess x0 and that, for every
iteration, we take a step, that we decompose in terms of its
magnitude ηt (the length of the step) and the direction pt :

xt = xt−1 + ηtpt

Guess at iteration t

Displacement at iteration t

(E.2.26)

We call ηt the step size (or, in machine learning
terminology, the learning rate, for reasons that will
become clear in the next chapter). A direction pt for
which there exists an ηt such that f (xt)≤ f (xt−1) is called
a descent direction. If we can select a descent direction
for every iteration, and if we are careful in the choice of
step size, the iterative algorithm in (E.2.26) will converge
to a minimum in a sense to be described shortly.

For differentiable functions, we can precisely quantify all
descent directions by using the directional derivative from
(E.2.20), as they can be defined as the directions inducing
a negative change with respect to our previous guess xt−1:

pt is a descent direction ⇒ Dpt
f (xt−1)≤ 0

Using what we learned in Section 2.2 and the definition of
the dot product in terms of cosine similarity from (E.2.2)
we get:

Dpt
f (xt−1) = 〈∇ f (xt−1),pt〉= ∥∇ f (xt−1)∥∥pt∥ cos(α)

where α is the angle between pt and∇ f (xt−1). Considering
the expression on the right, the first term is a constant with
respect to pt . Because we have assumed pt only encodes
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the direction of movement, we can also safely restrict it
to ∥pt∥= 1, rendering the second term another constant.
Hence, by the properties of the cosine we deduce that any
pt whose angle is between π/2 and 3π/2 with ∇ f (xt−1)
is a descent direction. Among these, the direction pt =
−∇ f (xt−1) (with an angle of π) has the lowest possible
directional derivative, and we refer to it as the steepest
descent direction.

Putting together this insight with the iterative procedure
in (E.2.26) gives us an algorithm to minimize any
differentiable function, that we call (steepest) gradient
descent.

Definition D.2.8 (Steepest gradient descent)

Given a differentiable function f (x), a starting point x0,
and a step size sequence ηt , gradient descent proceeds
as:

xt = xt−1 −ηt∇ f (xt−1) (E.2.27)

We will not be concerned with the problem of finding an
appropriate step size, which we will just assume “small
enough” so that the gradient descent iteration provides a
reduction in f . In the next section we focus on what points
are obtained by running gradient descent from a generic
initialization. Note that gradient descent is as efficient
as the procedure we use to compute the gradient: we
introduce an efficient algorithm to this end in Chapter 6.

2.3.1 Convergence of gradient descent

When discussing the convergence of gradient descent, we
need to clarify what we mean by “a minimizer” of a function.
If you do not care about convergence and you trust gradient
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descent, proceed with no hesitation to the next section.

Definition D.2.9 (Minimum)

A local minimum of f (x) is a point x+ such that the
following is true for some ϵ > 0:

f (x+)≤ f (x) ∀x : ∥x− x+∥< ϵ

Ball of size ϵ centered in x+

In words, the value of f (x+) is a minimum if we consider
a sufficiently small neighborhood of x+. Intuitively, in such
a point the slope of the tangent will be 0, and the gradient
everywhere else in the neighborhood of x+ will point
upwards. We can formalize the first idea by the concept of
stationary points.

Definition D.2.10 (Stationary points)

A point is called a stationary point of f (x) is a point x+

such that ∇ f (x+) = 0.

Stationary points are not limited to minima: they can be
maxima (the minima of − f (x)) or saddle points, which
are inflexion points where the curvature of the function
is changing (see Figure F.2.3 for an example). In general,
without any constraint on f , gradient descent can only be
proven to converge to a generic stationary point depending
on its initialization.

Can we do better? Picture a parabola: in this case, the
function does not have any saddle points, and it only has a
single minimum. This minimum is also special, in the sense
that the function in that point attains its lowest possible

42



Chapter 2: Mathematical preliminaries 43

Figure F.2.3:
Simple example
of a saddle point
(try visualizing the
tangent line in that
point to see it is
indeed stationary).

x

f
(x

)

Saddle point
(neither minimum
nor maximum)

value across the entire domain: we say this is a global
minimum.

Definition D.2.11 (Global minimum)

A global minimum of f (x) is a point x∗ such that
f (x∗)≤ f (x) for any possible input x.

Intuitively, gradient descent will converge to this global
minimum if run on a parabola (from any possible
initialization) because all gradients will point towards it.
We can generalize this idea with the concept of convexity
of a function. There are many possible definitions of
convexity, we choose the one below for simplicity of
exposition.

Definition D.2.12 (Convex function)

A function f (x) is convex if for any two points x1 and x2

and α ∈ [0, 1] we have:
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f ( αx1 + (1−α)x2 )≤ α f (x1) + (1−α) f (x2)
(E.2.28)

Interval from x1 to x2

Line segment from f (x1) to f (x2)

The left-hand side in (E.2.28) is the value of f on any
point inside the interval ranging from x1 to x2, while the
right-hand side is the corresponding value on a line
connecting f (x1) and f (x2). If the function is always
below the line joining any two points, it is convex (as an
example, a parabola pointing upwards is convex).

Convexity qualifies the simplicity of optimizing the function,
in the following sense [JK+17]:

1. For a generic non-convex function, gradient descent
converges to a stationary point. Nothing more can
be said unless we look at higher-order derivatives
(derivatives of the derivatives).

2. For a convex function, gradient descent will converge
to a global minimum, irrespective of initialization.

3. If the inequality in (E.2.28) is satisfied in a strict way
(strict convexity), the global minimizer will also be
unique.

This is a hard property: to find a global minimum in a non-
convex problem with gradient descent, the only solution
is to run the optimizer infinite times from any possible
initialization, turning it into an NP-hard task [JK+17].

This discussion has a strong historical significance. As we
will see in Chapter 5, any non-trivial model is non-convex,
meaning that its optimization problem may have several
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stationary points. This is in contrast to alternative
algorithms for supervised learning, such as support vector
machines, which maintain non-linearity while allowing for
convex optimization. Interestingly, complex differentiable
models seem to work well even in the face of such
restriction, in the sense that their optimization, when
started from a reasonable initialization, converge to points
with good empirical performance.

2.3.2 Accelerating gradient descent

The negative gradient describes the direction of steepest
descent, but only in an infinitesimally small neighborhood
of the point. As we will see in Chapter 5 (where we
introduce stochastic optimization), these directions can be
extremely noisy, especially when dealing with large
models. A variety of techniques have been developed to
accelerate convergence of the optimization algorithm by
selecting better descent directions. For computational
reasons, we are especially interested in methods that do
not require higher-order derivatives (e.g., the Hessian), or
multiple calls to the function.

We describe here one such technique, momentum, and we
refer to [ZLLS23, Chapter 12], for a broader introduction.8

If you picture gradient descent as a ball “rolling down
a hill”, the movement is relatively erratic, because each
gradient can point in a completely different direction (in
fact, for a perfect choice of step size and a convex loss
function, any two gradients in subsequent iterations will be
orthogonal). We can smooth this behavior by introducing
a “momentum” term that conserves some direction from
the previous gradient iteration:

8See also this 2016 blog post by S. Ruder: https://www.ruder.io/

optimizing-gradient-descent/.
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Figure F.2.4: GD and GD with momentum when minimizing the
function x sin(2x) starting from x = 1+ ϵ, with λ= 0.3.

gt = − ηt∇ f (xt−1) + λgt−1

xt = xt−1 + gt

Normal gradient descent iteration

Momentum term

where we initialize g0 = 0. See Figure F.2.4 for an example.
The coefficient λ determines how much the previous term
is dampened. In fact, unrolling two terms:

gt = −ηt∇ f (xt−1) +λ(−ηt∇ f (xt−2) +λgt−2)

= −ηt∇ f (xt−1)−ληt∇ f (xt−2) +λ
2gt−2

Generalizing, the iteration at time t − n gets dampened by
a factor λn−1. Momentum can be shown to accelerate
training by smoothing the optimization path [SMDH13].
Another common technique is adapting the step size for

46



Chapter 2: Mathematical preliminaries 47

each parameter based on the gradients’ magnitude
[ZLLS23]. A common optimization algorithm combining
several of these ideas is Adam [KB15]. One advantage of
Adam is that it is found to be relatively robust to the
choice of its hyper-parameters,9 with the default choice
in most frameworks being a good starting point in the
majority of cases.

One disadvantage of using accelerated optimization
algorithms can be increased storage requirements: for
example, momentum requires us to store the previous
gradient iteration in memory, doubling the space needed
by the optimization algorithm (although in most cases, the
memory required to compute the gradient is the most
influential factor in terms of memory, as we will see in
Section 6.3).

From theory to practice

About the exercises

This book does not have classical end-of-chapter
exercises, which are covered in many existing textbooks.
Instead, I propose a self-learning path to help you explore
two frameworks (JAX and PyTorch) as you progress in
the book. Solutions to the exercises will be published
on the book’s website.a These sections are full of URLs
linking to online material – they might be expired or
moved by the time you search for them.

a
https://www.sscardapane.it/alice-book

9A hyper-parameter is a parameter which is selected by the user, as
opposed to being learnt by gradient descent.
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Starting from the basics

The starting block for any designer
of differentiable models is a careful
study of NumPy. NumPy implements
a generic set of functions to manipulate
multidimensional arrays (what we call
tensors in the book), as long as functions
to index and transform their content. You can read more on
the library’s quick start.10 You should feel comfortable in
handling arrays in NumPy, most notably for their indexing:
the rougier/numpy-10011 repository provides a nice,
slow-paced series of exercises to test your knowledge.

Moving to a realistic framework

Despite its influence, NumPy is limited in his support for
parallel hardware such as GPUs (unless additional libraries
are used), and for his lack of automatic differentiation
(introduced in Chapter 6). JAX replicates the NumPy’s
interface while adding extended hardware support, the
automatic computation of gradients, and additional
transformations such as the vectorized map (jax.vmap).
Frameworks such as PyTorch also implement a NumPy-like
interface at their core, but they make minor adjustments
in nomenclature and functionality and they add high-level
utilities for building differentiable models. Take your time
to skim the documentation of jax.numpy.array and
torch.tensor to understand how much they have in
common with NumPy. For now, you can ignore high-level
modules such as torch.nn. We will have more to say
about how these frameworks are designed in Chapter 6,
after we introduce their gradient computation mechanism.

10
https://numpy.org/doc/stable/user/quickstart.html

11
https://github.com/rougier/numpy-100
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Implementing a gradient descent algorithm

To become proficient with all three frameworks (NumPy,
JAX, PyTorch), I suggest to replicate the exercise below
thrice – each variant should only take a few minutes if you
know the syntax. Consider a 2D function f (x), x ∼ (2),
where we take the domain to be [0, 10]:12

f (x) = sin(x1) cos(x2) + sin(0.5x1) cos(0.5x2)

Before proceeding in the book, repeat this for each
framework:

1. Implement the function in a vectorized way, i.e.,
given a matrix X∼ (n, 2) of n inputs, it should return
a vector f (X)∼ (n) where [ f (X)]i = f (Xi).

2. Implement another function to compute its gradient
(hard-coded – we have not touched automatic
differentiation yet).

3. Write a basic gradient descent procedure and
visualize the paths taken by the optimization process
from multiple starting points.

4. Try adding a momentum term and visualizing the
norm of the gradients, which should converge to
zero as the algorithm moves towards a stationary
point.

If you are using JAX or PyTorch to solve the exercise, point
(3) is a good place to experiment with vmap for vectorizing
a function.

12I asked ChatGPT to generate a nice function with several minima
and maxima. Nothing else in the book is LLM-generated, which I feel
is becoming an important disclaimer to make.
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3 | Datasets and losses

About this chapter

This chapter formalizes the supervised learning scenario.
We introduce the concepts of datasets, losses, empirical
risk minimization, and the basic assumptions made
in supervised learning. We close by providing a
probabilistic formulation of supervised learning built on
the notion of maximum likelihood. This short chapter
serves as the backbone for the rest of the book.

3.1 What is a dataset?

We consider a scenario in which manually coding a certain
function is unfeasible (e.g., recognizing objects from
real-world images), but gathering examples of the desired
behaviour is sufficiently easy. Examples of this abound,
ranging from speech recognition to robot navigation. We
formalise this idea with the following definition.
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52 What is a dataset?

Definition D.3.1 (Dataset)

A supervised dataset Sn of size n is a set of n pairs
Sn = {(x i, yi)}

n
i=1, where each (x i, yi) is an example of

an input-output relationship we want to model. We
further assume that each example is an identically and
independently distributed (i.i.d.) draw from some
unknown (and unknowable) probability distribution
p(x , y).

See Appendix A if upon reading the definition you want to
brush up on probability theory. The last assumption appears
technical, but it is there to ensure that the relationship we
are trying to model is meaningful. In particular, samples
being identically distributed means that we are trying
to approximate something which is sufficiently stable and
unchanging through time. As a representative example,
consider the task of gathering a dataset to recognise car
models from photos. This assumption will be satisfied if
we collect images over a short time span, but it will be
invalid if collecting images from the last few decades, since
car models will have changed over time. In the latter case,
training and deploying a model on this dataset will fail
as it will be unable to recognise new models or will have
sub-optimal performance when used.

Similarly, samples being independently distributed
means that our dataset has no bias in its collection, and it
is sufficiently representative of the entire distribution.
Going back to the previous example, gathering images
close to a Tesla dealership will be invalid, since we will
collect an overabundance of images of a certain type while
loosing on images of other makers and models. Note that
the validity of these assumptions depends on the context:
a car dataset collected in Italy may be valid when
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deploying our model in Rome or Milan, while it may
invalid when deploying our model in Tokyo or in Taiwan.
The i.i.d. assumption should always be checked carefully
to ensure we are applying our supervised learning tools to
a valid scenario. Interestingly, modern LLMs are trained
on such large distributions of data that even
understanding what tasks are truly in-distribution against
what is out-of-distribution (and how much the models are
able to generalize) becomes blurred [YCC+24].

More on the i.i.d. property

Importantly, ensuring the i.i.d. property is not a one-shot
process, and it must be checked constantly during the
lifetime of a model. In the case of car classification, if
unchecked, subtle changes in the distribution of cars
over time will degrade the performance of a machine
learning model, an example of domain shift. As another
example, a recommender system will change the way
users interact with a certain app, as they will start
reacting to suggestions of the recommender system itself.
This creates feedback loops [CMMB22] that require
constant re-evaluation of the performance of the system
and of the app.

3.1.1 Variants of supervised learning

There exists many variations on the standard supervised
learning scenario, although most successful applications
make use of supervised learning in some form or another.
For example, some datasets may not have available
targets yi, in which case we talk about unsupervised
learning. Typical applications of unsupervised learning are
clustering algorithms, in which we want to aggregate our
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"Cat"

"Cat"

"Dog"

"Pre-trained" model

"Embedding" space
Objects in this space act as standard vectors: we can sum

them, compute distances, rank them, etc.

Figure F.3.1: Differentiable models process data by transforming
it sequentially via linear algebra operations. In many cases, after
we optimize these programs, the internal representations of the
input data of the model (what we call a pre-trained model)
have geometric properties: for example, semantically similar
images are projected to points that are close in this “latent” space.
Transforming data from a non-metric space (original input images)
to a metric space (bottom right) is called embedding the data.
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input data into clusters such that points in a cluster are
similar and points between clusters are dissimilar
[HTF09]. As another example, in a retrieval system we
may want to search a large database for the top-k most
similar elements to a user-given query.

When dealing with complex data such as images, this is
non-trivial because distances on images are ill-defined if we
operate on pixels (i.e., even small perturbations can modify
millions of pixels). However, assume we have available
some differentiable model that we have already optimized
for some other task which we assume sufficiently generic,
e.g., image classification. We call it a pre-trained model.
As we will see, the internal states of this model can be
interpreted as vectors in a high-dimensional space. In many
cases, these vectors are shown to have useful geometrical
properties, in the sense that objects that are semantically
similar are sent (embedded) into points that are close
in these representations. Hence, we can use these latent
representations with standard clustering models, such as
Gaussian mixture models [HHWW14]. See Figure F.3.1 for
a high-level overview of this idea.

What if we do not have access to a pre-trained model? A
common variation of unsupervised learning is called self-
supervised learning (SSL, [ZJM+21]). The aim of SSL
is to automatically find some supervised objective from a
generic unsupervised dataset, in order to optimize a model
that can be used in a large set of downstream tasks. For
example, if we have access to a large corpus of text, we can
always optimize a program to predict how a small piece of
text is likely to continue [RWC+19]. The realization that
neural networks can also perform an efficient embedding
of text when pre-trained in a self-supervised way had a
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"Is this a cat?"

Pre-trained model "Is this a cat?"

Pre-trained model

"This is a cat."

"This is a racoon."

Fine-tuned model

Pre-trained model

Fine-tuning

Zero-shot learning Few-shot prompting Fine-tuning

Dataset

"cat""racoon"

"Is this a cat?"

Figure F.3.2: Three ways of using trained models. Zero-shot: a
question is directly given to the model. This can be achieved with
generative language models (introduced in Chapter 8). Few-shot
prompting is similar, but a few examples are provided as input.
Both techniques can be employed only if the underlying model
shows a large amount of generalization capabilities. Fine-tuning:
the model is optimized via gradient descent on a small dataset
of examples. This proceeds similarly to training the model from
scratch.

profound impact on the community [MSC+13].1

As we will see in Chapter 8 and Chapter 10, LLMs can be
seen as modern iterations on this basic idea, since
optimizing models such as GPT or Llama [TLI+23] always
start by a basic self-supervised training in terms of
next-token prediction. These models are sometimes called
foundation models. In the simplest case, they can be
used out-of-the-box for a new task, such as answering a
query: in this case, we say they are used in a zero-shot
fashion. For LLMs, it is also possible to provide a small
number of examples of a new task as input prompt, in
which case we talk about few-shot prompting. In the

1Large-scale web datasets are also full of biases, profanity, and
vulgar content. Recognizing that models trained on this data internalize
these biases was another important realization [BCZ+16] and it
is one of the major criticisms of closed-source foundation models
[BGMMS21].
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most general case, we can take a pre-trained foundation
model and optimize its parameters by gradient descent on
a new task: this is called fine-tuning the model. See
Figure F.3.2 for a comparison of the three approaches. In
this book we focus on building models from scratch, but
fine-tuning can be done by similar means.

Fine-tuning is made especially easy by the presence of
large open-source repositories online.2 Fine-tuning can be
done on the full set of parameters of the starting model, or
by considering only a smaller subset or a small number of
additional parameters: this is called parameter-efficient
fine-tuning (PEFT) [LDR23].3 We will consider PEFT
techniques in the next volume.

Many other variations of supervised learning are possible,
which we do not have space to list in detail here except for
some generic hints. If only parts of a dataset are labeled,
we have a semi-supervised scenario [BNS06]. We will see
some examples of semi-supervised learning in Chapter 12.
Additionally, we can have scenarios with multiple datasets
belonging to “similar” distributions, or the same
distribution over different period of times, giving rise to
countless tasks depending on the order in which the tasks
or the data are provided, including domain adaptation,
meta-learning [FAL17], continual learning
[PKP+19, BBCJ20], metric learning, unlearning, etc.
Some of these will be treated in the next volume.

2
https://huggingface.co/models

3Few-shot learning can also be done by fine-tuning the model. In
cases in which fine-tuning is not needed, we say the model is performing
in-context learning [ASA+23].
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3.2 Loss functions

Once data has been gathered, we need to formalize our
idea of “approximating” the desired behavior, which we do
by introducing the concept of loss functions.

Definition D.3.2 (Loss function)

Given a desired target y and the predicted value ŷ = f (x)
from a model f , a loss function l(y, ŷ) ∈ R is a scalar,
differentiable function whose value correlates with the
performance of the model, i.e., l(y, ŷ1)< l(y, ŷ2) means
that the prediction ŷ1 is better than the prediction ŷ2

when considering the reference value (target) y.

A loss function embeds our understanding of the task and
our preferences in the solutions’ space on a real-valued scale
that can be exploited in an optimization algorithm. Being
differentiable, it allows us to turn our learning problem into
a mathematical optimization problem that can be solved
via gradient descent by minimizing the average loss on our
dataset.

To this end, given a dataset Sn = {(x i, yi)} and a loss
function l(·, ·), a sensible optimization task to solve is the
minimum average loss on the dataset achievable by any
possible differentiable model f :

f ∗ = argmin
f

1
n

n
∑

i=1

l(yi, f (x i) ) (E.3.1)

Average over the dataset

Prediction on the i-th sample
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For historical reasons, (E.3.1) is referred to as empirical
risk minimization (ERM), where risk is used as a generic
synonym for loss. See also the box in the next page for
more on the origin of the term.

In (E.3.1) we are implicitly assuming that we are
minimizing across the space of all possible functions
defined on our input x . We will see shortly that our
models can always be parameterized by a set of tensors w
(called parameters of the model), and minimization is
done by searching for the optimal value of these
parameters via numerical optimization, which we denote
by f (x , w). Hence, given a dataset Sn, a loss function l,
and a model space f , we can train our model by
optimizing the empirical risk (E.3.1) via gradient descent
(E.2.27):

w∗ = arg min
w

1
n

n
∑

i=1

l(yi, f (x i, w)) (E.3.2)

where the minimization is now done with respect to the
parameter’s tensor w.

On the differentiability of the loss

Before proceeding, we make two observations on the ERM
framework. First, note that the differentiability
requirement on l is fundamental. Consider a simple
binary classification task (that we will introduce properly
in the next chapter), where y ∈ {−1,+1} can only take
two values, −1 or 1. Given a real-valued model f (x) ∈ R,
we can equate the two decisions with the sign of f –
which we denote as sign( f (x)) – and define a 0/1 loss as:
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l(y, ŷ) =

¨

0 if sign( ŷ) = y
1 otherwise

(E.3.3)

While this aligns with our intuitive notion of “being right”,
it is useless as loss function since its gradient will almost
always be zero (except when the sign of f switches), and
any gradient descent algorithm will remain stuck at
initialization. A less intuitive quantity in this case is the
margin y ŷ, which is positive [negative] depending on
whether the sign of the model aligns [or does not align]
with the desired one, but it varies continuously differently
from 0/1 loss in (E.3.3). A possible loss function in this
case is the hinge loss l(y, ŷ) = max(0,1− y ŷ), which is
used to train support-vector models. Details apart, this
shows the inherent tension between designing loss
functions that encode our notion of performance while at
the same time being useful for numerical optimization.

Risk and loss

Empirical and expected risk minimization framed in
this way are generally associated with the work of the
Russian computer scientist V. Vapnik [Vap13], which gave
rise to the field of statistical learning theory (SLT). SLT
is especially concerned with the behaviour of (E.3.1)
when seen as a finite-sample approximation of (E.3.5)
under some restricted class of functions f and measure of
underlying complexity [PS+03, SSBD14, MRT18]. The
counter-intuitive properties of modern neural networks
(such as strong generalization long after overfitting
should have been expected) have opened many new
avenues of research in SLT [PBL20]. See also the
introduction of Chapter 9.
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3.2.1 Expected risk and overfitting

As a second observation, note that the empirical risk is
always trivial to minimize, by defining:

f (x) =

(

y if (x , y) ∈ Sn

ȳ otherwise
. (E.3.4)

x is in the training set

Default value, e.g., 0

This is a look-up table that returns a prediction y if the pair
(x , y) is contained in the dataset, while it defaults to some
constant prediction ȳ (e.g., 0) otherwise. Assuming that
the loss is lower-bounded whenever y = ŷ , this model will
always achieve the lowest possible value of empirical risk,
while providing no actual practical value.

This shows the difference between memorization and
learning (optimization). Although we search for a model
by optimizing some average loss quantity on our training
data, as in (E.3.1), our true objective is minimizing this
quantity on some unknown, future input yet to be seen.
The elements of our training set are only a proxy to this
end. We can formalize this idea by defining the expected
risk minimization problem.

Definition D.3.3 (Expected risk)

Given a probability distribution p(x , y) and a loss
function l, the expected risk (ER) is defined as:

ER[ f ] = Ep(x ,y) [l(y, f (x))] (E.3.5)

Minimizing (E.3.5) can be interpreted as minimizing the
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average (expected) loss across all possible input-output
pairs (e.g., all possible emails) that our model could see.
Clearly, a model with low expected risk would be
guaranteed to work correctly. However, the quantity in
(E.3.5) is unfeasible to compute in practice, as
enumerating and labeling all data points is impossible.
The empirical risk provides an estimate of the expected
risk under the choice of a given dataset and can be seen as
a Monte Carlo approximation of the ER term.

The difference in loss between the expected and the
empirical risk is called the generalization gap: a pure
memorization algorithm like (E.3.4) will have poor
generalization or, in other terms, it will overfit to the
specific training data we provided. Generalization can be
tested in practice by keeping a separate test dataset Tm

with m data points never used during training,
Sn ∩ Tm = ;. Then, the difference in empirical loss
between Sn and Tm can be used as an approximate
measure of overfitting.

3.2.2 How to select a valid loss function?

If you have not done so already, this is a good time to
study (or skim) the material in Appendix A, especially
probability distributions, sufficient statistics, and
maximum likelihood estimation.

As we will see in the next chapters, the loss encodes our
a priori knowledge on the task to be solved, and it has
a large impact on performance. In some cases, simple
considerations on the problem are enough to design valid
losses (e.g., as done for the hinge loss in Section 3.2).

However, it is possible to work in a more principled
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fashion by reformulating the entire training process in
purely probabilistic terms, as we show now. This
formulation provides an alternative viewpoint on learning,
which may be more intuitive or more useful in certain
scenarios. It is also the preferred viewpoint of many books
[BB23]. We provide the basic ideas in this section, and we
consider specific applications later on in the book.

The key observation is the following. In Section 3.1, we
started by assuming that our examples come from a
distribution p(x , y). By the product rule of probability, we
can decompose p(x , y) as p(x , y) = p(x)p(y | x), such
that p(x) depends on the probability of observing each
input x , and the conditional term p(y | x) describes the
probability of observing a certain output y given an input
x .4 Approximating p(y | x) with a function f (x) makes
sense if we assume that the probability mass is mostly
concentrated around a single point y , i.e., p(y | x) is close
to a so-called Dirac delta function, and it drastically
simplifies the overall problem formulation.

However, we can relax this by assuming that our model
f (x) does not provide directly the prediction, but it is
used instead to parameterize the sufficient statistics of a
conditional probability distribution p(y | f (x)) over
possible outputs. For example, consider a classification
problem where y ∈ {1,2, 3} can take three possible values.
We can assume our model has three outputs that
parameterize a categorical distribution over these classes,

4We can also decompose it as p(x , y) = p(x | y)p(y). Methods
that require to estimate p(x) or p(x | y) are called generative, while
methods that estimate p(y | x) are called discriminative. Apart from
language modeling, in this book we focus on the latter case. We
consider generative modeling more broadly in the next volume.
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such that:

p(y | f (x)) =
3
∏

i=1

fi(x)
yi

where y ∼ Binary(3) is the one-hot encoding of the class
y5 and f (x) ∼ ∆(3) are the predicted probabilities for
each class. As another example, assume we want to
predict a single scalar value y ∈ R (regression). We can
model this with a two-valued function f (x) ∼ (2) such
that the prediction is a Gaussian with appropriate mean
and variance:

p(y | f (x)) =N (y | f1(x), f 2
2 (x) ) (E.3.6)

Squared to ensure positivity

where the second output of f (x) is squared to ensure that
the predicted variance remains positive. As can be seen,
this is a very general setup that subsumes our previous
discussion, and it provides more flexibility to the designer,
as choosing a specific parameterization for p(y | x) can
be easier than choosing a specific loss function l(y, ŷ). In
addition, this framework provides a more immediate way
to model uncertainty, such as the variance in (E.3.6).

3.2.3 Maximum likelihood

How can we train a probabilistic model? Remember that we
assumed the samples in our dataset Sn to be i.i.d. samples
from a probability distribution p(x , y). Hence, given a
model f (x), the probability assigned to the dataset itself

5Given an integer i, its one-hot representation is a vector of all
zeros except the i-th element, which is 1. This is introduced formally
in Section 4.2.
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by a specific choice f of function is given by the product of
each sample in the dataset:

p(Sn | f ) =
n
∏

i=1

p(yi | f (x i))

The quantity p(Sn | f ) is called the likelihood of the
dataset. For a random choice of f (x), the model will
assign probabilities more or less at random across all
possible inputs and outputs, and the likelihood of our
specific dataset will be small. A sensible strategy, then, is
to select the model such that the likelihood of the dataset
is instead maximized. This is a direct application of the
maximum likelihood approach (see Section A.6 in
Appendix A).

Definition D.3.4 (Maximum likelihood)

Given a dataset Sn = {(x i, yi)} and a family of
probability distributions p(y | f (x)) parameterized by
f (x), the maximum likelihood solution is given by:

f ∗ = argmax
f

n
∏

i=1

p(yi | f (x i)) .

While we are again left with an optimization problem, it
now follows directly from the laws of probability once all
probability distributions are chosen, which is in contrast to
before, where the specific loss was part of the design
space. The two viewpoints, however, are closely
connected. Working in log-space and switching to a
minimization problem we obtain:

65



66 Bayesian learning

arg max
f

¨

log
n
∏

i=1

p(yi | f (x i))

«

=

argmin
f

¨

n
∑

i=1

− log(p(yi | f (x i))

«

(E.3.7)

Hence, the two formulations are identical if we identify
− log(p(y | f (x)) as a “pseudo-loss” to be optimized. As we
will see, all loss functions used in practice can be obtained
under the ML principle for specific choices of this term.
Both viewpoints are interesting, and we urge readers to
keep them in mind as we progress in the book.

3.3 Bayesian learning

We discuss here a further generalization of the probabilistic
formulation called Bayesian neural networks (BNNs),
which is of interest in the literature. We only provide the
general idea and we refer the reader to one of many in-
depth tutorials, e.g., [JLB+22], for more details.

By designing a probability function p(y | f (x)) instead of
f (x) directly, we can handle situations where more than
one prediction is of interest (i.e., the probability function
has more than a single mode). However, our procedure
still returns a single function f (x) out of the space of all
possible functions, while it may happen than more than a
single parameterization across the entire model’s space is
valid. In this case, it could be useful to have access to all
of them for a more faithful prediction.

Once again, we can achieve this objective by designing
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another probability distribution and then letting the rules
of probability guide us. Since we are now planning to
obtain a distribution across all possible functions, we start
by defining a prior probability distribution p( f ) over all
possible functions (once again, remember than in the rest
of the book f will be described by a finite set of parameters,
in which case the prior p( f ) would be a prior over these
weights). For example, we will see that in many situations
functions with smaller norm are preferred (as they are more
stable), in which case we could define a prior p( f )∝ 1

∥ f ∥
for some norm ∥ f ∥ of f .

Once a dataset is observed, the probability over f shifts
depending on the prior and the likelihood, and the update
is given by Bayes’ theorem:

p( f | Sn) =
p(Sn | f ) p( f )

p(Sn)
(E.3.8)

Prior (before observing the dataset)

Posterior (after observing the dataset)

The term p( f | Sn) is called the posterior distribution
function, while the term p(Sn) in the denominator is called
the evidence and it is needed to ensure that the posterior is
properly normalized. Assume for now that we have access
to the posterior. Differently from before, the distribution
can encode preference for more than a single function
f , which may provide better predictive power. Given an
input x , we can make a prediction by averaging all possible
models based on their posterior’s weight:
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p(y | x) =
∫

f

p(y | f (x)) p( f | Sn) (E.3.9)

≈
1
k

k
∑

i=1

p(y | fi(x))p( fi | Sn) (E.3.10)

Prediction of f (x) Weight assigned to f

Monte Carlo approximation

where in (E.3.10) we have approximated the integral with
a Monte Carlo average over k random samples from the
posterior distribution fk ∼ p( f | Sn). The overall beauty
of this setup is marred by the fact that the posterior is
in general impossible to compute in closed-form, except
for very specific choices of prior and likelihood [Bis06].
Lacking this, one is forced to approximated solutions, either
by Markov chain Monte Carlo or by variational inference
[JLB+22]. We will see in Section 9.3.1 one example of
Bayesian treatment of the model’s parameters called Monte
Carlo dropout.

We remark on two interesting facts about the posterior
before closing this section. First, suppose we are only
interested about the function having highest posterior
density. In this case, the evidence term can be ignored and
the solution decomposed into two separate terms:

f ∗ = argmax
f

p(Sn | f )p( f ) = (E.3.11)

argmax
f

¦

log p(Sn | f ) + log p( f )
©

(E.3.12)

Likelihood term Regularization term
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This is called the maximum a posteriori (MAP) solution.
If all functions have the same weight a priori (i.e., p( f ) is
uniform over the function’s space), then the second term
is a constant and the problem reduces to the maximum
likelihood solution. In general, however, the MAP solution
will impose a penalty to functions deviating too much
from our prior distribution. We will see this is a useful
idea to combat overfitting and impose specific constraints
on the function f . The term log p( f ) is generally called a
regularizer over the function’s space as it pushes the
solution towards the basin of attraction defined by the
prior distribution.6

Second, the full Bayesian treatment provides a simple way
to incorporate new data, e.g., a new dataset S ′n from the
same distribution. To do that, we replace the prior function
in (E.3.8) with the posterior distribution that we computed
on the first portion of the dataset, which now represents the
starting assumption on the possible values of f which gets
updated by looking at new data.7 This can mitigate issues
when training models online, most notably the so-called
catastrophic forgetting of old information [KPR+17].

6The difference between maximum likelihood and maximum a
posteriori solutions is loosely connected to the difference between
the frequentist and Bayesian interpretation of probability [Bis06],
i.e., probabilities as frequency of events or probabilities as a measure
of uncertainty. From a very high-level point of view, ML sees the
parameters as an unknown fixed term and the data as a random sample,
while a Bayesian treatment sees the data as fixed and the parameters
as random variables.

7Think of the original prior function as the distribution on f after
having observed an initial empty set of values.
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About this chapter

Programming is done by choosing the appropriate
sequence of primitive operations to solve a task. By
analogy, building a model is done by choosing the
correct sequence of differentiable blocks. In this chapter
we introduce the simplest block, linear models, which
assume that inputs act additively on the output via a
weighted average. In a sense, all differentiable models
are smart variations and compositions of linear blocks.

4.1 Least-squares regression

Summarizing the previous chapter, a supervised learning
problem can be defined by choosing the input type x , the
output type y , the model f , and the loss function l. In this
chapter we consider the simplest possible choices for all of
them, namely:

• The input is a vector x∼ (c), corresponding to a set
of features (e.g., c personal features of a client of a
bank). We use the scalar c (short for channels) to
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Table T.4.1: Basic shapes to remember for this chapter. For
uniformity, we will use the same letters as much as possible
throughout the book.

n size of the dataset
c features
m classes

denote the number of features to be consistent with
the following chapters.

• The output is a single real value y ∈ R. In the
unconstrained case, we say this is a regression task.
If y can only take one out of m possible values, i.e.,
y ∈ {1, . . . , m}, we say this is a classification task.
In the special case of m= 2, we say this is a binary
classification task.

• We take f to be a linear model, providing us with
simple closed-form solutions in some cases, most
notably least-squares regression (Section 4.1.2).

The basic shapes to remember are summarized in Table
T.4.1. We begin by discussing the choice of loss in the
regression case. We start from the regression case since, as
we show later, classification can be solved by small
modifications to the regression case.

4.1.1 The squared loss and variants

Finding a loss for regression is relatively simple, since the
prediction error e = ( ŷ − y) between the predicted output
of the model ŷ = f (x) and the true desired output y
is a well-defined target, being a continuous function of
the model’s output that decreases monotonically. Since in
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general we do not care about the sign of the prediction
error, a common choice is the squared loss:

l( ŷ , y) = ( ŷ − y)2 (E.4.1)

Here and in the following we use the symbol ŷ to denote
the prediction of a generic model. As we will see, working
with (E.4.1) provides a number of interesting benefits to
our solution. Among others, the gradient of the squared
loss is a linear function of the model’s output, allowing us
to solve it in closed-form for the optimal solution.

Recalling the maximum likelihood principle (Section A.6),
the squared loss can be obtained by assuming that the
outputs of the model follow a Gaussian distribution
centered in f (x) and with a constant variance σ2:

p(y | f (x)) =N (y | f (x),σ2)

In this case the log-likelihood (for a single point) can be
written as:1

log(p(y | f (x),σ2)) =

− log(σ)−
1
2

log(2π)−
1

2σ2
(y − f (x))2 (E.4.2)

Minimizing (E.4.2) for f , we see that the first two terms
on the right-hand side are constant, and the third reverts
to the squared loss. Minimizing for σ2 can be done
independently from the optimization of f , with a simple
closed-form solution (see below, equation (E.4.9)).

1Recalling that log(ab) = log(a) + log(b) and log(ab) = b log(a).
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Figure F.4.1: Visualization of the squared loss, the absolute loss,
and the Huber loss with respect to the prediction error e = ( ŷ− y).

Coming up with variants to the squared loss is also easy.
For example, one drawback of the squared loss is that
higher errors will be penalized with a strength that grows
quadratically in the error, which may provide undue
influence to outliers, i.e., points that are badly mislabeled.
Other choices that diminish the influence of outliers can be
the absolute value loss l( ŷ , y) = | ŷ − y| or the Huber loss
(a combination of the squared loss and the absolute loss):

L(y, ŷ) =

¨

1
2 (y − ŷ)2 if |y − ŷ| ≤ 1
�

|y − ŷ| − 1
2

�

otherwise
(E.4.3)

which is quadratic in the promixity of 0 error, and linear
otherwise (with the −1

2 term added to ensure continuity).
See Figure F.4.1 for a visualization of these losses with
respect to the prediction error.

The absolute loss seems an invalid choice in our context,
since it has a point of non-differentiability in 0 due to
the absolute value. We will see later that functions with
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one (or a small number) of points of this form are not
truly problematic. Mathematically, they can be handled
by the notion of subgradient (a slight generalization of
the derivative). Practically, you can imagine that if we
start from a random initialization, gradient descent will
never reach these points with perfect precision, and the
derivatives of |ϵ| for any ϵ > 0 is always defined.

4.1.2 The least-squares model

With a loss function in hand, we consider the following
model (a linear model) to complete the specification of our
first supervised learning problem.

Definition D.4.1 (Linear models)

A linear model on an input x is defined as:

f (x) =w⊤x+ b

where w ∼ (c) and b ∈ R (the bias) are trainable
parameters.

The intuition is that the model assigns a fixed weight wi to
each input feature x i, and provides a prediction by linearly
summing all the effects for a given input x, reverting to a
default prediction equal to b whenever x = 0.
Geometrically, the model defines a line for d = 1, a plane
for d = 2, and a generic hyperplane for d > 1. From a
notational perspective, we can sometimes avoid writing a
bias term by assuming a constant term of 1 as the last
feature of x:

f
��

x
1

��

=w⊤
�

x
1

�

=w⊤1:cx+wc+1
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Combining the linear model, the squared loss, and an
empirical risk minimization problem we obtain the
least-squares optimization problem.

Definition D.4.2 (Least-squares)

The least-squares optimization problem is given by:

w∗, b∗ = arg min
w,b

1
n

n
∑

i=1

�

yi −w⊤xi − b
�2

(E.4.4)

Before proceeding to the analysis of this problem, we
rewrite the least-squares in a vectorized form that only
involves matrix operations (matrix products and norms).
This is useful because, as already stated, modern code for
training differentiable models is built around
n-dimensional arrays, with optimized hardware to
perform matrix operations on them. To this end, we first
stack all the inputs and outputs of our training set into an
input matrix:

X=





x⊤1
...

x⊤n



∼ (n, c)

and a similar output vector y = [y1, . . . , yn]
⊤. We can

write a batched model output (the model output for a mini-
batch of values) as:

f (X) = Xw+ 1b (E.4.5)

Same bias b for all n predictions
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def linear_model(w: Float[Tensor, "c"],
b: Float,
X: Float[Tensor, "n c"])
-> Float[Tensor, "n"]:

return X @ w + b

Box C.4.1: Computing a batched linear model as in (E.4.5). For
clarity, we are showing the array dimensions as type hints using
jaxtyping (https://docs.kidger.site/jaxtyping/).

Equations like (E.4.5) can be replicated almost line-by-line
in code - see Box C.4.1 for an example in PyTorch.

Of only marginal interest for now but of more importance
for later, we note that the row ordering of the input matrix
and of the output vector are fundamentally arbitrary, in
the sense that permuting their rows will only result in a
corresponding permutation of the rows of f (X). This is
a simple example of a phenomenon called permutation
equivariance that will play a much more important role
later on.

The least-squares optimization problem written in a
vectorized form becomes:

LS(w, b) =
1
n
∥y−Xw− 1b∥2 (E.4.6)

where we recall that the norm of a vector is defined as
∥e∥2 =

∑

i e2
i .

4.1.3 Solving the least-squares problem

To solve the least-squares problem through gradient
descent, we need the equations for its gradient. Although
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from torch import linalg
def ls_solve(X: Float[Tensor, "n c"],

y: Float[Tensor, "n"],
numerically_stable = True) \
-> Float[Tensor, "c"]:

# Explicit solution
if not numerically_stable:

return linalg.inv(X.T @ X) @ X.T @ y
else:

return linalg.solve(X.T @ X, X.T @ y)

Box C.4.2: Solving the least-squares problem with the closed-form
solution. The numerically stable variant calls a solver specialized
for systems of linear equations.

we will soon develop a general algorithmic framework to
compute these gradients automatically (Chapter 6), it is
instructive to look at the gradient itself in this simple
scenario. Ignoring the bias (for the reasons stated above,
we can incorporate it in the weight vector), and other
constant terms we have:

∇LS(w) = X⊤ (Xw− y)

The LS problem is convex in the weights of the model, as
can be understood informally by noting that the equations
describe a paraboloid in the space of the weights (a
quadratic function). The global minima are then described
by the equations:

X⊤ (Xw− y) = 0 ⇒ X⊤Xw= X⊤y

These are called the normal equations. Importantly, the
normal equations describe a linear system of equations in
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w,2 meaning that under the appropriate conditions
(corresponding to the invertibility of the matrix X⊤X) we
can solve for the optimal solution as:

w∗ =
�

X⊤X
�−1

X⊤y (E.4.7)

Tidbits of information

The matrix X† =
�

X⊤X
�−1

X⊤ is called the
pseudoinverse (or Moore-Penrose inverse) of
the non-square matrix X, since X†X= I. Performing the
inversion in (E.4.7) is not always possible: for example,
if one feature is a scalar multiple of the other, the matrix
X does not have full rank (this is called collinearity).
Finally, note that the predictions of the least-squares
model can be written as ŷ=My, with M= XX†. Hence,
least-squares can also be interpreted as performing
a weighted average of the training labels, where the
weights are given by a projection on the column space
induced by X. This is called the dual formulation of
least-squares. Dual formulations provide an intrinsic
level of debugging of the model, as they allow to check
which inputs were the most relevant for a prediction by
checking the corresponding dual weights [ICS22].

This is the only case in which we will be able to express
the optimal solution in a closed-form way, and it is
instructive to compare this solution with the gradient
descent one. To this end, we show in Box C.4.2 an
example of solving the least-squares in closed form using
(E.4.7), and in Box C.4.3 the equivalent gradient descent
formulation. A prototypical evolution of the loss in the

2That is, we can write them as Aw = b, with A = X⊤X and b = X⊤y.
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def ls_gd(X: Float[Tensor, "n c"],
y: Float[Tensor, "n 1"],
lr=1e-3) \
-> Float[Tensor, "c"]:

# Initializing the parameters
w = torch.randn((X.shape[1], 1))

# Fixed number of iterations
for i in range(15000):
# Note the sign (why?)
w = w + lr * X.T @ (y - X @ w)

return w

Box C.4.3: Same task as Box C.4.2, solved with a naive
implementation of gradient descent with a fixed learning rate that
defaults to η= 0.001.

latter case is plotted in Figure F.4.2. Since we selected a
very small learning rate, each step in the gradient descent
procedure provides a stable decrease in the loss, until
convergence. Practically, convergence could be checked by
numerical means, e.g., by evaluating the difference in
norm between two iterations for some numerical
threshold ϵ > 0:

∥wt+1 −wt∥2 < ϵ (E.4.8)

As we will see, understanding when more complex models
have converged will be a more subtle task.

Considering again the Gaussian log-likelihood in (E.4.2),
we can also optimize the term with respect to σ2 once the
weights have been trained, obtaining:
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Figure F.4.2: An example
of running code from Box
C.4.2, where the data is
composed of n = 10 points
drawn from a linear model
w⊤x+ϵ, with wi ∼N (0, 1)
and ϵ ∼ N (0,0.01).
Details apart, note the
very smooth descent: each
step provides a decrease in
loss.
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2 . (E.4.9)

which has the intuitive meaning that the variance of the
model is constant (by definition) and given by the average
squared prediction error on our training data. More
sophisticated probabilistic models can be obtained by
assuming the variance itself is predicted by the model
(heteroscedastic models), see [Bis06].

4.1.4 Some computational considerations

Even if the inverse can be computed, the quality of the
solution will depend on the condition number of X⊤X, and
large numerical errors can occur for poorly conditioned
matrices.3 In addition, the computational cost of solving
(E.4.7) may be prohibitive. The matrix inversion will scale,
roughly, as O (c3). As for the matrix multiplications, the

3The condition number of a matrix A is defined as κ(A) = ∥A∥∥A−1∥
for some choice of matrix norm ∥•∥. Large conditions number can
make the inversion difficult, especially if the floating-point precision is
not high.
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algorithm requires a multiplication of a c × n matrix with
another n × c one, and a multiplication between a c × c
matrix and a c × n one. Both these operations will scale as
O (c2n).

In general, we will always prefer algorithms that scale
linearly both in the feature dimension c and in the batch
size n, since super-linear algorithms will become quickly
impractical (e.g., a batch of 32 RGB images of size
1024 × 1024 has c ≈ 1e7). We can avoid a quadratic
complexity in the equation of the gradient by computing
the multiplications in the correct order, i.e., computing the
matrix-vector product Xw first. Hence, pure gradient
descent is linear in both c and n, but only if proper care is
taken in the implementation: generalizing this idea is the
fundamental insight for the development of reverse-mode
automatic differentiation, a.k.a. back-propagation
(Section 6.3).

4.1.5 Regularizing the least-squares solution

Looking again at the potential instability of the inversion
operation, suppose we have a dataset for which the matrix
is almost singular, but we still wish to proceed with the
closed-form solution. In that case, it is possible to slightly
modify the problem to achieve a solution which is “as close
as possible” to the original one, while being feasible to
compute. For example, a known trick is to add a small
multiple, λ > 0, of the identity matrix to the matrix being
inverted:

w∗ =
�

X⊤X+λI
�−1

X⊤y

This pushes the matrix to be “more diagonal” and
improves its condition number. Backtracking to the
original problem, we note this is the closed form solution
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of a modified optimization problem:

LS-Reg(w) =
2
n
∥y−Xw∥2+

λ

2
∥w∥2

This problem is called regularized least-squares (or ridge
regression), and the red part in the loss is an instance of
ℓ2-regularization (or, more generally, regularization). Note
that regularization does not depend on the dataset, as it
simply encodes a preference for a certain type of solution
(in this case, low-norm weights), where the strength of
the preference itself is defined by the hyper-parameter λ.
From a Bayesian perspective (Section 3.3), the regularized
least-squares corresponds to a MAP solution when defining
a Gaussian prior over the weights centered in zero with
constant variance.

4.2 Linear models for classification

We now move to classification, in which yi ∈ {1, . . . , m},
where m defines the number of classes. As we will see
later, this is a widely influential problem, encompassing a
range of tasks in both computer vision (e.g., image
classification) and natural language processing (e.g.,
next-token prediction). We can tackle this problem by
slight variations with respect to the regression case.

While we can solve the task by regressing directly on the
integer value yi, it is instructive to consider why this might
not be a good idea. First, it is difficult for a model to
directly predict an integer value, since this requires some
thresholding that would render its gradient zero almost
everywhere. Instead, we could regress on a real value
eyi ∈ [1, m] inside the interval from 1 to m (as we will show,
bounding the output of the model inside an interval can be
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done easily). During inference, given the output ŷi = f (xi),
we map back to the original domain by rounding:

Predicted class= round( ŷi)

For example, ŷi = 1.3 would be mapped to class 1, while
ŷi = 3.7 would be mapped to class 4. Note that this is a
post-hoc processing of the values that is only feasible at
inference time. The reason this is not a good modeling
choice is that we are introducing a spurious ordering of
the classes which might be exploited by the model itself,
where class 2 is “closer” to class 3 than it is to class 4. We
can avoid this by moving to a classical one-hot encoded
version of y , which we denote by yoh ∼ Binary(m):

[yoh] j =

¨

1 if y = j
0 otherwise

For example, in the case of three classes, we would have
yoh = [1 0 0]⊤ for class 1, yoh = [0 1 0]⊤ for class 2,
and yoh = [0 0 1]⊤ for class 3 (this representation should
be familiar to readers with some background in machine
learning, as it is a standard representation for categorical
variables).

One-hot vectors are unordered, in the sense that given two
generic outputs yoh

1 and yoh
2 , their Euclidean distance is

either 0 (same class) or
p

2 (different classes). While we
can perform a multi-valued regression directly on the one-
hot encoded outputs, with the mean-squared error known
as the Brier score in this case, we show below that a better
and more elegant solution exists, in the form of logistic
regression.
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4.2.1 The softmax function

We cannot train a model to directly predict a one-hot
encoded vector (for the same reasons described above),
but we can achieve something similar by a slight
relaxation. To this end, we re-introduce the probability
simplex.

Definition D.4.3 (Probability simplex)

The probability simplex∆n is the set of vectors x∼∆(n)
such that:

x i ≥ 0,
∑

i

x i = 1

Geometrically, you can picture the set of one-hot vectors as
the vertices of an n-dimensional polytope, and the simplex
as its convex hull: values inside the simplex, such as
[0.2,0.05,0.75], do not precisely correspond to a vertex,
but they allow for gradient descent because we can
smoothly move inside the polytope. Given a value x ∈∆n,
we can project to its closest vertex (the predicted class) as:

argmax
i
{xi}

As the name implies, we can interpret values inside the
simplex as probability distributions, and projection on the
closest vertex as finding the mode (the most probable class)
in the distribution. In this interpretation, a one-hot encoded
vector is a “special case” where all the probability mass is
concentrated on a single class (which we know to be the
correct one).

In order to predict a value in this simplex, we need two
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modifications to the linear model from (E.4.4): first, we
need to predict an entire vector simultaneously; and second,
we need to constrain the outputs to lie in the simplex. First,
we modify the linear model to predict an m-dimensional
vector:

y=Wx+ b (E.4.10)

where W ∼ (m, c) can be interpreted as m linear
regression models running in parallel, and b∼ (m). This
output is unconstrained and it is not guaranteed to be in
the simplex. The idea of logistic regression is to combine
the linear model in (E.4.10) with a simple, parameter-free
transformation that projects inside the simplex, called the
softmax function.

Definition D.4.4 (Softmax function)

The softmax function is defined for a generic vector x∼
(m) as:

[softmax(x)]i =
exp(x i)

∑

j exp(x j)
(E.4.11)

Let us decompose the terms in (E.4.11) into the basic
computations that are executed by introducing two
intermediate terms. First, the numerator of the softmax
converts each number to a positive value hi by
exponentiation:

hi = exp(x i) (E.4.12)

Second, we compute a normalization factor Z as the sum
of these new (non-negative) values:

Z =
∑

j

h j (E.4.13)

86



Chapter 4: Linear models 87

The output of the softmax is then given by dividing hi by
Z , thus ensuring that the new values sum to 1:

yi =
hi

Z
(E.4.14)

Another perspective comes from considering a more general
version of the softmax, where we add an additional hyper-
parameter τ > 0 called the temperature:

softmax(x;τ) = softmax(x/τ)

The softmax keeps the relative ordering among the values of
x i for all values of τ, but their absolute distance is increased
or decreased based on the temperature. In particular, we
have the following two limiting cases:

lim
τ→∞

softmax(x;τ) = 1/c (E.4.15)

lim
τ→0

softmax(x;τ) = arg max
i

x (E.4.16)

For infinite temperature, relative distances will disappear
and the output reverts to a uniform distribution. At the
contrary, at 0 temperature the softmax reverts to the
(poorly differentiable) argmax operation. Hence, softmax
can be seen as a simple differentiable approximation to
the argmax, and a better name should be softargmax.
However, we will retain the most standard name here. See
Figure F.4.3 for a visualization of a softmax applied on a
generic three-dimensional vector with different
temperature values.
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Figure F.4.3: Example of softmax applied to a three-dimensional
vector (a), with temperature set to 1 (b), 10 (c), and 100 (d).
As the temperature increases, the output converges to a uniform
distribution. Note that inputs can be both positive or negative, but
the outputs of the softmax are always constrained in [0, 1].

4.2.2 The logistic regression model

We can summarize our previous discussion by combining
the softmax in (E.4.11) with the linear model in (E.4.10)
to obtain a linear model for classification:

ŷ= softmax (Wx+ b)

The pre-normalized outputs h = Wx + b are called the
logits of the model, a name that will be discussed in more
detail in the next section.

We now need a loss function. Considering the probabilistic
viewpoint from Section 3.2.2, because our outputs are
restricted to the probability simplex, we use them as the
parameters of a categorical distribution:

p( yoh | ŷ) =
∏

i

ŷ
yoh

i

i

Exponent is always either 0 or 1

One-hot encoded class

Computing the maximum likelihood solution in this case

88



Chapter 4: Linear models 89

(try it) gets us the cross-entropy loss.

Definition D.4.5 (Cross-entropy loss)

The cross-entropy loss function between yoh and ŷ is
given by:

CE(yoh, ŷ) = −
∑

i

yoh
i log( ŷi) (E.4.17)

The loss can also be derived as the KL divergence between
the two probability distributions. While unintuitive at first,
it has a very simple interpretation by noting that only one
value of yoh will be non-zero, corresponding to the true
class y = arg max

i

�

yoh
i

	

. We can then simplify the loss as:

CE(y, ŷ) = − log( ŷy ) (E.4.18)

Probability assigned to the true class

From (E.4.18), we see that the effect of minimizing the CE
loss is to maximize the output probability corresponding
to the true class. This works since, due to the denominator
in the softmax, any increase in one output term will
automatically lead to a decrease of the other terms.
Putting everything together, we obtain the logistic
regression optimization problem:

LR(W,b) =
1
n

n
∑

i=1

CE
�

yoh
i , softmax(Wxi + b)

�

.

Differently from least-squares, we cannot compute a
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closed-form solution anymore, but we can still proceed
with gradient descent. We will show in the next section an
example of gradient in this case, and in Section 6.3 a
generic technique to compute gradients in cases such as
this one.

4.3 More on classification

4.3.1 Binary classification

Consider now the specific case of m = 2. In this case
we have y ∈ {0,1}, and the problem reduces to binary
classification, sometimes called concept learning (as we
need to learn whether a certain binary “concept” is present
or absent in the input). With a standard logistic regression,
this would be modelled by a function having two outputs.
However, because of the softmax denominator, the last
output of a logistic regression is always redundant, as it
can be inferred knowing that the outputs must sum to 1:

fm(x) =
m−1
∑

i=1

fi(x)

Based on this, we can slightly simplify the formulation by
considering a scalar model with a single output f (x) ∈
[0,1], such that:

Predicted class= round( f (x)) =

¨

0 if f (x)≤ 0.5

1 otherwise

To achieve the desired normalization in [0,1], the first
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Figure F.4.4:
Plot of the sigmoid
function. Note that
σ(0) = 0.5.
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output of a two-valued softmax can be rewritten as exp(x1)
1+exp(x1)

,
and we can further simplify it by dividing both sides by
exp(x1). The result is the sigmoid function.

Definition D.4.6 (Sigmoid function)

The sigmoid function σ(s) : R→ [0,1] is given by:

σ(s) =
1

1+ exp(−s)

The sigmoid provides a generic transformation projecting
any real value to the [0, 1] interval (with the two extremes
being reached only asymptotically). Its graph is shown in
Figure F.4.4.

The binary logistic regression model is obtained by
combining a one-dimensional linear model with a sigmoid
rescaling of the output:

f (x) = σ
�

w⊤x+ b
�

The cross-entropy similarly simplifies to:

91



92 More on classification

CE( ŷ , y) = − y log( ŷ) − (1− y) log(1− ŷ) (E.4.19)

Loss for class 1 Loss for class 2

Hence, in the binary classification case we can solve the
problem with two equivalent approaches: (a) a two-valued
model with the standard softmax, or (b) a simplified one-
valued output with a sigmoid output transformation.

As an interesting side-note, consider the gradient of the
binary logistic regression model with respect to w (a similar
gradient can also be written for the standard multi-class
case):

∇CE( f (x), y) = ( f (x)− y)x

Note the similarity with the gradient of a standard linear
model for regression. This similarity can be further
understood by rewriting our model as:

w⊤x+ b = log
�

y
1− y

�

(E.4.20)

Logits Sigmoid inverse: σ−1(y)

This clarifies why we were referring to the model as a
“linear model” for classification: we can always rewrite it
as a purely linear model in terms of a non-linear
transformation of the output (in this case, the inverse of
the sigmoid, also known as the log-odds). In fact, the
logistic regression model is part of a broader family of
models extending this idea, called generalized linear
models. For the curious reader, the name of the logit can
be understood in this context in reference to the probit
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from torch.nn import functional as F
# Binary cross-entropy
F.binary_cross_entropy
# Binary cross-entropy accepting logits
F.binary_cross_entropy_with_logits
# Cross-entropy, but from logits
F.cross_entropy
# Cross-entropy with log f(x) as inputs
F.nll_loss

Box C.4.4: Cross entropy losses in PyTorch. Some losses are
only defined starting from the logits of the model, instead of the
post-softmax output. These are the functional variants of the
losses - equivalent object-oriented variants are also present in most
frameworks.

function.4

4.3.2 The logsumexp trick

This is a more technical subsection that clarifies an
implementation aspect of what we described up to now.
Looking at frameworks like TensorFlow or PyTorch, we
can find multiple existing implementations of the
cross-entropy loss, based on whether the output is
described as an integer or as a one-hot encoded vector.
This can be understood easily, as we have already seen
that we can formulate the cross-entropy loss in both cases.
However, we can also find variants that accept logits
instead of the softmax-normalized outputs, as shown in
Box C.4.4.

To understand why we would need this, consider the i-th

4
https://en.wikipedia.org/wiki/Probit
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term of the cross-entropy in terms of the logits p:

− log

�

exp pi
∑

j exp p j

�

.

This term can give rise to several numerical issues, notably
due to the interplay between the (potentially unbounded)
logits and the exponentiation. To solve this, we first rewrite
it as:

− log

�

exp pi
∑

j exp p j

�

= −pi + log

�

∑

j

exp p j

�

︸ ︷︷ ︸

≜ logsumexp(p)

The first term does not suffer from instabilities, while the
second term (the logsumexp of the logits) is a function of
the entire logits’ vector, and it can be shown to be invariant
for a given scalar c ≥ 0 in the following sense:5

logsumexp(p) = logsumexp(p− c) + c

Note that ∇softmax(•) = logsumexp(•). By taking
c = max(p) we can prevent numerical problems by
bounding the maximum logit value at 0. However, this is
only possible if we have access to the original logits, which
is why numerically stable variants of the cross-entropy
require them as inputs. This creates a little amount of
ambiguity, in that the softmax can now be included as
either part of the model, or as part of the loss function.

5
https://gregorygundersen.com/blog/2020/02/09/log-sum-exp/
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4.3.3 Calibration and classification

We close the chapter by briefly discussing the important
topic of calibration of the classifier. To understand it,
consider the following fact: although our model provides
an entire distribution over the possible classes, our training
criterion only targets the maximization of the true class.
Hence, the following sentence is justified:

The predicted class of f (x) is arg max
i

[ f (x)]i.

Instead, this more general sentence might not be correct:

The probability of x being of class i is [ f (x)]i.

When the confidence scores of the network match the
probability of a given prediction being correct, we say the
network’s outputs are calibrated.

Definition D.4.7 (Calibration)

A classification model f (x) giving in output the class
probabilities is said to be calibrated if the following holds
for any possible prediction:

[ f (x)]i = p(y = i | x)

Although the cross entropy should recover the conditional
probability distribution over an unrestricted class of
models and in the limit of infinite data [HTF09], in
practice the mismatch between the two may be high
[BGHN24], especially for the more complex models we
will introduce later on.

To understand the difference between accuracy and
calibration, consider these two scenarios. First, consider a
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binary classification model that has perfect accuracy, but
always predicts the true class with 0.8 confidence. In this
case, the model is clearly underconfident in its predictions,
since by looking at the confidence we may assume that
20% of them would be incorrect. Second, consider a 4
class problem with perfectly balanced classes, with a
model that always predict [0.25,025,0.25,0.25]. In this
case, the model is perfectly calibrated, but useless from
the point of view of accuracy.

Having access to a calibrated model is very important in
situations in which different predictions may have different
costs. This can be formalized by defining a so-called cost
matrix assigning a cost Ci j for any input of class i predicted
as class j. A standard example is a binary classification
problem having the matrix of costs shown in Table T.4.2.

Table T.4.2: Example of cost matrix for a classification problem
having asymmetric costs of misclassification.

True class 0 True class 1

Predicted class 0 0 10
Predicted class 1 1 0

We can interpret Table T.4.2 as follows: making a correct
prediction incurs no cost, while making a false negative
mistake (0 instead of 1) is 10 times more costly than making
a false positive mistake. As an example, an incorrect false
negative mistake in a medical diagnosis is much worse than
a false positive error, in which a further test may correct the
mistake. A calibrated model can help us in better estimating
the average risk of its deployment, and to fine-tune our
balance of false positive and false negative mistakes.

To see this, denote by C ∼ (m, m) the generic matrix of
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costs for a multiclass problem (like the 2 × 2 matrix in
Table T.4.2). The rational choice is to select a class which
minimizes the expected cost based on the scores assigned
by our model:

argmin
i

m
∑

j=1

Ci j[ f (x)] j

If Ci j = 1 whenever i ̸= j and 0 otherwise, this reduces
to selecting the argmax of f , but for a general matrix of
costs the choice of predicted class will be influenced by the
relative costs of making specific mistakes. This is a simple
example of decision theory [Bis06].

4.3.4 Estimating the calibration error

To estimate whether a model is calibrated we can bin its
predictions, and compare its calibration to the accuracy
in each bin. To this end, suppose we split the interval
[0,1] into b equispaced bins, each of size 1/b. Take a
validation set of size n, and denote by Bi the elements
whose confidence falls into bin i. For each bin, we can
further compute the average confidence pi of the model
(which will be, approximately, in the middle of the bin),
and the average accuracy ai. Plotting the set of pairs (ai, pi)
on an histogram is called a reliability diagram, as shown
in Figure F.4.5. To have a single, scalar metric of calibration
we can use, for example, the expected calibration error
(ECE):

ECE=
∑

i

|Bi|
n

|ai − pi| (E.4.21)

Calibration for bin i

Fraction falling into bin i
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Figure F.4.5: An example of reliability plot with b = 10 bins.
The blue bars show the average accuracy of the model on that bin,
while the red bars show the miscalibration for the bin, which can
be either under-confident (below the diagonal) or over-confident
(above the diagonal). The weighted sum of the red blocks is the
ECE in (E.4.21).

Other metrics, such as the maximum over the bins, are
also possible. If the model is found to be uncalibrated,
modifications need to be made. Examples include
rescaling the predictions via temperature scaling
[GPSW17] or optimizing with a different loss function
such as the focal loss [MKS+20].

We close by mentioning an alternative to direct calibration
of the model, called conformal prediction, which has
become popular recently [AB21]. Suppose we fix a
threshold γ, and we take the set of classes predicted by the
model whose corresponding probability is higher than γ:

C (x) = {i | [ f (x)]i > γ} (E.4.22)

i.e., the answer of the model is now a set C (x) of potential
classes. An example is shown in Figure F.4.6. The idea of
conformal prediction is to select the minimum γ such that
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Figure F.4.6: Calibration by turning the model’s output into a
set: we return all classes whose predicted probability exceeds a
given threshold. By properly selecting the threshold we can bound
the probability of the true class being found in the output set.

the probability of finding the correct class y in the set is
higher than a user-defined error α:6

p(y ∈ C (x))≥ 1−α (E.4.23)

Intuitively, there is an inversely proportional relation
between γ and α. Conformal prediction provides
automatic algorithms to guarantee (E.4.23) at the cost of
not having a single class in output anymore.

6Note that it is always possible to satisfy this property by selecting
γ= 0, i.e., including all classes in the output set.

99



100 More on classification

From theory to practice

From Chapter 2 you should have a good
grasp of NumPy, JAX, and PyTorch’s
torch.tensor. Their interface is all
that is needed for this chapter, and
nothing else is required. From next
chapter we will progress to their higher-
level APIs.

I suggest a short exercise to let you train your first
differentiable model from scratch:

1. Load a toy dataset: for example, one of those
contained in scikit-learn datasets module.7

2. Build a linear model (for regression or classification
depending on the dataset). Think about how to make
the code as modular as possible: as we will see, you
will need at least two functions, one for initializing
the parameters of the model and one for computing
the model’s predictions.

3. Train the model via gradient descent. For now you
can compute the gradients manually: try to imagine
how you can make also this part modular, i.e., how
do you change the gradient’s computation if you want
to dynamically add or remove the bias from a model?

4. Plot the loss function and the accuracy on an
independent test set. If you know some standard
machine learning, you can compare the results to
other supervised learning models, such as a decision
tree or a k-NN, always using scikit-learn.

7
https://scikit-elearn.org/stable/datasets/toy_dataset.html
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5 | Fully-connected
models

About this chapter

Standard programming is done by concatenating
together the proper primitive operations. In this
chapter we show that we can do something similar for
differentiable models, by composing a sequence of so-
called fully-connected layers. For historical reasons, these
models are also known as multilayer perceptrons (MLPs).
MLPs are built by interleaving linear blocks (similar to
Chapter 4) with non-linear functions, sometimes called
activation functions.

5.1 The limitations of linear models

Linear models are fundamentally limited, in the sense that
by definition they cannot model non-linear relationships
across features. As an example, consider two input vectors
x and x′, which are identical except for a single feature
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indexed by j:

x ′i =

¨

x i if i ̸= j
2x i otherwise

For example, this can represent two clients of a bank, which
are identical in all aspects except for their income, with x′

having double the income of x. If f is a linear model (with
no bias) we have:

f (x′) = f (x) + w j x j

Original output

Change induced by x ′j = 2x j

Hence, the only consequence of the change in input is a
small linear change of output dictated by w j. Assume we
are scoring the users, we may wish to model relationships
such as “an income of 1500 is low, except if the age < 30”.1

Clearly, this cannot be done with a linear model due to the
analysis above.

The prototypical example of this is the XOR dataset, a
two-valued dataset where each feature can only take
values in {0, 1}. Hence, the entire dataset is given by only
4 possibilities:

f ([0, 0]) = 0 , f ([0,1]) = 1 , f ([1, 0]) = 1 , f ([1,1]) = 0

where the output is positive whenever only one of the two
inputs is positive. Despite its simplicity, this is also
non-linearly separable, and cannot be solved with 100%
accuracy by a linear model - see Figure F.5.1 for a

1You probably shouldn’t do credit scoring with machine learning
anyways.
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Figure F.5.1: Illustration of the XOR dataset: green squares are
values of one class, red circles are values of another class. No linear
model can separate them perfectly (putting all squares on one side
and all circles on the other side of the decision boundary). We say
that the dataset is not linearly separable.

visualization.

5.2 Composition and hidden layers

A powerful idea in programming is decomposition, i.e.,
breaking down a problem into its constituent parts
recursively, until each part can be expressed in simple,
manageable operations. Something similar can be
achieved in our case by imagining that our model f is, in
fact, the composition of two trainable operations:

f (x) = ( f2 ◦ f1)(x)

where f2 ◦ f1 is the composition of the two functions:
( f2 ◦ f1)(x) = f2( f1(x)), and we assume that each function
instantiates its own set of trainable parameters. We can
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keep subdividing the computations:

f (x) = ( fl ◦ fl−1 ◦ · · · ◦ f2 ◦ f1)(x)

where we now have a total of l functions that are being
composed. Note that as long as each fi does not change
the “type” of its input data, we can chain together as many
of these transformations as we want, and each one will add
its own set of trainable parameters.

For example, in our case the input x is a vector, hence any
vector-to-vector operation (e.g., a matrix multiplication
fi(x) =Wx) can be combined together an endless number
of times. However, some care must be taken. Suppose we
chain together two different linear projections:

h= f1(x) =W1x+ b1 (E.5.1)

y = f2(h) =w⊤2 h+ b2 (E.5.2)

It is easy to show that the two projections “collapse” into a
single one:

y = (w⊤2 W1)
︸ ︷︷ ︸

≜ A

x+ (w⊤2 b1 + b2)
︸ ︷︷ ︸

≜ c

= Ax+ c

The idea of fully-connected (FC) models, also known as
multi-layer perceptrons (MLPs) for historical reasons, is
to insert a simple elementwise non-linearity φ : R → R
in-between projections to avoid the collapse:

h= f1(x) = φ (W1x+ b1) (E.5.3)

Element-wise non-linearity

y = f2(h) =w⊤2 h+ b2 (E.5.4)
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The second block can be linear, as in (E.5.4), or it can be
wrapped into another non-linearity depending on the task
(e.g., a softmax function for classification). The function
φ can be any non-linearity, e.g., a polynomial, a square-
root, or the sigmoid function σ. As we will see in the next
chapter, choosing it has a strong effect on the gradients
of the model and, consequently, on optimization, and the
challenge is to select a φ which is “non-linear enough” to
prevent the collapse while staying as close as possible to
the identity in its derivative. A good default choice is the
so-called rectified linear unit (ReLU).

Definition D.5.1 (Rectified linear unit)

The rectified linear unit (ReLU) is defined elementwise
as:

ReLU(s) =max(0, s) (E.5.5)

We will have a lot more to say on the ReLU in the next
chapter. With the addition of φ, we can now chain as many
transformations as we want:

y =w⊤l φ (Wl−1 (φ (Wl−2φ (· · · ) + bl−2)) + bl−1) (E.5.6)

In the rest of the chapter we focus on analyzing training
and approximation properties of this class of models. First,
however, a brief digression on naming conventions.

On neural network terminology

As we already mentioned, neural networks have a long
history and a long baggage of terminology, which we briefly
summarize here. Each fi is called a layer of the model, with
fl being the output layer, fi, i = 1, . . . , l − 1 the hidden
layers and, with a bit of notational overloading, x being
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the input layer. With this terminology, we can restate the
definition of the fully-connected layer in batched form
below.

Definition D.5.2 (Fully-connected layer)

For a batch of n vectors, each of size c, represented as a
matrix X∼ (n, c), a fully-connected (FC) layer is defined
as:

FC(X) = φ (XW+ b) (E.5.7)

The parameters of the layer are the matrix W ∼ (c, c′)
and the bias vector b ∼ (c′), for a total of (c′ + 1)c
parameters (assuming φ does not have parameters). Its
hyper-parameters are the width c′ and the non-linearity
φ.

The outputs fi(x) are called the activations of the layer,
where we can sometimes distinguish between the
pre-activation and the post-activation (before and after
the non-linearity). The non-linearity φ itself can be called
the activation function. Each output of fi is called a
neuron. Although much of this terminology is outdated, it
is still pervasive and we will use it when needed.

The size of the each layer (the shape of the output) is
an hyperparameter that can be selected by the user, as it
only influences the input shape of the next layer, which
is known as the width of the layer. For a large number
of layers, the number of hyperparameters grows linearly
and their selection becomes a combinatorial task. We will
return on this point in Chapter 9, when we discuss the
design of models with dozens (or hundreds) of layers.

The layer concept is also widespread in common
frameworks. A layer such as (E.5.7) can be defined as an
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class FullyConnectedLayer(nn.Module):
def __init__(self, c: int, cprime: int):

super().__init__()
# Initialize the parameters
self.W = nn.Parameter(

torch.randn(c, cprime))
self.b = nn.Parameter(

torch.randn(1, cprime))

def forward(self, x):
return relu(x @ self.W + self.b)

Box C.5.1: The FC layer in (E.5.7) implemented as an object in
PyTorch. We require a special syntax to differentiate trainable
parameters, such as W, from other non-trainable tensors: in
PyTorch, this is obtained by wrapping the tensors in a Parameter
object. PyTorch also has its collection of layers in torch.nn,
including the FC layer (implemented as torch.nn.Linear).

object having two functions: an initialization function that
randomly initializes all parameters of the model based on
the selected hyper-parameters, and a call function that
provides the output of the layer itself. See Box C.5.1 for an
example. Then, a model can be defined by chaining
together instances of such layers. For example, in PyTorch
this can be achieved by the Sequential object:

model = nn.Sequential(
FullyConnectedLayer(3, 5),
FullyConnectedLayer(5, 4)

)

Note that from the point of view of their input-output
signature, there is no great difference between a layer as
defined in Box C.5.1 and a model as defined above, and
we could equivalently use model as a layer of a larger one.
This compositionality is a defining characteristic of
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differentiable models.

5.2.1 Approximation properties of MLPs

Training MLPs proceeds similarly to what we discussed for
linear models. For example, for a regression task, we can
minimize the mean-squared error:

min
{Wk ,bk}

l
k=1

1
n

∑

i

(yi − f (xi))
2

where the minimization is now done on all parameters of
the model simultaneously. We will see in the next lecture a
general procedure to compute gradients in this case.

For now, we note that the main difference with respect to
having a linear model is that adding an hidden layer
makes the overall optimization problem non-convex, with
multiple local optima depending on the initialization of
the model. This is an important aspect historically, as
alternative approaches to supervised learning (e.g.,
support vector machines [HSS08]) provide non-linear
models while remaining convex. However, the results of
the last decade show that highly non-convex models can
achieve significantly good performance in many tasks.2

From a theoretical perspective, we can ask what is the
significance of having added hidden layers, i.e., if linear
models can only solve tasks which are linearly separable,
what is instead the class of functions that can be
approximated by adding hidden layers? As it turns out,

2The reason differentiable models generalize so well is an
interesting, open research question, to which we return in Chapter
9. Existing explanations range from an implicit bias of (stochastic)
gradient descent [PPVF21] to intrinsic properties of the architectures
themselves [AJB+17, TNHA24].
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having a single hidden layer is enough to have universal
approximation capabilities. A seminal result in this sense
was proved by G. Cybenko in 1989 [Cyb89].

Theorem 5.1 (Universal approximation of MLPs)
Given a continuous function g : Rd → R, we can always
find a model f (x) of the form (E.5.3)-(E.5.4) (an MLP
with a single hidden layer) and sigmoid activation
functions, such that for any ϵ > 0:

| f (x)− g(x)| ≤ ϵ , ∀x

where the result holds over a compact domain. Stated
differently, one-hidden-layer MLPs are “dense” in the space
of continuous functions.

The beauty of this theorem should not distract from the fact
that this is purely a theoretical construct, that makes use
of the fact that the width of the hidden layer of the model
can grow without bounds. Hence, for any x for which the
previous inequality does not hold, we can always add a new
unit to reduce the approximation error (see Appendix B). In
fact, it is possible to devise classes of functions on which the
required number of hidden neurons grows exponentially
in the number of input features [Ben09].3

Many other authors, such as [Hor91], have progressively
refined this result to include models with fundamentally
any possible activation function, including ReLUs. In
addition, universal approximation can also be proved for
models having finite width but possibly infinite depth

3One of these problems, the parity problem, is closely connected
to the XOR task: https://blog.wtf.sg/posts/2023-02-03-the-new-xor-

problem/.
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[LPW+17]. A separate line of research has investigated the
approximation capabilities of overparameterized models, in
which the number of parameters exceeds the training data.
In this case, training to a global optimum can be proved in
many interesting scenarios [DZPS19, AZLL19] (informally,
for sufficiently many parameters, the model can achieve
the minimum of the loss on each training sample and,
hence, the global minimum of the optimization problem).
See Appendix B for a one-dimensional visualization of
Cybenko’s theorem.

Approximation and learning capabilities of differentiable
models are immense fields of study, with countless books
devoted to them, and we have only mentioned some
significant results here. In the rest of the book, we will be
mostly concerned with the effective design of the models
themselves, whose behavior can be more complex and
difficult to control (and design) than these theorems
suggest.

5.3 Stochastic optimization

To optimize the models we can perform gradient descent
on the corresponding empirical risk minimization problem.
However, this can be hard to achieve when n (the size of
the dataset) grows very large. We will see in the next
chapter that computing the gradient of the loss requires a
time linear in the number of examples, which becomes
unfeasible or slow for n in the order of 104 or more,
especially for large models (memory issues aside).

Fortunately, the form of the problem lends itself to a nice
approximation, where we use subsets of the data to
compute a descent direction. To this end, suppose that for
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iteration t of gradient descent we sample a subset
Bt ⊂ Sn of r points (with r ≪ n) from the dataset, which
we call a mini-batch. We can compute an approximated
loss by only considering the mini-batch as:

eLt =
1
r

∑

(x i ,yi)∈Bt

l(yi, f (x i))≈
1
n

∑

(x i ,yi)∈Sn

l(yi, f (x i))

(E.5.8)
Mini-batch Full dataset

If we assume the elements in the mini-batch are sampled
i.i.d. from the dataset, eLt is a Monte Carlo approximation of
the full loss, and the same holds for its gradient. However,
its computational complexity grows only with r, which
can be controlled by the user. Roughly speaking, lower
dimensions r of the mini-batch result in faster iterations
with higher gradient variance, while higher r results in
slower, more precise iterations. For large models, memory
is in general the biggest bottleneck, and the mini-batch size
r can be selected to fill up the available hardware for each
iteration.

Gradient descent applied on mini-batches of data is an
example of stochastic gradient descent (SGD). Due to
the properties discussed above, SGD can be proven to
converge to a minimum in expectation, and it is the
preferred optimization strategy when training
differentiable models.

The last remaining issue is how to select the mini-batches.
For large datasets, sampling elements at random can be
expensive, especially if we need to move them back and
forth from the GPU memory. An intermediate solution that
lends itself to easier optimization is the following:
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1 2 b

Epoch

Shuffle

Dataset

SGD
Step 1

SGD
Step 2

SGD
Step b

Repeat

Shuffled dataset

Build mini-batches

Figure F.5.2: Building the mini-batch sequence: after shuffling,
stochastic optimization starts at mini-batch 1, which is composed
of the first r elements of the dataset. It proceeds in this way to
mini-batch b (where b = n

r , assuming the dataset size is perfectly
divisible by r). After one such epoch, training proceed with mini-
batch b+1, which is composed of the first r elements of the shuffled
dataset. The second epoch ends at mini-batch 2b, and so on.

1. Begin by shuffling the dataset.

2. Then, subdivide the original dataset into mini-batches
of r consecutive elements and process each of them
sequentially. Assuming a dataset of size n= r b, this
results in b mini-batches and hence b steps of SGD. If
we are executing the code on a GPU, this step includes
sending the mini-batch to the GPU memory.

3. After completing all mini-batches constructed in this
way, return to point 1 and iterate.

One complete loop of this process is called an epoch of
training, and it is a very common hyper-parameter to
specify (e.g., for a dataset of 1000 elements and
mini-batches of 20 elements, “training for 5 epochs” means
training for 250 iterations). The expensive shuffling
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# A dataset composed by two tensors
dataset = torch.utils.data.TensorDataset(

torch.randn(1000, 3),
torch.randn(1000, 1))

# The data loader provides
# shuffling and mini-batching
from torch.utils.data import DataLoader
dataloader = DataLoader(dataset,

shuffle=True,
batch_size=32)

for xb, yb in dataloader:
# Iterating over mini-batches (one epoch)
# xb has shape (32, 3)
# yb has shape (32, 1)

Box C.5.2: Building the mini-batch sequence with PyTorch’s data
loader: all frameworks provide similar tools.

operation is only done once per epoch, while in-between
an epoch mini-batches can be quickly pre-fetched and
optimized by the framework. This is shown schematically
in Figure F.5.2. Most frameworks provide a way to
organize the dataset into elements that can be individually
indexed, and a separate interface to build the mini-batch
sequence. In PyTorch, for example, this is done by the
Dataset and DataLoader interfaces, respectively - see
Box C.5.2.

This setup also leads itself to a simple form of parallelism
across GPUs or across machines. If we assume each
machine is large enough to hold an entire copy of the
model’s parameters, we can process different mini-batches
in parallel over the machines and then sum their local
contributions for the final update, which is then
broadcasted back to each machine. This is called a data
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Dataset 
(main memory)

GPU 2

GPU 1

Compute
gradient

Compute
gradient

Aggregate gradients
and broadcast back the

parameters

Figure F.5.3: A simple form of distributed stochastic optimization:
we process one mini-batch per available machine or GPU (by
replicating the weights on each of them) and sum or average the
corresponding gradients before broadcasting back the result (which
is valid due to the linearity of the gradient operation). This requires
a synchronization mechanism across the machines or the GPUs.

parallel setup in PyTorch,4 and it is shown visually in
Figure F.5.3. More complex forms of parallelism, such as
tensor parallelism, are also possible, but we do not cover
them in this book.

5.4 Activation functions

We close the chapter by providing a brief overview on the
selection of activation functions. As we stated in the
previous section, almost any element-wise non-linearity is
theoretically valid. However, not all choices have good
performance. As an example, consider a simple
polynomial function, for some user-defined positive
integer p:

φ(s) = sp

4
https://pytorch.org/tutorials/intermediate/ddp_tutorial.html

114

https://pytorch.org/tutorials/intermediate/ddp_tutorial.html


Chapter 5: Fully-connected models 115

For large p, this will grow rapidly on both sides,
compounding across layers and resulting in models which
are hard to train and with numerical instabilities.

Historically, neural networks were introduced as
approximate models of biological neurons (hence, the
name artificial NNs). In this sense, the weights w⊤ in the
dot product w⊤x were simple models of synapses, the bias
b was a threshold, and the neuron was “activated” when
the cumulative sum of the inputs surpassed the threshold:

s =w⊤x− b , φ(s) = Is≥0

where Ib is an indicator function which is 1 when b is true,
0 otherwise. Because this activation function is
non-differentiable, the sigmoid σ(s) can be used as a
soft-approximation. In fact, we can define a generalized
sigmoid function with a tunable slope a as σa(s) = σ(as),
and we have:

lim
a→∞

σa(s) = Is≥0

Another common variant was the hyperbolic tangent, which
is a scaled version of the sigmoid in [−1,+1]:

tanh(s) = 2σ(s)− 1

Modern neural networks, popularized by AlexNet in 2012
[KSH12], have instead used the ReLU function in (E.5.5).
The relative benefits of ReLU with respect to sigmoid-like
functions will be discussed in the next chapter. We note
here that ReLUs have several counter-intuitive properties.
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For example, they have a point of non-differentiability in
0, and they have a large output sparsity since all negative
inputs are set to 0. This second property can result in what
is known as “dead neurons”, wherein certain units have a
constant 0 output for all inputs. This can be solved by a
simple variant of ReLU, known as Leaky ReLU:

LeakyReLU(s) =

¨

s if s ≥ 0

αs otherwise
(E.5.9)

for a very small α, e.g., α = 0.01. We can also train a
different α for each unit (as the function is differentiable
with respect to α). In this case, we call the AF a parametric
ReLU (PReLU) [HZRS15]. Trainable activation functions
are, in general, an easy way to add a small amount of
flexibility with a minor amount of parameters – in the case
of PReLU, one per neuron.

Fully-differentiable variants of ReLU are also available, such
as the softplus:

softplus(s) = log(1+ exp(s)) (E.5.10)

The softplus does not pass through the origin and it is
always greater than 0. Another variant, the exponential
linear unit (ELU), preserves the passage at the origin while
switching the lower bound to −1:

ELU(s) =

¨

s if s ≥ 0

exp(s)− 1 otherwise
(E.5.11)

Yet another class of variants can be defined by noting the
similarity of ReLU with the indicator function. We can
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Figure F.5.4: Visual comparison of ReLU and four variants:
LeakyReLU (E.5.9), Softplus (E.5.10), ELU (E.5.11), and GELU.
LeakyReLU is shown with α= 0.1 for better visualization, but in
practice α can be closer to 0 (e.g., 0.01)..

rewrite the ReLU as:

ReLU(s) = sIs≥0

Hence, ReLU is identical to the indicator function on the
negative quadrant, while replacing 1 with s on the positive
quadrant. We can generalize this by replacing the indicator
function with a weighting factor β(s):

GeneralizedReLU(s) = β(s)s

Choosing β(s) as the cumulative Gaussian distribution
function, we obtain the Gaussian ELU (GELU) [HG16],
while for β(s) = σ(s) we obtain the sigmoid linear unit
(SiLU) [HG16], also known as the Swish [RZL17]. We
plot some of these AFs in Figure F.5.4. Apart from some
minor details (e.g., monotonicity in the negative
quadrant), they are all relatively similar, and it is in
general very difficult to obtain a significant boost in
performance by simply replacing the activation function.

Multiple trainable variants of each function can be
obtained by adding trainable parameters to the functions.
For example, a common trainable variant of the Swish
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with four parameters {a, b, c, d} is obtained as:

Trainable-Swish(s) = σ(as+ b)(cs+ d) (E.5.12)

We can also design non-parametric activation functions,
in the sense of activation functions that do not have a fixed
number of trainable parameters. For example, consider a
generic set of (non-trainable) scalar functions φi indexed
by an integer i. We can build a fully flexible activation
function as a linear combination of n such bases:

φ(s) =
n
∑

i=1

αiφi(s) (E.5.13)

where n is an hyper-parameter, while the coefficients αi are
trained by gradient descent. They can be the same for all
functions, or different for each layer and/or neuron. Based
on the choice of φi we obtain different classes of functions:
if each φi is a ReLU we obtain the adaptive piecewise
linear (APL) function [AHSB14], while for more general
kernels we obtain the kernel activation function (KAF)
[MZBG18, SVVTU19]. Even more general models can be
obtained by considering functions with multiple inputs and
multiple outputs [LCX+23]. See [ADIP21] for a survey.

In general, there is no answer to the question of “what
is the best AF”, as it depends on the task, dataset, and
architecture. ReLU is a common choice because it performs
well, is highly optimized in code, and it has a minor cost
overhead. It is important to consider the fundamental
computational trade-off that, for a given budget, more
complex AFs can result in having smaller width or smaller
depth, potentially hindering the performance of the entire
architecture. For this reason, AFs with a lot of trainable
parameters are less common.
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Design variants

Not every layer fits into the framework of linear
projections and element-wise non-linearities. For example,
the gated linear unit (GLU) [DFAG17] combines the
structure of (E.5.12) with multiplicative (Hadamard)
interactions:

f (x) = σ (W1x)⊙ (W2x) (E.5.14)

where W1 and W2 are trained. Another common
variant, the SwiGLU, replaces the sigmoid in (E.5.14)
with a Swish function [Sha20]. In a maxout network
[GWFM+13] each unit produces the maximum of k
(hyper-parameter) different projections. Replacing the
linear projection W with a matrix of trainable non-
linearities Wi j → φi j(x j) of the form (E.5.13) has also
been proposed recently under the name of Kolmogorov-
Arnold networks (KAN, [LWV+24]).
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From theory to practice

This chapter has introduced two key
requirements for any general-purpose
framework for training differentiable
models:

1. A way to handle large
datasets that need to be shuffled,
separated into mini-batches, and moved back and
forth from the GPU. In PyTorch, most of this is
implemented via the Dataset and DataLoader

interfaces, as in Box C.5.2.5

2. A mechanism to build models from the combination
of basic blocks, known as layers. In PyTorch, layers
are implemented in the torch.nn module, and they
can be composed via the Sequential interface or
by subclassing the Module class, as in Box C.5.1.

I suggest you now try to replicate one of the many quick
guides available on the documentation of PyTorch.6

Everything should be reasonably clear, apart from the
gradient computation mechanism, introduced in the next
chapter. This is also a good time to investigate
HuggingFace Datasets, which combines a vast repository
of datasets with an interface to process and cache them
which is framework-agnostic and backed by Apache
Arrow.7

JAX does not provide high-level utilities. For data loading

5
https://pytorch.org/tutorials/beginner/basics/data_tutorial.

html
6
https://pytorch.org/tutorials/beginner/basics/quickstart_

tutorial.html
7
https://huggingface.co/docs/datasets/en/quickstart
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you can use any existing tool, including PyTorch’s data
loaders and HuggingFace Datasets. For building models,
the easiest way is to rely on an external library. Because
JAX is fully functional, object-oriented abstractions like
Box C.5.1 are not possible. My personal suggestion is
Equinox [KG21], which provides a class-like experience by
combining the basic data structure of JAX (the pytree)
with callable nodes.
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6 | Automatic
differentiation

About this chapter

The previous chapter highlighted the need for an
efficient, automatic procedure to compute gradients of
any possible sequence of operations. In this chapter we
describe such a method, called back-propagation in the
neural network’s literature or reverse-mode automatic
differentiation in the computer science one. Its analysis
has several insights, ranging from the model’s choice to
the memory requirements for optimizing it.

6.1 Problem setup

We consider the problem of efficiently computing
gradients of generic computational graphs, such as those
induced by optimizing a scalar loss function on a
fully-connected model, a task called automatic
differentiation (AD) [BPRS18]. You can think of a
computational graph as the set of atomic operations
(which we call primitives) obtained by running the
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program itself. We will consider sequential graphs for
brevity, but everything can be easily extended to acyclic
and even more generic computational graphs
[GW08, BR24] .

The problem may seem trivial, since the chain rule of
Jacobians (Section 2.2, (E.2.23)) tells us that the gradient
of function composition is simply the matrix product of
the corresponding Jacobian matrices. However, efficiently
implementing this is the key challenge, and the resulting
algorithm (reverse-mode AD or backpropagation) is a
cornerstone of neural networks and differentiable
programming in general [GW08, BR24]. Understanding it
is also key to understanding the design (and the
differences) of most frameworks for implementing and
training such programs (such as TensorFlow or PyTorch or
JAX). A brief history of the algorithm can be found in
[Gri12].

To setup the problem, we assume we have at our disposal
a set of primitives:

y= fi(x,wi)

Each primitive represents an operation on an input vector
x ∼ (ci), parameterized by the vector wi ∼ (pi) (e.g., the
weights of a linear projection), and giving as output another
vector y∼ (c′i).

There is a lot of flexibility in our definition of primitives,
which can represent basic linear algebra operations (e.g.,
matrix multiplication), layers in the sense of Chapter 5 (e.g.,
a fully-connected layer with an activation function), or even
larger blocks or models. This recursive composability is a
key property of programming and extends to our case.
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We only assume that for each primitive we know how to
compute the partial derivatives with respect to the two
input arguments, which we call the input Jacobian and
the weight Jacobian of the operation:

Input Jacobian: ∂x [ f (x,w)]∼ (c′, c)
Weight Jacobian: ∂w [ f (x,w)]∼ (c′, p)

These are reasonable assumptions since we restrict our
analysis to differentiable models. Continuous primitives
with one or more points of non-differentiability, such as
the ReLU, can be made to fit into this framework with the
use of subgradients (Section 6.4.4). Non differentiable
operations such as sampling or thresholding can also be
included by finding a relaxation of their gradient or an
equivalent estimator [NCN+23]. We cover the latter case
in the next volume.

On our notation and higher-order Jacobians

We only consider vector-valued quantities for readability,
as all resulting gradients are matrices. In practice, existing
primitives may have inputs, weights, or outputs of higher
rank. For example, consider a basic fully-connected layer
on a mini-batched input:

f (X,W) = XW+ b

In this case, the input X has shape (n, c), the weights have
shape (c, c′) and (c′) (with c′ a hyper-parameter), and the
output has shape (n, c′). Hence, the input Jacobian has
shape (n, c′, n, c), and the weight Jacobian has shape
(n, c′, c, c′), both having rank 4.

In our notation, we can consider the equivalent flattened
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vectors x = vect(X) and w = [vect(W);b], and our
resulting “flattened” Jacobians have shape (nc′, nc) and
(nc′, cc′) respectively. This is crucial in the following, since
every time we refer to “the input size c” we are referring to
“the product of all input shapes”, including eventual
mini-batching dimensions. This also shows that, while we
may know how to compute the Jacobians, we may not
wish to fully materialize them in memory due to their
large dimensionality.

As a final note, our notation aligns with the way these
primitives are implemented in a functional library, such as
JAX. In an object-oriented framework (e.g., TensorFlow,
PyTorch), we saw that layers are implemented as objects
(see Box C.5.1 in the previous chapter), with the
parameters being a property of the object, and the
function call being replaced by an object’s method. This
style simplifies certain practices, such as deferred
initialization of all parameters until the input shapes are
known (lazy initialization), but it adds a small layer of
abstraction to consider to translate our notation into
workable code. As we will see, these differences are
reflected in turn in the way AD is implemented in the two
frameworks.

6.1.1 Problem statement

With all these details out of the way, we are ready to state
the AD task. Consider a sequence of l primitive calls,
followed by a final summation:
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h1 = f1(x,w1)
h2 = f2(h1,w2)

...

hl = fl(hl−1,wl)

y =
∑

hl

This is called an evaluation trace of the program.
Roughly, the first l − 1 operations can represent several
layers of a differentiable model, operation l can be a
per-input loss (e.g., cross-entropy), and the final operation
sums the losses of the mini-batch. Hence, the output of
our program is always a scalar, since we require it for
numerical optimization. We abbreviate the previous
program as F(x).

Definition D.6.1 (Automatic differentiation)

Given a program F(x) composed of a sequence of
differentiable primitives, automatic differentiation
(AD) refers to the task of simultaneously and efficiently
computing all weight Jacobians of the program given
knowledge of the computational graph and all
individuals input and weight Jacobians:

AD(F(x)) =
�

∂wi
y
	l

i=1

As we will see, there are two major classes of AD
algorithms, called forward-mode and backward-mode,
corresponding to a different ordering in the composition
of the individual operations. We will also see that the
backward-mode (called back-propagation in the neural
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networks’ literature) is significantly more efficient in our
context. While we focus on a simplified scenario, it is
relatively easy to extend our derivation to acyclic graphs
of primitives (as already mentioned), and also to
situations where parameters are shared across layers
(weight sharing). We will see an example of weight
sharing in Chapter 13.

6.1.2 Numerical and symbolic
differentiation

Before moving on to forward-mode AD, we comment on
the difference between AD and other classes of algorithms
for differentiating functions. First, we could directly apply
the definition of gradients (Section 2.2) to obtain a suitable
numerical approximation of the gradient. This process is
called numerical differentiation. However, each scalar
value to be differentiated requires 2 function calls in a naive
implementation, making this approach unfeasible except
for numerical checks over the implementation.

Second, consider this simple function:

f (x) = a sin(x) + bx sin(x)

We can ask a symbolic engine to pre-compute the full,
symbolic equation of the derivative. This is called
symbolic differentiation and shown in Python in Box
C.6.1.

In a realistic implementation, the intermediate value
h= sin(x) would be computed only once and stored in an
intermediate variable, which can also be reused for the
corresponding computation in the gradient trace (and a
similar reasoning goes for the cos(x) term in the
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import sympy as sp
x, a, b = sp.symbols('x a b')
y = a*sp.sin(x) + b*x*sp.sin(x)
sp.diff(y, x)
# [Out]: acos(x)+bxcos(x)+bsin(x)

Box C.6.1: Symbolic differentiation in Python using SymPy.

derivative). This is less trivial than it appears: finding an
optimal implementation for the Jacobian which avoids any
unnecessary computation is an NP-complete task (optimal
Jacobian accumulation). However, we will see that we
can exploit the structure of our program to devise a
suitably efficient implementation of AD that is significantly
better than a symbolic approach like the above (and it is,
in fact, equivalent to a symbolic approach allowing for the
presence of subsequences [Lau19]).

6.2 Forward-mode differentiation

We begin by recalling the chain rule of Jacobians. Consider
a combination of two primitive functions:

h= f1(x) , y= f2(h)

In terms of their gradients, we have:

∂x y= ∂h y · ∂x h

If x, h, and y have dimensions a, b, and c respectively,
the previous Jacobian requires the multiplication of a c× b
matrix (in green) with a b×a one (in red). We can interpret
the rule as follows: if we have already computed f1 and its
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Jacobian (red term), once we apply f2 we can “update” the
gradient by multiplying with the corresponding Jacobian
(green term).

We can immediately apply this insight to obtain a working
algorithm called forward-mode automatic
differentiation (F-AD). The idea is that every time we
apply a primitive function, we initialize its corresponding
weight Jacobian (called tangent in this context), while
simultaneously updating all previous tangent matrices. Let
us see a simple worked-out example to illustrate the main
algorithm.

Consider the first instruction, h1 = f1(x,w1), in our
program. Because nothing has been stored up to now, we
initialize the tangent matrix for w1 as its weight Jacobian:

ÒW1 = ∂w1
h1

We now proceed to the second instruction, h2 = f2(h1,w2).
We update the previous tangent matrix while
simultaneously initializing the second one:

ÒW1 ←
�

∂h1
h2

�

ÒW1

ÒW2 = ∂w2
h2

Input Jacobian of f2

Updated tangent matrix for w1

The update requires the input Jacobian of the primitive,
while the second term requires the weight Jacobian of
the primitive. Abstracting away, consider the generic i-
th primitive given by hi = fi(hi−1,wi). We initialize the
tangent matrix for wi while simultaneously updating all
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previous matrices:

ÒW j ←
h

∂hi−1
hi

i

ÒW j ∀ j < i

ÒWi = ∂wi
hi

Input Jacobian of fi

Weight Jacobian of fi

There are i−1 updates in the first row (one for each tangent
matrix we have already stored in memory), with the red
term – the input Jacobian of the i-th operation – being
shared for all previous tangents. The last operation in the
program is a sum, and the corresponding gradient gives us
the output of the algorithm:1

∇wi
y = 1⊤ÒWi ∀i (E.6.1)

Done! Let us analyze the algorithm in more detail. First,
all the operations we listed can be easily interleaved with
the original program, meaning that the space complexity
will be roughly proportional to the space complexity of the
program we are differentiating.

On the negative side, the core operation of the algorithm
(the update of ÒWi) requires a multiplication of two
matrices, generically shaped (c′i , ci) and (ci, p j), where
ci, c′i are input/output shapes, and p j is the shape of w j.
This is an extremely expensive operation: for example,
assume that inputs and outputs are both shaped (n, d),

1To be fully consistent with notation, the output of (E.6.1) is a row
vector, while we defined the gradient as a column vector. We will ignore
this subtle point for simplicity until it is time to define vector-Jacobian
products later on the in the chapter.
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where n is the mini-batch dimension and d represents the
input/output features. Then, the matrix multiplication
will have complexity O (n2d2p j), which is quadratic in
both mini-batch size and feature dimensionality. This can
easily become unfeasible, especially for high-dimensional
inputs such as images.

We can obtain a better trade-off by noting that the last
operation of the algorithm is a simpler matrix-vector
product, which is a consequence of having a scalar output.
This is explored in more detail in the next section.

6.3 Reverse-mode differentiation

To proceed, we unroll the computation of a single gradient
term corresponding to the i-th weight matrix:

∇wi
y = 1⊤

�

∂hl−1
hl

�

· · ·
�

∂hi
hi+1

��

∂wi
hi

�

(E.6.2)

Remember that, notation apart, (E.6.2) is just a potentially
long series of matrix multiplications, involving a constant
term (a vector 1 of ones), a series of input Jacobians (the
red term) and a weight Jacobian of the corresponding
weight matrix (the green term). Let us define a shorthand
for the red term:

ehi = 1⊤
l
∏

j=i+1

∂h j−1
h j (E.6.3)

Because matrix multiplication is associative, we can
perform the computations in (E.6.2) in any order. In F-AD,
we proceeded from the right to the left, since it
corresponds to the ordering in which the primitive
functions were executed. However, we can do better by
noting two interesting aspects:
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1. The leftmost term in (E.6.2) is a product between a
vector and a matrix (which is a consequence of
having a scalar term in output), which is
computationally better than a product between two
matrices. Its output is also another vector.

2. The term in (E.6.3) (the product of all input
Jacobians from layer i to layer l) can be computed
recursively starting from the last term and iteratively
multiplying by the input Jacobians in the reverse
order.

We can put together these observations to develop a second
approach to automatic differentiation, that we call reverse-
mode automatic differentiation (R-AD), which is outlined
next.

1. Differently from F-AD, we start by executing the entire
program to be differentiated, storing all intermediate
outputs.

2. We inizialize a vector eh= 1⊤, which corresponds to
the leftmost term in (E.6.2).

3. Moving in reverse order, i.e., for an index i ranging
in l, l − 1, l − 2, . . . , 1, we first compute the gradient
with respect to the i-th weight matrix as:

∂wi
y = eh

�

∂wi
hi

�

which is the i-th gradient we need. Next, we update
our “back-propagated” input Jacobian as:

eh← eh
�

∂hi−1
hi

�

Steps (1)-(3) describe a program which is roughly
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symmetrical to the original program, that we call the dual
or reverse program. The terms eh are called the adjoints
and they store (sequentially) all the gradients of the
output with respect to the variables h1,h2, . . . ,hl in our
program.2

In the terminology of neural networks, we sometimes say
that the original (primal) program is a forward pass (not
to be confused with forward-mode), while the reverse
program is a backward pass. Differently from F-AD, in
R-AD the full primal program must be executed before the
reverse program can be run, and we need specialized
mechanisms to store all intermediate outputs to “unroll”
the computational graph. Different frameworks
implement this differently, as outlined next.

Computationally, R-AD is significantly more efficient than
F-AD. In particular, both operations in step (3) of R-AD are
vector-matrix products scaling only linearly in all shape
quantities. The tradeoff is that executing R-AD requires a
large amount of memory, since all intermediate values of
the primal program must be stored on disk with a suitable
strategy. Specific techniques, such as gradient
checkpointing, can be used to improve on this tradeoff by
increasing computations and partially reducing the
memory requirements. This is done by only storing a few
intermediate outputs (called checkpoints) while
recomputing the remaining values during the backward
pass. See Figure F.6.1 for a visualization.

2Compare this with F-AD, where the tangents represented instead
the gradients of the hi variables with respect to the weights.
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(a) (b) (c) (d)

Figure F.6.1: An example of gradient checkpointing. (a) We
execute a forward pass, but we only store the outputs of the first,
second, and fourth blocks (checkpoints). (b) The backward pass
(red arrows) stops at the third block, whose activations are not
available. (c) We run a second forward pass starting from the
closest checkpoint to materialize again the activations. (d) We
complete the forward pass. Compared to a standard backward
pass, this requires 1.25x more computations. In general, the less
checkpoints are stored, the higher the computational cost of the
backward pass.

6.4 Practical considerations

6.4.1 Vector-Jacobian products

Looking at step (3) in the R-AD algorithm, we can make
an interesting observation: the only operation we need
is a product between a row vector v and a Jacobian of f
(either the input or the weight Jacobian). We call these two
operations the vector-Jacobian products (VJPs) of f .3 In
the next definition we restore dimensional consistency by
adding a transpose to the vector.

3By contrast, F-AD can be formulated entirely in terms of the
transpose of the VJP, called a Jacobian-vector product (JVP). For a
one-dimensional output, the JVP is the directional derivative (E.2.20)
from Section 2.2. Always by analogy, the VJP represents the application
of a linear map connected to infinitesimal variations of the output of
the function, see [BR24].
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Definition D.6.2 (Vector-Jacobian product (VJP))

Given a function y= f (x), with x∼ (c) and y∼ (c′), its
VJP is another function defined as:

vjp f (v) = v⊤∂ f (x) (E.6.4)

where v ∼ (c′). If f has multiple parameters
f (x1, . . . ,xn), we can define n individual VJPs denoted as
vjp f ,x1

(v), ..., vjp f ,xn
(v).

In particular, in our case we can define two types of VJPs,
corresponding to the partial derivative of the primitive with
respect to the input and the weight arguments:

vjp f ,x(v) = v⊤∂x f (x,w) (E.6.5)

vjp f ,w(v) = v⊤∂w f (x,w) (E.6.6)

We can now rewrite the two operations in step (3) of the R-
AD algorithm as two VJP calls of the primitive function with
the adjoint values (ignoring the i indices for readability),
corresponding to the adjoint times the weight VJP, and the
adjoint times the input VJP:

∂w y = vjp f ,w

�

eh
�

(E.6.7)

eh← vjp f ,h

�

eh
�

(E.6.8)

Hence, we can implement an entire automatic
differentiation system by first choosing a set of primitives
operations, and then augmenting them with the
corresponding VJPs, without having to materialize the
Jacobians in memory at any point. This is shown
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Forward pass

Backward pass

Figure F.6.2: For performing R-AD, primitives must be augmented
with two VJP operations to be able to perform a backward pass,
corresponding to the input VJP (E.6.5) and the weight VJP (E.6.6).
One call for each is sufficient to perform the backward pass through
the primitive, corresponding to (E.6.7)-(E.6.8).

schematically in Figure F.6.2.

In fact, we can recover the Jacobians’ computation by
repeatedly calling the VJPs with the basis vectors
e1, . . . ,en, to generate them one row at a time, e.g., for the
input Jacobian we have:

∂x f (x,w) =









vjp f ,x(e1)
vjp f ,x(e2)

...
vjp f ,x(en)









To understand why this reformulation can be convenient,
let us look at the VJPs of a fully-connected layer, which
is composed of linear projections and (elementwise) non-
linearities. First, consider a simple linear projection with
no bias:

f (x,W) =Wx

The input Jacobian here is simply W, but the weight
Jacobian is a rank-3 tensor (Section 2.2). By comparison,
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the input VJP has no special structure:

vjp f ,x(v) = v⊤W⊤ = [Wv]⊤ (E.6.9)

The weight VJP, instead, turns out to be a simple outer
product, which avoids rank-3 tensors completely:

vjp f ,w(v) = vx⊤ (E.6.10)

Working out the VJP

To compute (E.6.10), we can write y = v⊤Wx =
∑

i

∑

j Wi j vi x j, from which we immediately get ∂ y
∂Wi j

=
vi x j, which is the elementwise definition of the outer
product.

Hence, every time we apply a linear projection in the
forward pass, we modify the back-propagated gradients by
the transpose of its weights, and we perform an outer
product to compute the gradient of W.

Consider now an element-wise activation function with no
trainable parameters, e.g., the ReLU:

f (x, {}) = φ(x)

Because we have no trainable parameters, we need only
consider the input VJP. The gradient is a diagonal matrix
having as elements the derivatives of φ:

[∂xφ(x)]ii = φ
′(x i)

The input VJP is a multiplication of a diagonal matrix by a
vector, which is equivalent to an Hadamard product (i.e., a
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# Original function (sum-of-squares)
def f(x: Float[Array, "c"]):
return (x**2).sum()

grad_f = func.grad(f)
print(grad_f(torch.randn(10)).shape)
# [Out]: torch.Size([10])

Box C.6.2: Gradient computation as a higher-order function.
The torch.func interface replicates the JAX API. In practice, the
function can be traced (e.g., with torch.compile) to generate
an optimized computational graph.

scaling operation):

vjpx( f ,v) = v⊙φ′(x) (E.6.11)

Interestingly, also in this case we can compute the VJP
without having to materialize the full diagonal matrix.

6.4.2 Implementing a R-AD system

There are many ways to implement the R-AD system,
ranging form Wengert lists (as done in TensorFlow) to
source-to-source code transformations [GW08]. Here, we
discuss briefly some common implementations in existing
frameworks.

First, describing primitives as functions with two arguments
f (x,w) aligns with functional frameworks such as JAX,
where everything is a function. Consider a function f (x)
with a c-dimensional input and a c′-dimensional output.
From this point of view, a VJP can be implemented as a
higher-order function with signature:

(Rc → Rc′)→ Rc → (Rc′ → Rc) (E.6.12)
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i.e., given a function f and an input x′, a VJP returns
another function that can be applied to a c′-dimensional
vector v to return v⊤∂ f (x′). Similarly, the gradient for a
one-dimensional function can be implemented as another
higher-order function with signature:

(Rc → R)→ (Rc → Rc) (E.6.13)

taking as input the function f (x) and returning another
function that computes ∇ f (x). In JAX, these ideas are
implemented in the functions jax.grad and jax.jvp

respectively, which is also replicated in PyTorch in the
torch.func module - see Box C.6.2 for an example.4

As we mentioned, in practice our models are implemented
as compositions of objects whose parameters are
encapsulated as properties (Box C.5.1). One possibility is
to “purify” the object to turn it into a pure function, e.g.:5

# Extract the parameters
params = dict(model.named_parameters())
# Functional call over the
# model's forward function
y = torch.func.functional_call(

model, params, x
)

More in general, frameworks like PyTorch are augmented
with techniques to handle this scenario directly, without
introducing intermediate operations. In PyTorch, for
example, tensors’ objects are augmented with information
about the operation that generated them (Figure F.6.3,

4Many operations, such as computing an Hessian, can be achieved
by smartly composing JVPs and VJPs based on their signatures: https:

//jax.readthedocs.io/en/latest/notebooks/autodiff_cookbook.html.
5
https://sjmielke.com/jax-purify.htm
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data

grad

grad_fn

data

grad

grad_fn

requires_grad=True requires_grad=False

backward()

jvp(...)

data

grad

grad_fn

requires_grad=True

Tensor data

Gradient data

Pointer for
computational graph

Figure F.6.3: Left: in PyTorch, a tensor is augmented with
information about its gradient (empty at initialization), and about
the operation that created it. Right: during a backward pass, the
grad_fn property is used to traverse the computational graph in
reverse, and gradients are stored inside the tensor’s grad property
whenever requires_grad is explicitly set to True (to avoid
consumming unnecessary memory).

left). Whenever a backward() call is requested on a
scalar value, these properties are used to traverse the
computational graph in reverse, storing the corresponding
gradients inside the tensors that requires them (Figure
F.6.3, right).

This is just a high-level overview of how these systems are
implemented in practice, and we are leaving behind many
details, for which we refer to the official documentations.6

6.4.3 Choosing an activation function

Coincidentally, we can now motivate why ReLU is a good
choice as activation function. A close look at (E.6.11) tells
us that every time we add an activation function in our
model, the adjoints in the backward pass are scaled by a
factor of φ′(x). For models with many layers, this can give
rise to two pathological behaviors:

6I definitely suggest trying to implement an R-AD system from
scratch: many didactical implementations can be found online, such
as https://github.com/karpathy/micrograd.
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1. If φ′(·) < 1 everywhere, there is the risk of the
gradient being shrank to 0 exponentially fast in the
number of layers. This is called the vanishing
gradient problem.

2. Conversely, if φ′(·) > 1 everywhere, the opposite
problem appears, with the gradients exponentially
converging to infinity in the number of layers. This
is called the exploding gradient problem.

These are serious problems in practice, because libraries
represent floating point numbers with limited precision
(typically 32 bits or lower), meaning that underflows or
overflows can manifest quickly when increasing the number
of layers.

Linear non-linear models

Surprisingly, a stack of linear layers implemented in
floating point precision is not fully linear because of small
discontinuities at machine precision! This is generally
not an issue, but it can be exploited to train fully-linear
deep neural networks.a

a
https://openai.com/research/nonlinear-computation-in-

deep-linear-networks

As an example of how vanishing gradients can appear,
consider the sigmoid function σ(s). We already mentioned
that this was a common AF in the past, due to it being a
soft approximation to the step function. We also know
that σ′(s) = σ(s)(1−σ(s)). Combined with the fact that
σ(s) ∈ [0,1], we obtain that:

σ′(s) ∈ [0,0.25]
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Figure F.6.4: (a) Plot of the sigmoid function (red) and its
derivative (green). (b) Plot of ReLU (red) and its derivative (green).

Hence, the sigmoid is a prime candidate for vanishing
gradient issues: see Figure F.6.4a.

Designing an AF that never exhibits vanishing or
exploding gradients is non trivial, since the only function
having φ′(s) = 1 everywhere is a constant function. We
then need a function which is “linear enough” to avoid
gradient issues, but “non-linear” enough to separate the
linear layers. The ReLU ends up being a good candidate
since:

∂sReLU(s) =

¨

0 s < 0

1 s > 0

The gradient is either zeroed-out, inducing sparsity in the
computation, or multiplied by 1, avoiding scaling issues -
this is shown in Figure F.6.4b.

As a side note, the ReLU’s gradient is identical irrespective
of whether we replace the input to the ReLU layer with its
output (since we are only masking the negative values while
keeping the positive values untouched). Hence, another
benefit of using ReLU as activation function is that we can
save a small bit of memory when performing R-AD, by
overwriting the layer’s input in the forward pass without
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impacting the correctness of the AD procedure: this is
done in PyTorch, for example, by setting the in_place

parameter.7

6.4.4 Subdifferentiability and AD

There is a small detail we avoided discussing until now:
the ReLU is non-differentiable in 0, making the overall
network non-smooth. What happens in this case? The
“pragmatic” answer is that, by minimizing with stochastic
gradient descent from a random (non-zero) initialization,
the probability of ending up exactly in s = 0 is practically
null, while the gradient is defined in ReLU(ϵ) for any |ϵ|>
0.

For a more technical answer, we can introduce the concept
of subgradient of a function.

Definition D.6.3 (Subgradient)

Given a convex function f (x), a subgradient in x is a
point z such that, for all y:

f (y)≥ f (x) + z(y − x)

Note the similarity with the definition of convexity: a
subgradient is the slope of a line “tangent” to f (x), such
that the entire f is lower bounded by it. If f is
differentiable in x , then only one such line exists, which is
the derivative of f in x . In a non-smooth point, multiple
subgradients exists, and they form a set called the

7
https://pytorch.org/docs/stable/generated/torch.nn.ReLU.html
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subdifferential of f in x:

∂x f (x) = {z | z is a subgradient of f (x)}

With this definition in hand, we can complete our analysis
of the gradient of ReLU by replacing the gradient with its
subdifferential in 0:

∂sReLU(s) =







{0} s < 0

{1} s > 0

[0, 1] s = 0

Hence, any value in [0, 1] is a valid subgradient in 0, with
most implementations in practice favoring ReLU′(0) = 0.
Selecting subgradients at every step of an iterative descent
procedure is called subgradient descent.

In fact, the situation is even more tricky, because the
subgradient need not be defined for non-convex functions.
In that case, one can resort to generalizations that relax
the previous definition to a local neighborhood of x , such
as the Clarke subdifferential.8 Subdifferentiability can also
create problems in AD, where different implementations of
the same functions can provide different (possibly invalid)
subgradients, and more refined concepts of chain rules
must be considered for a formal proof [KL18, BP20].9

8
https://en.wikipedia.org/wiki/Clarke_generalized_derivative

9Consider this example reproduced from [BP20]: define two
functions, ReLU2(s) = ReLU(−s) + s and ReLU3(s) = 0.5(ReLU(s) +
ReLU2(s)). They are both equivalent to ReLU, but in PyTorch a
backward pass in 0 returns 0.0 for ReLU, 1.0 for ReLU2, and 0.5 for
ReLU3.
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From theory to practice

If you followed the exercises in Chapter
5, you already saw an application
of R-AD in both PyTorch and JAX,
and this chapter (especially Section
6.4.2) should have clarified their
implementation.

It is a good idea to try and re-implement a simple R-AD
system, similar to the one of PyTorch. For example,
focusing on scalar-valued quantities, the micrograd

repository10 is a very good didactical implementation. The
only detail we do not cover is that, once you move to a
general acyclic graph, an ordering of the variables in the
computational graph before the backward pass is essential
to avoid creating wrong backpropagation paths. In
micrograd, this is achieved via a non-expensive topological
sorting of the variables.

It is also interesting to try and implement a new primitive
(in the sense used in this chapter) in PyTorch, which
requires specifying its forward pass along with its JVPs.11

One example can be one of the trainable activation
functions from Section 5.4. This is a didactical exercise, in
the sense that this can be implemented equivalently by
subclassing nn.Module and letting PyTorch’s AD engine
work out the backward pass.

All these steps can also be replicated in JAX:

• Implement a didactic version of JAX with

10
https://github.com/karpathy/micrograd

11
https://pytorch.org/docs/master/notes/extending.html
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autodidax.12

• Write out a new primitive by implementing the
corresponding VJP.13

• Read the JAX Autodiff Cookbook14 to discover
advanced use-cases for the automatic differentiation
engine, such as higher-order derivatives, Hessians,
and more.

12
https://jax.readthedocs.io/en/latest/autodidax.html

13
https://jax.readthedocs.io/en/latest/notebooks/Custom_

derivative_rules_for_Python_code.html
14
https://jax.readthedocs.io/en/latest/notebooks/autodiff_

cookbook.html
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Part II

A strange land

“Curiouser and curiouser!” cried Alice

(she was so much surprised, that for

the moment she quite forgot

how to speak good English).

— Chapter 2, The Pool of Tears
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7 | Convolutional layers

About this chapter

In this chapter we introduce our second core layer, the
convolutional layer, which is designed to work with
images (or, more in general, sequential data of any kind)
by exploiting two key ideas that we call locality and
parameter sharing.

Fully-connected layers are important historically, but less
so from a practical point of view: on unstructured data
(what we also call tabular data, as it can be easily
represented as a table) MLPs are generally outperformed
by other alternatives, such as random forests or well tuned
support vector machines [GOV22]. This is not true,
however, as soon as we consider other types of data,
having some structure that can be exploited in the design
of the layers and of the model.

In this chapter we consider the image domain, while in
the next chapters we also consider applications to time
series, audio, graphs, and videos. In all these cases, the
input has a sequential structure (either temporal, spatial,
or of other type) that can be leveraged to design layers
that are both performant, easily composable, and highly
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efficient in terms of parameters. Interestingly, we will see
that possible solutions can be designed by taking as starting
point a fully-connected layer, and then suitably restricting
or generalizing it based on the properties of the input.

7.1 Towards convolutional layers

7.1.1 Fully-connected layers are not enough

An image can be described by a tensor X ∼ (h, w, c), where
h is the height of the image, w the width of the image, and
c is the number of channels (which can be 1 for black and
white images, 3 for color images, or higher for, e.g.,
hyper-spectral images). Hence, a mini-batch of images
will generally be of rank 4 with an additional leading
batch dimension (b, h, w, c). The three dimensions are not
identical, since h and w represent a spatial arrangement of
pixels, while the channels c do not have a specific ordering,
in the sense that storing images in an RGB or a GBR
format is only a matter of convention.

On notation, channels, and features

We use the same symbol we used for features in the
tabular case (c) because it will play a similar role in
the design of the models, i.e., we can think of each
pixel as described by a generic set of c features which are
updated in parallel by the layers of the model. Hence, the
convolutional layer will return a generic tensor (h, w, c′)
with an embedding of size c′ for each of the hw pixels.

In order to use a fully-connected layer, we would need to
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“flatten” (vectorize) the image:

h= φ(W · vect(X ) ) (E.7.1)

Flattened image

where vect(x) is equivalent to x.reshape(-1) in PyTorch,
and it returns for a generic rank-n tensor x ∼ (i1, i2, . . . , in)
an equivalent tensor x∼

�

∏n
j=1 i j

�

.

Although it should be clear this is an inelegant approach,
it is worth emphasizing some of its disadvantages. First,
we have lost a very important property from the previous
section, namely, composability: our input is an image,
while our output is a vector, meaning we cannot
concatenate two of these layers. We can recover this by
reshaping the output vector to an image:

H = unvect(φ(W · vect(X ))) (E.7.2)

where we assume that the layer does not modify the number
of pixels, and unvect reshapes the output to a (h, w, c′)
tensor, with c′ an hyper-parameter.

This leads directly to the second issue, which is that the
layer has a huge number of parameters. Considering, for
example, a (1024, 1024) image in RGB, keeping the same
dimensionality in output results in (1024 ∗ 1024 ∗ 3)2

parameters (or (hw)2cc′ in general), which is in the order
of 1013! We can interpret the previous layer as follows: for
each pixel, every channel in the output is a weighted
combination of all channels of all pixels in the input
image. As we will see, we can obtain a more efficient
solution by restricting this computation.
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More on reshaping

In order to flatten (or more in general, reshape) a tensor,
we need to decide an ordering in which to process the
values. In practice, this is determined by the way the
tensors are stored in memory: in most frameworks, the
tensor’s data is stored sequentially in a contiguous block
of memory, in what is called a strided layout. Consider
the following example:

torch.randn(32, 32, 3).stride()
# (96, 3, 1)

The stride is the number of steps that must be taken in
memory to move of 1 position along that axis, i.e., the
last dimension of the tensor is contiguous, while to move
of one position in the first dimension we need 96 (32∗3)
steps. This is called a row-major ordering or, in image
analysis, a raster order.a Every reshaping operation
works by moving along this strided representation.

a
https://en.wikipedia.org/wiki/Raster_scan

As a running example to visualize what follows, consider a
1D sequence (we will consider 1D sequences more in-depth
later on; for now, you can think of this as “4 pixels with a
single channel”):

x=
�

x1, x2, x3, x4

�

In this case, we do not need any reshaping operations, and
the previous layer (with c′ = 1) can be written as:
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Figure F.7.1: Given
a tensor (h, w, c) and a
maximum distance k, the
patch Pk(i, j) (shown in
red) is a (2k + 1,2k + 1, c)
tensor collecting all pixels at
distance at most k from the
pixel in position (i, j).
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7.1.2 Local layers

The spatial arrangement of pixels introduces a metric (a
distance) between the pixels. While there are many valid
notions of “distance”, we will find it convenient to work
with the following definition, which defines the distance
between pixel (i, j) and (i′, j′) as the maximum distance
across the two axes:

d((i, j), (i′, j′)) =max(|i − i′|, | j − j′|) (E.7.3)

How can we exploit this idea in the definition of a layer?
Ideally, we can imagine that the influence of a pixel on
another one decreases with a factor inversely proportional
to their distance. Pushing this idea to its extreme, we can
assume that the influence is effectively zero for a distance
larger than some threshold. To formalize this insight, we
introduce the concept of a patch.

155



156 Towards convolutional layers

Definition D.7.1 (Image patch)

Given an image X , we define the patch Pk(i, j) as the
sub-image centered at (i, j) and containing all pixels at
distance equal or lower than k:

Pk(i, j) = [X ]i−k:i+k, j−k: j+k,:

where distance is defined as in (E.7.3). This is shown
visually in Figure F.7.1.

The definition is only valid for pixels which are at least k
steps away from the borders of the image: we will ignore
this point for now and return to it later. Each patch is of
shape (s, s, c), where s = 2k+ 1, since we consider k pixels
in each direction along with the central pixel. For reasons
that will be clarified later on, we call s the filter size or
kernel size.

Consider a generic layer H = f (X ) taking as input a tensor
of shape (h, w, c) and returning a tensor of shape (h, w, c′).
If the output for a given pixel only depends on a patch of
predetermined size, we say that the layer is local.

Definition D.7.2 (Local layer)

Given an input image X ∼ (h, w, c), a layer f (X ) ∼
(h, w, c′) is local if there exists a k such that:

[ f (X )]i j = f (Pk(i, j))

This has to hold for all pixels of the image.
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We can transform the layer (E.7.1) into a local layer by
setting to 0 all weights belonging to pixels outside the
influence region (receptive field) of each pixel:

Hi j = φ
�

Wi j · vect(Pk(i, j))
�

Flattened patch (of shape s2c′c)

Position-dependent weight matrix

We call this class of layers locally-connected. Note that
we have a different weight matrix Wi j ∼ (c′, ssc) for each
output pixel, resulting in hw(s2cc′) parameters. By
comparison, we had (hw)2cc′ parameters in the initial
layer, for a reduction factor of s2

hw in the number of
parameters.

Considering our toy example, assuming for example k = 1
(hence s = 3) we can write the resulting operation as:
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Our operation is not defined for x1 and x4, in which case
we have considered a “shortened” filter by removing the
weights corresponding to undefined operations.
Equivalently, you can think of adding 0 on the border
whenever necessary:
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This technique is called zero-padding. In an image, for a
kernel size 2k+ 1 we need exactly k rows and columns of
0 on each side to ensure that the operation is valid for each
pixel. Otherwise, the output cannot be computed close to
the borders, and the output tensor will have shape (h −
2k, w− 2k, c′). Both are valid options in most frameworks.

On our definition of patches

The definition of convolutions using the idea of
patches is a bit unconventional, but I find it to
greatly simplify the notation. I provide a more
conventional, signal processing oriented definition later
on. The two definitions are equivalent and can be used
interchangeably. The patch-oriented definition requires
an odd kernel size and does not allow for even kernel
sizes, but these are uncommon in practice.

7.1.3 Translation equivariance and the
convolutive layer

In a locally-connected layer, two identical patches can
result in different outputs based on their location: some
content on pixel (5,2), for example, will be processed
differently than the same content on pixel (39, 81) because
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the two matrices W5,2 and W39,81 are different. For the
most part, however, we can assume that this information
is irrelevant: informally, “a horse is a horse”, irrespective
of its positioning on the input image. We can formalize
this with a property called translation equivariance.

Definition D.7.3 (Translation equivariance)

We say that a layer H = f (X ) is translation
equivariant if translations of the inputs imply an
equivalent translation of the output:

Pk(i, j) = Pk(i
′, j′) implies f (Pk(i, j)) = f (Pk(i

′, j′))

Identical patches

Identical outputs

To understand the nomenclature, note that we can
interpret the previous definition as follows: whenever an
object moves (translates) on the image from position (i, j)
to position (i′, j′), the output f (Pk(i, j)) that we we had in
(i, j) will now be found in f (Pk(i′, j′)). Hence, the
activations of the layer are moving with the same (èqui in
Latin) translational movement as the input. We will define
more formally equivariance and invariance later on.

A simple way to achieve translation equivariance is given
by weight sharing, i.e., letting every position share the
same set of weights:

Hi j = φ( W · vect(Pk(i, j)))

Weight matrix independent of (i, j)

This is called a convolutional layer, and it is extremely
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efficient in terms of parameters: we only have a single
weight matrix W of shape (c′, ssc), which is independent
from the resolution of the original image (once again,
contrast this with a layer which is only locally-connected
with hw(s2c′c) parameters: we have reduced them by
another factor 1

hw). We can write a variant with biases by
adding c′ additional parameters in the form of a bias
vector b∼ (c′). Because of its importance, we restate the
full definition of the layer below.

Definition D.7.4 (Convolutional layer)

Given an image X ∼ (h, w, c) and a kernel size s = 2k+
1, a convolutional layer H = Conv2D(X ) is defined
element-wise by:

Hi j =W · vect(Pk(i, j)) + b (E.7.4)

The trainable parameters are W∼ (c′, ssc) and b∼ (c′).
The hyper-parameters are k, c′, and (eventually) whether
to apply zero-padding or not. In the former case the
output has shape (h, w, c′), in the latter case it has shape
(h− 2k, w− 2k, c′).

See Box C.7.1 for a code example. The equivalent
object-oriented implementation can be found in
torch.nn.Conv2D. By comparison, our toy example can
be refined as follows:
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(E.7.5)
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from torch.nn import functional as F
x = torch.randn(16, 3, 32, 32)
w = torch.randn(64, 3, 5, 5)
F.conv2d(x, w, padding='same').shape
# [Out]: torch.Size([16, 64, 32, 32])

Box C.7.1: Convolution in PyTorch. Note that the channel
dimension is – by default – the first one after the batch dimension.
The kernel matrix is organized as a (c′, c, k, k) tensor. Padding
can be specified as an integer or a string (‘same’ meaning that the
output must have the same shape as the input, ‘valid’ meaning no
padding).

where we now have only three weights W = [W1, W2, W3]
⊤

(the zero-padded version is equivalent to before and we
omit it for brevity). This weight matrix has a special
structure, where each element across any diagonal is a
constant (e.g., on the main diagonal we only find W2). We
call these matrices Toeplitz matrices,1 and they are
fundamental to properly implement a convolutional layer
on modern hardware. Toeplitz matrices are an example of
structured dense matrices [QPF+24]. Equation (E.7.5)
should also clarify that a convolution remains a linear
operation, albeit with a highly restricted weight matrix
compared to a fully-connected one.

Convolutions and terminology

Our terminology comes (mostly) from signal processing.
We can understand this by rewriting the output of the
convolutional layer in a more standard form. To this end,
we first rearrange the weight matrix into an equivalent
weight tensor W of shape (s, s, c, c′), similar to the PyTorch
implementation in Box C.7.1. For convenience, we also

1
https://en.wikipedia.org/wiki/Toeplitz_matrix
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define a function that converts an integer i′ from the
interval [1, . . . , 2k+ 1] to the interval [i − k, . . . , i + k]:

t(i) = i − k− 1 (E.7.6)

where k is left implicit in the arguments of t(•). We now
rewrite the output of the layer with explicit summations
across the axes:

Hi jz =
2k+1
∑

i′=1

2k+1
∑

j′=1

c
∑

d=1

[W ]i′, j′,z,d[X ]i′+t(i), j′+t( j),d (E.7.7)

Check carefully the indexing: for a given pixel (i, j) and
output channel z (a free index running from 1 to c′), on the
spatial dimensions W must be indexed along 1, 2, . . . , 2k+1,
while X must be indexed along i − k, i − k+ 1, . . . , i + k−
1, i + k. The index d runs instead over the input channels.

From the point of view of signal processing, equation
(E.7.7) corresponds to a filtering operation on the input
signal X through a set of finite impulse response (FIR)
filters [Unc15], implemented via a discrete convolution
(apart from a sign change). Each filter here corresponds to
a slice W:,:,:,i of the weight matrix. In standard signal
processing, these filters can be manually designed to
perform specific operations on the image. As an example,
a 3× 3 filter to detect ridges can be written as:2

W =





−1 −1 −1
−1 8 −1
−1 −1 −1





In convolutional layers, instead, these filters can be
randomly initialized and trained via gradient descent. We

2
https://en.wikipedia.org/wiki/Kernel_(image_processing)
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consider the design of convolutional models built on
convolutional layers in the next section. Before continuing,
we mention that an interesting aspect of convolutional
layers is that the output maintains a kind of “spatial
consistency” and it can be plotted: we call a slice H:,:,i of
the output an activation map of the layer, representing
how much the specific filter was “activated” on each input
region. We will consider in more detail the exploration of
these maps in the next volume.

7.2 Convolutional models

7.2.1 Designing convolutional “blocks”

With the definition of a convolutional layer in hand, we
now turn to the task of building convolutional models,
also called convolutional neural networks (CNNs). We
consider the problem of image classification, although a lot
of what we say can be extended to other cases. To begin
with, we formalize the concept of receptive field.

Definition D.7.5 (Receptive field)

Denote by X an image, and by H = g(X ) a generic
intermediate output of a convolutional model, e.g., the
result of applying 1 or more convolutional layers. The
receptive field R(i, j) of pixel (i, j) is the subset of X
which contributed to its computation:

[g(X )]i j = g(R(i, j)), R(i, j) ⊆ X

For a single convolutional layer, the receptive field of a
pixel is equal to a patch: R(i, j) = Pk(i, j). However, it is
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easy to prove that for two convolutional layers in sequence
with identical kernel size, the resulting receptive field is
R(i, j) = P2k(i, j), then P3k(i, j) for three layers, and so
on. Hence, the receptive field increases linearly in the
number of convolutional layers. This motivates our notion
of locality: even if a single layer is limited in its receptive
field by the kernel size, a sufficiently large stack of them
results in a global receptive field.

Consider now a sequence of two convolutional layers:

H = Conv(Conv(X ))

Because convolution is a linear operation (see previous
section), this is equivalent to a single convolution with a
larger kernel size (as per the above). We can avoid this
“collapse” in a similar way to fully-connected layers, by
interleaving them with activation functions:

H = (φ ◦Conv ◦ . . . ◦φ ◦Conv)(X ) (E.7.8)

To continue with our design, we note that in (E.7.8) the
channel dimension will be modified by each convolutional
layer, while the spatial dimensions will remain of the same
shape (or will be slightly reduced if we avoid zero-padding).
However, it can be advantageous in practice to eventually
reduce this dimensionality if our aim is something like
image classification.

Consider again the example of a horse appearing in two
different regions across two different images. The
translation equivariance property of convolutional layers
guarantees that every feature found in region 1 in the first
image will be found, correspondingly, in region 2 of the
second image. However, if our aim is “horse classification”,
we eventually need one or more neurons activating for an
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horse irrespective of where it is found in the image itself: if
we only consider shifts, this property is called translation
invariance.

Many operations that reduce over the spatial dimensions
are trivially invariant to translations, for example:

H ′ =
∑

i, j

Hi j or H ′ =max
i, j
(Hi j)

In the context of CNNs, this is called a global pooling.
However, this destroys all spatial information present in
the image. We can obtain a slightly more efficient solution
with a partial reduction, called max-pooling.

Definition D.7.6 (Max-pooling layer)

Given a tensor X ∼ (h, w, c), a max-pooling layer, denoted
as MaxPool(X)∼ (h

2 , w
2 , c), is defined element-wise as:

[MaxPool(X )]i jc =max
�

[X ]2i−1:2i,2 j−1:2 j,c

�

2× 2 image patch

Hence, we take 2×2 windows of the input, and we compute
the maximum value independently for each channel (this
is generalized trivially to larger windows). Max-pooling
effectively halves the spatial resolution while leaving the
number of channels untouched. An example is shown in
Figure F.7.2.

We can build a convolutional “block” by stacking several
convolutional layers with a max-pooling operation (see
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Figure F.7.2:
Visualization of 2x2 max-
pooling on a (4,4,1) image.
For multiple channels,
the operation is applied
independently on each
channel.
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Figure F.7.3):

ConvBlock(X ) = (MaxPool ◦φ ◦Conv ◦ . . . ◦φ ◦Conv)(X )

And a more complex network by stacking together multiple
such blocks:

H = (ConvBlock◦ConvBlock◦. . .◦ConvBlock)(X ) (E.7.9)

This design has a large number of hyper-parameters: the
output channels of each layer, the kernel size of each layer,
etc. It is common to drastically reduce the search space for
the design by making some simplifying assumptions. For
example, the VGG design [SLJ+15] popularized the idea
of maintaining the filter size constant in each layer (e.g.,
k = 3), while keeping the number of channels constant in
each block and doubling them in-between every block.

An alternative way for reducing the dimensionality is to
downsample the output of a convolutional layer: this is
called the stride of the convolution. For example, a
convolution with stride 1 is a normal convolution, while a
convolution with stride 2 will compute only one output
pixel every 2, a convolution with stride 3 will compute one
output every 3 pixels, and so on. Large strides and
max-pooling can also be combined together depending on
how the entire model is designed.
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Figure F.7.3:
Abstracting away
from “layers” to
“blocks” to simplify
the design of
differentiable models.
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Invariance and equivariance

Informally, if T is a transformation on x from some
set (e.g., all possible shifts), we say a function f is
equivariant if f (T x) = T f (x), and invariant if f (T x) =
f (x). The space of all transformations form a group
[BBL+17], and the matrix corresponding to a specific
transformation is called a representation for that group.
Convolutional layers are equivariant to translations by
design, but other strategies can be found for more
general forms of symmetries, such as averaging over the
elements of the group (frame averaging, [PABH+21]).
We will see other types of layers’ equivariances in Chapter
10 and Chapter 12.

7.2.2 Designing the complete model

We can now complete the design of our model. By
stacking together multiple convolutional blocks as in
(E.7.9), the output H will be of shape (h′, w′, c′), where w′

and h′ depend on the number of max-pooling operations
(or on the stride of the convolutional layers), while c′ will
depend only on the hyper-parameters of the last
convolutional layer in the sequence. Note that each
element Hi j will correspond to a “macro-region” in the
original image, e.g., if h′, w′ = 2, H11 will correspond to
the “top-left” quadrant in the original image. We can
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Figure F.7.4: Worked-out design of a very simple CNN for image
classification (assuming 10 output classes). We show the output
shape for each layer on the bottom. The global pooling operation
can be replaced with a flattening operation. The last (latent)
representation before the classification head is very useful when
fine-tuning large-scale pre-trained models – it is an embedding of
the image in the sense of Section 3.1.1.

remove this spatial dependency by performing a final
global pooling operation before classification.

The complete model, then, can be decomposed as three
major components: a series of convolutional blocks, a
global average pooling, and a final block for classification.

H = (ConvBlock ◦ . . . ◦ConvBlock)(X ) (E.7.10)

h=
1

h′w′

∑

i, j

Hi j (E.7.11)

y =MLP(h) (E.7.12)

where MLP(h) is a generic sequence of fully-connected
layers (a flattening operation can also be used in place of
the global pooling). This is a prototypical example of a
CNN. See Figure F.7.4 for a worked-out example.

This design has a few interesting properties we list here:
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1. It can be trained like the models described in
Chapter 4 and Chapter 5. For example, for
classification, we can wrap the output in a softmax
and train by minimizing the cross-entropy. The same
rules of back-propagation described in Chapter 6
apply here.

2. Because of the global pooling operation, it does not
depend on a specific input resolution. However, it is
customary to fix this during training and inference
to simplify mini-batching (more on variable length
inputs in the next chapter).

3. (E.7.11) can be thought of as a “feature extraction”
block, while (E.7.12) as the “classification block”.
This interpretation will be very useful when we
consider transfer learning in the next volume. We
call the feature extraction block the backbone of the
model, and the classification block the head of the
model.

Notable types of convolution

We close the chapter by mentioning two instances of
convolutional layers that are common in practice.

First, consider a convolutional layer with k = 0, i.e., a
so-called 1× 1 convolution. This corresponds to updating
each pixel’s embedding by a weighted sum of its channels,
disregarding all other pixels:

Hi jz =
c
∑

t=1

Wzt X i j t

It is a useful operation for, e.g., modifying the channel
dimension (we will see an example when dealing with
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residual connections in Chapter 9). In this case, the
parameters can be compactly represented by a matrix
W ∼ (c′, c). This is equivalent to a fully-connected layer
applied on each pixel independently.

Second, consider an “orthogonal” variant to 1 × 1
convolutions, in which we combine pixels in a small
neighborhood, but disregarding all channels except one:

Hi jc =
2k+1
∑

i′=1

2k+1
∑

j′=1

Wi′, j′,cX i′+t(i), j′+t( j),c

where t(•) is the offset defined in (E.7.6). In this case we
have a rank-3 weight matrix W of shape (s, s, c), and each
output channel H:,:,c is updated by considering only the
corresponding input channel X :,:,c. This is called a
depthwise convolution, and it can be generalized by
considering groups of channels, in which case it is called a
groupwise convolution (with the depthwise convolution
being the extreme case of a group size equal to 1).

We can also combine the two ideas and have a convolution
block made of alternating 1× 1 convolutions (to mix the
channels) and depthwise convolutions (to mix the pixels).
This is called a depthwise separable convolution and it is
common in CNNs targeted for low-power devices
[HZC+17]. Note that in this case, the number of
parameters for a single block (compared to a standard
convolution) is reduced from sscc′ to ssc + cc′. We will see
later how these decompositions, where the input is
processed alternatively across separate axes, are
fundamental for other types of architectures, such as
transformers, in Chapter 10.
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From theory to practice

All the layers introduced in this
chapter (convolution, max-pooling)
are implemented in the torch.nn

module. The torchvision library
provides datasets and functions to load
images, as long as an interface to apply
transformations to the images that will
be very useful in the next chapter.3

Before proceeding, I suggest you follow and re-implement
one of the many online tutorials on image classification in
torchvision, which should now be relatively easy to
follow.4 Toy image datasets abound, including MNIST
(digit classification) and CIFAR-10 (general image
classification). Combining the torchvision loader with the
layers in Equinox allows you to replicate the same tutorial
in JAX, e.g.:

https://docs.kidger.site/equinox/examples/mnist/.

Implementing a convolution from scratch is also an
interesting exercise, whose complexity depends on the
level of abstraction. One possibility is to use the
fold/unfold operations from PyTorch to extract the
patches.5 Premade kernels for convolutions will always be
significantly faster, making this a purely didactic exercise.

If you have some signal processing background, you may
know that convolution can also be implemented as

3
https://pytorch.org/vision/stable/transforms.html

4As an example from the official documentation: https://pytorch.

org/tutorials/beginner/blitz/cifar10_tutorial.html
5See for example: https://github.com/loeweX/Custom-ConvLayers-

Pytorch
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172 Convolutional models

multiplication by moving to the frequency domain. This is
impractical for the small kernels used we tend to use, but
it can be useful for very large (also known as long)
convolutions, e.g.:

https://github.com/fkodom/fft-conv-pytorch

PyTorch also provides a differentiable Fast Fourier
transform that you can use as a starting point.
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8 | Convolutions
beyond images

About this chapter

Convolutional models are a powerful baseline model in
many applications, going far beyond image classification.
In this chapter we provide an overview of several such
extensions, including the use of convolutional layers
for 1D and 3D data, text modeling, and autoregressive
generation. Several of the concepts we introduce (e.g.,
masking, tokenization) are fundamental in the rest of
the book and for understanding modern LLMs.

8.1 Convolutions for 1D and 3D data

8.1.1 Beyond images: time series, audio,
video, text

In the previous chapter we focused exclusively on images.
However, many other types of data share similar
characteristics, i.e., one or more “ordered” dimensions
representing time or space, and one dimension
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174 Convolutions for 1D and 3D data

representing features (the channels in the image case). Let
us consider some examples:

1. Time series are collections of measurements of one
or more processes (e.g., stocks prices, sensor values,
energy flows). We can represent a time series as a
matrix X ∼ (t, c), where t is the length of the time
series, and Xi ∼ (c) are the c measurements at time t
(e.g., c sensors from an EEG scan, or c stock prices).
Each time instant is equivalent to a pixel, and each
measurement is equivalent to a channel.

2. Audio files (speech, music) can also be described
by a matrix X ∼ (t, c), where t is now the length
of the audio signal, while c are the channels of the
recording (1 for a mono audio, 2 for a stereo signal,
etc.).

Frequency-analysis

Audios can also be converted to an image-like
format via frequency analysis (e.g., extracting the
MFCC coefficients over small windows), in which
case the resulting time-frequency images represent
the evolution of the frequency content over the
signal - see Figure F.8.1 for an example. With this
preprocessing we can use standard convolutional
models to process them.

3. Videos can be described by a rank-4 tensor
X ∼ (t, h, w, c), where t is the number of frames of
the video, and each frame is an image of shape
(h, w, c). Another example is a volumetric scan in
medicine, in which case t is the volume depth.

Time series, audio signals, and videos can be described by
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Feature extraction
(e.g., MFCC)

Convolutional
Neural Network

Window size
Time

Fr
eq

ue
nc

y

Figure F.8.1: Audio can be represented as either a 1D sequence
(left), or a 2D image in a time-frequency domain (middle). In the
second case, we can apply the same techniques described in the
previous chapter.

their sampling rate, which denotes how many samples
are acquired per unit of time, sometimes expressed in
samples per second, or hertz (Hz). For example, classical
EEG units acquire signals at 240 Hz, meaning 240 samples
each second. A stock can be checked every minute,
corresponding to 1/60 Hz. By contrast, audio is acquired
with very high frequency to ensure fidelity: for example,
music can be acquired at 44.1e3 Hz (or 44.1 kHz). Typical
acquisition frame rates for video are instead around 24
frames per second (fps) to ensure smoothness to the
human eye.

Image resolution, audio sampling rate, and video frame
rates all play similar roles in determining the precision with
which a signal is acquired. For an image, we can assume
a fixed resolution a priori (e.g., 1024× 1024 pixels). This
is reasonable, since images can always be reshaped to a
given resolution while maintaining enough consistency,
except for very small resolutions. By contrast, audio and
video durations can vary from input to input (e.g., a song
of 30 seconds vs. a song of 5 minutes), and they cannot
be reshaped to a common dimension, meaning that our
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176 Convolutions for 1D and 3D data

datasets will be composed of variable-length data. In
addition, audio resolution can easily grow very large: with
a 44.1 kHz sampling rate, a 3-minute audio will have≈ 8M
samples.

We also note that the dimensions in these examples can
be roughly categorized as either “spatial dimensions” (e.g.,
images) or “temporal dimensions” (e.g., audio resolution).
While images can be considered symmetric along their
spatial axes (in many cases, an image flipped along the
width is another valid image), time is asymmetric: an audio
sample inverted on its temporal axis is in general invalid,
and an inverted time series represents a series evolving
from the future towards its past. Apart from exploiting this
aspect in the design of our models (causality), we can also
be interested in predicting future values of the signal: this
is called forecasting.

Finally, consider a text sentence, such as “the cat is on
the table”. There are many ways to split this sentence
into pieces. For example, we can consider its individual
syllables: [”the”, “cat”, “i”, “s”, “on”, “the”, “ta”, ble”]. This
is another example of a sequence, except that each element
of the sequence is now a categorical value (the syllable)
instead of a numerical encoding. Hence, we need some way
of encoding these values into features that can be processed
by the model: splitting a text sequence into components is
called tokenization, while turning each token into a vector
is called embedding the tokens.

In the next sections we consider all these aspects
(variable-length inputs, causality, forecasting, tokenization,
and embedding) in turn, to see how we can build
convolutional models to address them. Some of the
techniques we introduce, such as masking, are very
general and are useful also for other types of models, such
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Chapter 8: Convolutions beyond images 177

as transformers. Other techniques, such as dilated
convolutions, are instead specific to convolutional models.

8.1.2 1D and 3D convolutional layers

Let us consider how to define convolutions for 1D signals
(e.g., time series, audio) and their extension to 3D signals
(e.g., videos). Note that the dimensionality refers only to
the number of dimensions along which we convolve (spatial
or time), and does not include the channel dimension.
Recall that, in the 1D case, we can represent the input as a
single matrix:

X∼ ( t , c )

Length of the sequence Features

We now replicate the derivation from Chapter 7. Given
a patch size s = 2k + 1, we define Pk(i) ∼ (s, c) as the
subset of rows in X at distance at most k from i (ignoring
border elements for which zero-padding can be used). A
1D convolutional layer H = Conv1D(X) outputs a matrix
H ∼ (t, c′), with c′ an hyper-parameter that defines the
output dimensionality, defined row-wise as:

[Conv1D(X )]i = φ(W · vect(Pk(i)) + b) (E.8.1)

with trainable parameters W ∼ (c′, sc) and b ∼ (c′). Like
in the 2D case, this layer is local (for a properly modified
definition of locality) and equivariant to translations of the
sequence.

In the 2D case, we also discussed an alternative notation
with all indices explicitly summed over:
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178 1D and 3D convolutional models

Hi jz =
2k+1
∑

i′=1

2k+1
∑

j′=1

c
∑

d=1

[W ]i′, j′,z,d[X ]i′+t(i), j′+t( j),d (E.8.2)

where t(i) = i + k − 1 as in (E.7.6). Recall that we use t
to index i′ and j′ differently for the two tensors: from 1 to
2k+ 1 for W , and from i − k to i + k for X . The equivalent
variant for (E.8.1) is obtained trivially by removing one
summation index:

Hiz =
2k+1
∑

i′=1

c
∑

d=1

[W ]i′,z,d[X ]i′+t(i),d (E.8.3)

where the parameters W ∼ (s, c′, c) are now organized in
a rank-3 tensor. By contrast, the 3D variant is obtained by
adding a new summation over the third dimension with
index p:

Hpi jz =
2k+1
∑

p′=1

2k+1
∑

i′=1

2k+1
∑

j′=1

,
c
∑

d=1

[W ]p′,i′, j′,z,d[X ]p′+t(p),i′+t(i), j′+t( j),d

We assume that the kernel size is identical across all
dimensions for simplicity. With similar reasonings we can
derive a vectorized 3D variant of convolution, and also 1D
and 3D variants of max pooling.

8.2 1D and 3D convolutional models

We now consider the design of convolutional models in
the 1D case, with a focus on how to handle variable-length
inputs and how to deal with text sequences. Several of the
ideas we introduce are fairly generic for all differentiable
models.

178



Chapter 8: Convolutions beyond images 179

8.2.1 Dealing with variable-length inputs

Consider two audio files (or two time series, or two texts),
described by their corresponding input matrices
X1 ∼ (t1, c) and X2 ∼ (t2, c). The two inputs share the
same number of channels c (e.g., the number of sensors),
but they have different lengths, t1 and t2. Remember from
our discussion in Section 7.1 that convolutions can handle
(in principle) such variable-length inputs. In fact, denote
by g a generic composition of 1D convolutions and
max-pooling operations, corresponding to the feature
extraction part of the model. The output of the block are
two matrices:

H1 = g(X1) , H2 = g(X2)

having the same number of columns but a different
number of rows (depending on how many max-pooling
operations or strided convolutions are applied on the
inputs). After global average pooling, the dependence on
the length disappears:

h1 =
∑

i

H1i , h2 =
∑

i

H2i

and we can proceed with a final classification on the vectors
h1 and h2. However, while this is not a problem at the level
of the model, it is a problem in practice, since mini-batches
cannot be built from matrices of different dimensions, and
thus operations cannot be easily vectorized. This can be
handled by zero-padding the resulting mini-batch to the
maximum dimension across the sequence length. Assuming
for example, without lack of generality, t1 > t2, we can
build a “padded” mini-batch as:
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180 1D and 3D convolutional models

# Sequences with variable length
# (3, 5, 2, respectively)
X1, X2, X3 = torch.randn(3, 8),

torch.randn(5, 8),
torch.randn(2, 8)

# Pad into a single mini-batch
X = torch.nn.utils.rnn.pad_sequence(

[X1, X2, X3],
batch_first=True)

print(X.shape)
# [Out]: torch.Size([3, 5, 8])

Box C.8.1: A padded mini-batch from three sequences of variable
length (with c = 8). When using a DataLoader, padding can be
achieved by overwriting the default collate_fn, which describes
how the loader concatenates the individual samples.

X = stack
�

X1,
�

X2

0

��

where stack operates on a new leading dimension, and the
resulting tensor X has shape (2, t1, c). We can generalize
this to any mini-batch by considering the largest length with
respect to all elements of the mini-batch. For a convolution,
this is not very different from zero-padding, and operating
on the padded input will not influence significantly the
operation (e.g., in audio, zero-padding is equivalent to
adding silence at the end). See Box C.8.1 for an example
of building a padded mini-batch.

Alternatively, we can build a masking matrix describing
valid and invalid indexes in the mini-batched tensor:

M=
�

1t1

1t2
0t1−t2

�
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where the index denotes the size of the vectors. These
masking matrices can be helpful to avoid invalid operations
on the input tensor.

8.2.2 CNNs for text data

Let us consider now the problem of dealing with text data.
As we mentioned previously, the first step in dealing with
text is tokenization, in which we divide the text (a string)
into a sequence of known symbols (also called tokens in
this context). There are multiple types of tokenizers:

1. Character tokenizer: each character becomes a
symbol.

2. Word tokenizer: each (allowed) word becomes a
symbol.

3. Subword tokenizer: intermediate between a
character tokenizer and a word tokenizer, each
symbol is possibly larger than a character but also
smaller than a word.

This is shown schematically in Figure F.8.2. In all three
cases, the user has to define a dictionary (vocabulary) of
allowed tokens, such as all ASCII characters for a character
tokenizer. In practice, one can select a desired size of the
dictionary, and then look at the most frequent tokens in the
text to fill it up, with every other symbol going into a special
“out-of-vocabulary” (OOV) token. Subword tokenizers have
many specialized algorithms to this end, such as byte-pair
encoding (BPE) [SKF+99].1

1This is a short exposition focused on differentiable models, and
we are ignoring many preprocessing operations that can be applied to
text, such as removing stop words, punctuation, “stemming”, and so
on. As the size of the models has grown, these operations have become
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Classify this text!

Character
tokenizer

['c', 'l', 'a', ..., 't', '!']

Sub-word
tokenizer

['clas', 'si', ..., 'text']

Word
tokenizer

['classify', 'this', 'text']

Embedding

Neural network

Figure F.8.2: Starting from a text, multiple types of tokenizers
are possible. In all cases, symbols are then embedded as vectors
and processed by a generic 1D model.

Because large collections of text can have a wide
variability, pre-trained subword tokenizers are a standard
choice nowadays. As a concrete example, OpenAI has
released an open-source version of its own tokenizer,2

which is a subword model consisting of approximately
100k subwords (at the time of writing). Consider for
example the encoding of “This is perplexing!” with this
tokenizer, shown in Figure F.8.3. Some tokens correspond
to entire words (e.g., “This”), some to pieces of a word
(e.g, “perplex”), while others to punctuation marks. The
sequence can be equivalently represented by a sequence of
integers:

[2028,374, 74252,287, 0] (E.8.4)

Each integer spans between 0 and the size of the vocabulary
(in this case, roughly 100k), and it uniquely identifies the
token with respect to that vocabulary. In practice, nothing
prevents us from adding “special” tokens to the sequence,
such as tokens representing the beginning of the sentence

less common.
2
https://github.com/openai/tiktoken
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Figure F.8.3: Example
of applying the tiktoken
tokenizer to a sentence.

(sometimes denoted as [BOS]), OOV tokens, or anything
else. The [BOS] token will be of special significance in the
next section.

Subword tokenization with very large dictionaries can be
counter-intuitive at times: for example, common digits
such as 52 have their unique token, while digits like 2512
can be split into a “251” token and a “2” token. For
applications where processing numbers is important,
specialized numerical tokenizers can be applied [GPE+23].
In general, visualizing the tokenization process is always
important to debug the models’ behaviour.

After the tokenization step, the tokens must be embedded
into vectors to be used as inputs for a CNN. A simple one-
hot encoding strategy here works poorly, since vocabularies
are large and the resulting vectors would be significantly
sparse. Instead, we have two alternative strategies: the first
is to use pretrained networks that perform the embedding
for us; we will consider this option later on, when we
introduce transformers. In order to build some intuition
for it, we consider here the second alternative, training the
embeddings together with the rest of the network.

Suppose we fix an embedding dimension e as a hyper-
parameter. Since the size n of the dictionary is also fixed,
we can initialize a matrix of embeddings E∼ (n, e). We now
define a look-up operation that replaces each integer with
the corresponding row in E. Denoting by x the sequence
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Check
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Tokenizer

[2, 16, 3]

1D CNN

Figure F.8.4: A lookup table to convert a sequence of tokens’ IDs
to their curresponding embeddings: the input is a list, the output
is a matrix. The embeddings (shown inside the box) can be trained
together with all the other parameters via gradient descent. We
assume the size of the vocabulary is n= 16.

of IDs we have:

LookUp(x) = X=
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Row x1 in the embedding matrix

The resulting input matrix X will have shape (m, e), where
m is the length of the sequence. We can now apply a
generic 1D convolutional model for, e.g., classifying the
text sequence:

ŷ = CNN(X)

This model can be trained in a standard way depending on
the task, except that gradient descent will be performed
jointly on the parameters of the model and the embedding

184



Chapter 8: Convolutions beyond images 185

class TextCNN(nn.Module):
def __init__(self, n, e):

super().__init__()
self.emb = nn.Embedding(n, e)
self.conv1 = nn.Conv1d(e, 32, 5,

padding='same')
self.conv2 = nn.Conv1d(32, 64, 5,

padding='same')
self.head = nn.Linear(64, 10)

def forward(self, x): # (*, m)
x = self.emb(x) # (*, m, e)
x = x.transpose(1, 2) # (*, e, m)
x = relu(self.conv1(x)) # (*, 32, m)
x = max_pool1d(x, 2) # (*, 32, m/2)
x = relu(self.conv2(x)) # (*, 64, m/2)
x = x.mean(2) # (*, 64)
return self.head(x) # (*, 10)

Box C.8.2: A 1D CNN with trainable embeddings. n is the size
of the dictionary, e is the size of each embedding. We use two
convolutional layers with 32 and 64 output channels. The shape
of the output for each operation in the forward pass is shown as a
comment.

matrix E. This is shown visually in Figure F.8.4, and an
example of model’s definition is given in Box C.8.2.

This idea is extremely powerful, especially because in
many cases we find that the resulting embeddings can be
manipulated algebraically as vectors, e.g., by looking at
the closest embeddings in an Euclidean sense to find
“semantically similar” words or sentences. This idea is at
the core of the use of differentiable models in many
sectors that necessitate retrieval or search of documents.
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186 1D and 3D convolutional models

Differentiable models and embeddings

Once again, the idea of embedding is very general: any
procedure that converts an object into a vector with
algebraic characteristics is an embedding. For example,
the output of the backbone of a trained CNN after global
pooling can be understood as a high-level embedding of
the input image, and it can be used to retrieve “similar”
images by comparing it to all other embeddings.

8.2.3 Dealing with long sequences

Many of the sequences described before can be very long.
In this case, the locality of convolutional layers can be a
drawback, because we need a linearly increasing number
of layers to process larger and larger receptive fields. We
will see in the next chapters that other classes of models
(e.g., transformers) can be designed to solve this problem.
For now we remain in the realm of convolutions and we
show one interesting solution, called dilated (or atrous,
from the French à trous) convolutions, popularized in the
WaveNet model for speech generation [ODZ+16].

We introduce an additional hyper-parameter called the
dilation rate. A convolution with dilation rate of 1 is a
standard convolution. For a dilation rate of 2, we modify
the convolution operation to select elements for our patch
by skipping one out of two elements in the sequence.
Similarly, for a dilation rate of 4, we skip three elements
over four, etc. We stack convolutional layers with
exponentially increasing dilation rates, as shown in Figure
F.8.5. The number of parameters does not change, since
the number of neighbors remain constant irrespective of
the dilation rate. However, it is easy to show that the
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Figure F.8.5: Convolutional layers with increasing dilation rates.
Elements selected for the convolution are in red, the others are
greyed out. We show the receptive field for a single output element.

resulting receptive field in this case grows exponentially
fast in the number of layers.

8.3 Forecasting and causal models

8.3.1 Forecasting sequences

One important aspect of working with sequences is that
we can build a model to predict future elements, e.g.,
energy prices, turbulence flows, call center occupations,
etc. Predicting tokens is also the fundamental building
block for large language models and other recent
breakthroughs. In a very broad sense, much of the current
excitement around neural networks revolves around the
question of how much a model can be expected to infer
from next-token prediction on large corpora of text, and
how much this setup can be replicated across different
modalities (e.g., videos) and dynamics [WFD+23].
Formally, predicting the next element of a sequence is
called forecasting in statistics and time series analysis.
From now on, to be consistent with modern literature, we
will use the generic term token to refer to each element of
the sequence, irrespective of whether we are dealing with
an embedded text token or a generic vector-valued input.
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188 Forecasting and causal models

The reason forecasting is an important problem is that we
can train a forecasting model by just having access to a set
of sequences, with no need for additional target labels: in
modern terms, this is also called a self-supervised learning
task, since the targets can be automatically extracted from
the inputs.

Stationarity and forecasting

Just like text processing, forecasting real-world time
series has a number of associated problems (e.g., the
possible non-stationarity of the time series, trends and
seasonalities) that we do not consider here.a In practice,
audio, text, and many other sequences of interest
can be considered stationary and do not need special
preprocessing. Like for text, for very large forecasting
datasets and correspondingly large models, the impact
of preprocessing tend to diminish [AST+24].

a
https://filippomb.github.io/python-time-series-

handbook/

To this end, suppose we fix a user-defined length t, and
we extract all possible subsequences of length t from the
dataset (e.g., with t = 12, all consecutive windows of 12
elements, or all sentences composed of 12 tokens, etc.). In
the context of LLMs, the size of the input sequence is called
the context of the model. We associate to each subsequence
a target value which is the next element in the sequence
itself. Thus, we build a set of pairs (X,y),X∼ (t, c) , y ∼ (c)
and our forecasting model is trained in a supervised way
over this dataset:

f (X)≈ y

Note that a standard 1D convolutional model can be used
as forecasting model, trained with either mean-squared
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error (for continuous time series) or cross-entropy (for
categorical sequences, such as text). While the model is
trained to predict a single step-ahead, we can easily use
it to generate as many steps as we want by what is called
an autoregressive approach, meaning that the model is
predicting (regressing) on its own outputs. Suppose we
predict a single step, by = f (X), and we create a “shifted”
input by adding our predicted value to the input (removing
the first element to avoid exceeding t elements):

X′ =





X2:t

by



 (E.8.5)

Window of t − 1 input elements

Predicted value at time t + 1

Forecasting discrete sequences

For a continuous time series this is trivial. For a time
series with discrete values, f will return a probability
vector over the possible values (i.e., possible tokens),
and we can obtain by by taking its argmax, i.e., the
token associated to the highest probability. Alternatively,
we can sample a token proportionally to the predicted
probabilities: see Section 8.4.1.

We can now run f (X′) to generate the next input value in
the sequence, and so on iteratively, by always updating
our buffered input in a FIFO fashion. This approach is
extremely powerful, but it requires us to fix a priori the
input sequence length, which limits its applicability. To
overcome this limitation, we need only a minor
modification to our models.

189



190 Forecasting and causal models

8.3.2 Causal models

Suppose we only have available a short sequence of 4
elements collected into a matrix X ∼ (4, c), but we have
trained a forecasting model on longer sequences with
t = 6. In order to run the model on the shorter sequence,
we can zero-pad the sequence with two zero vectors 0 at
the beginning, but these will be interpreted by the model
as actual values of the time series unless we mask its
operations. Luckily, there is a simpler and more elegant
approach in the form of causal models.

Definition D.8.1 (Causal layer)

A layer H= f (X) is causal if Hi = f (X:i), i.e., the value
corresponding to the i-th element of the sequence depends
only on elements “from its past”.

A model composed only of causal layers will, of course,
be causal itself. For example, a convolutional layer with
kernel size 1 is causal, since each element is processed
considering only itself. However, a convolutional layer with
kernel size 3 is not causal, since it is processed considering
in addition one element to the left and one element to the
right. We can convert any convolution into a causal variant
by partially zero masking the weights corresponding to
non-causal connections:

hi = φ
��

W⊙M
�

vect(Pk(i)) + b
�

Masked weight matrix

where Mi j = 0 if the weight corresponds to an element in
the input such that j > i, 1 otherwise. Causal 1D
convolutions can be combined with dilated kernels to
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Time dimension

Figure F.8.6: Overview of a 1D causal convolutional layer with
(original) kernel size of 3 and exponentially increasing dilation
rates. Zeroed out connections are removed, and we show the
receptive field for a single output element.

obtain autoregressive models for audio, such as in the
WaveNet model [ODZ+16] - see Figure F.8.6 for an
example.

Masking is easier to understand in the case of a single
channel, in which case M is simply a lower-triangular binary
matrix. The masking operation effectively reduces the
number of parameters from (2k+ 1)cc′ to (k+ 1)cc′.

By stacking several causal convolutional layers, we can
obtain a causal 1D model variant. Suppose we apply it on
our input sequence, with a model that has no max-pooling
operations. In this case, the output sequence has the same
length as the input sequence:

bY= fcausal(X)

In addition, any element in the output only depends on
input elements in the same position or preceding it. Hence,
we can define a more sophisticated forecasting model by
predicting a value for each element of the input sequence.
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Convolutional model

Global Average Pooling

MSE

(a) Non-causal model

Causal convolutional model

MSE

(b) Causal model

Figure F.8.7: Comparison between (a) a non-causal model for
forecasting (predicting only a single element for the entire input
sequence) and (b) a causal model trained to predict one output
element for each input element in the sequence.

Practically, consider now a matrix output defined as:

Y=
�

X2:t

y

�

This is similar to the shifted input from (E.8.5), except
that we are adding the true value as last element of the
sequence. We can train this model by minimizing a loss on
all elements, e.g., a mean-squared error:

l(bY,Y) = ∥bY− Y∥2 =
t
∑

i=1

∥bYi − Yi∥2 (E.8.6)

Loss when predicting Xi+1

We simultaneously predict the second element based on
the first one, the third one based on the first two, etc.
For a single input window, we have t separate loss terms,
greatly enhancing the gradient propagation. A comparison
between the two approaches is shown in Figure F.8.7: in
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Causal model Causal model Causal model

Figure F.8.8: Inference with a causal CNN, generating a sequence
step-by-step in an autoregressive way. Unused input tokens are
greyed out. Generated tokens are colored with different colors to
distinguish them.

Figure F.8.7a we show a non-causal convolutional model
trained to predict the next element in the sequence, while
in Figure F.8.7b we show a causal model trained according
to (E.8.6).

More importantly, we can now use the model in an
autoregressive way with any sequence length up to the
maximum length of t. This can be seen easily with an
example. Suppose we have t = 4, and we have observed
two values x1 and x2. We call the model a first time by
zero-padding the sequence to generate the third token:
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bx3

−
−






= f













x1

x2

0
0













We are ignoring all output values except the second one
(in fact, the third and fourth outputs are invalid due to the
zero-padding). We add bx3 to the sequence and continue
calling the model autoregressively (we show in color the
predicted values):
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. . .

In the last step we removed one of the original inputs
to keep the constraint on the size of the input. This is
also shown in Figure F.8.8. Note that the model is trained
only on real values, not on its own predictions: this is
called teacher forcing. A variant of teacher forcing is to
progressively replace some of the values in the mini-batches
with values predicted by the model, as training proceeds
and the model becomes more accurate.

Causal autoregressive models are especially interesting in
the case of text sequences (where we only have a single
channel, the index of the tokens), since we can start from
a single [BOS] token representing the beginning of the
sequence and generate text sentences from scratch, or
condition the generation on a specific prompt by the user
which is appended to the [BOS] token. A similar
reasoning can be applied to audio models to generate
speech or music [ODZ+16].

8.4 Generative models

8.4.1 A probabilistic formulation

An autoregressive model is a simple example of a
generative model.3 We will talk at length about other

3Remember from Chapter 3 that we assume our supervised pairs
(x , y) come from some unknown probability distribution p(x , y). By
the product rule of probability we can decompose it equivalently as
p(y | x)p(x), or p(x | y)p(y). Any model which approximates p(x)
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types of generative models in the next volume. For now,
we provide some insights specific to autoregressive
algorithms. We consider sequences with a single channel
and discrete values, such as text. Autoregressive models
over text tokens are the foundation of LLMs, and they can
be used as the basis for multimodal architectures (Chapter
11).

Generative models are more naturally framed in the
context of probabilities, so we begin by reframing our
previous discussion with a probabilistic formalism. Denote
by X the space of all possible sequences (e.g., all possible
combinations of text tokens). In general, many of these
sequences will be invalid, such as the sequence [“tt”, “tt”]
in English. However, even very uncommon sequences may
appear at least once or twice in very large corpora of text
(imagine a character yelling “Scotttt!”).

We can generalize this by considering a probability
distribution p(x) over all possible sequences x ∈ X . In
the context of text, this is also called a language model.
Generative modeling is the task of learning to sample
efficiently from this distribution:4

x ∼ p(x)

To see how this connects to our previous discussion, note
that by the product rule of probability we can always
rewrite p(x) as:

p(x) =
∏

i

p(x i | x:i) (E.8.7)

or p(x | y) is called generative, because you can use it to sample new
input points. By contrast, a model that only approximates p(y | x),
like we did in the previous chapters, is called discriminative.

4In this section ∼ is used to denote sampling from a probability
distribution instead of the shape of a tensor.
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where we condition each value x i to all preceding values.
If we assume that our model input length is large enough
to accommodate all possible sequences, we can use a
causal forecasting model to parameterize the probability
distribution in (E.8.7):

p(x i | x:i) = Categorical(x i | f (x:i))

where we use a single, shared model for all time-steps.
Maximum likelihood over this model is then equivalent to
minimizing a cross-entropy loss over the predicted
probabilities, as in Section 4.2.2.

8.4.2 Sampling in an autoregressive model

In general, sampling from a probability distribution is non-
trivial. However, for autoregressive models we can exploit
the product decomposition in (E.8.7) to devise a simple
iterative strategy:

1. Sample x1 ∼ p(x1). This is equivalent to conditioning
on the empty set p(x1 | {}). In practice, we always
condition on an initial fixed token, such as the [BOS]
token, so that our input is never empty.

2. Sample x2 ∼ p(x2 | x1) by running again the network
with the value we sampled at step (1), as in Figure
F.8.8.

3. Sample x3 ∼ p(x3 | x1, x2).

4. Continue until we reach a desired sequence length
or until we get to an end-of-sentence token.

We did this implicitly before by always sampling the
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element of highest probability:

x i = argmax
i

f (x:i)

However, we can also generalize this by sampling a value
according to the probabilities predicted by f . Remember
(Section 4.2.1) that the softmax can be generalized by
considering an additional temperature parameter. By
varying this parameter during inference, we can vary
smoothly between always taking the argmax value (very
low temperature) to having an almost uniform
distribution over tokens (very high temperature).

In the context of probabilistic modeling, sampling in this
way from this class of models is called ancestral
sampling, while in the context of language modeling we
sometimes use the term greedy decoding. The use of the
term “greedy” and this brief discussion is enough to
highlight one potential drawback of this approach: while
the product decomposition of p(x) is exact, greedy
decoding is not guaranteed to provide a sample
corresponding to high values of p(x).

To see this, note that f provides an estimate of the
probability for a single token, but the probability of a
sequence is given by a product of many such terms. Hence,
sampling a token with high (local) probability at the
beginning of a sequence may not correspond to a
sequence having large (global) probability as a sentence.
This is easy to visualize if you imagine the choice of the
first token letting the decoding stage being “stuck” in a
low-probability path.

A common mitigation to this problem is beam search (or
beam decoding). In beam search, in the first step we
sample k different elements (called the beams, with k being
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a user-defined parameter). In the second step, for each of
our k beams we sample k possible continuations. Out of
these k2 pairs, we keep only the top-k values in terms of
their product probability p(x1)p(x2 | x1) (or, equivalently,
their log probability). We continue iteratively in this way
until the end of the sequence.

Viewed under this lens, sampling the most probable
sequence from our autoregressive model is a
combinatorial search problem (think of a tree, where for
each token we expand across all possible next tokens, and
so on). From the point of view of computer programming,
beam search is then an example of breadth-first search
over this tree. In a sense, beam search is trading off a
simple training procedure for a more expensive inference
stage – many other techniques exist to this end, including
the possibility of guiding the decoding to satisfy an
external reward function [WBF+24].

8.4.3 Conditional modeling

As we mentioned earlier, in general we may not be
interested so much in generating sequences from scratch,
but in generating continuations of known sequences, such
as a user’s question or interaction. This can be formalized
by considering conditional probability distributions in the
form p(x | c), where c is the conditioning argument, such
as a user’s prompt. Our previous discussion extends
almost straightforwardly to this case. For example, the
product decomposition is now written as:

p(x | c) =
∏

i

p(x i | x:i, c)

where we condition on the previous inputs and the user’s
context. Sampling and decoding are extended in a similar
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way.

To perform conditional generation we parameterize p(x i |
x:i, c) with a neural network f (x , c) such that:

p(x i | x:i, c)≈ Categorical(x i | f (x:i, c))

Hence, the major difference with the unconditional case is
that we need a function f (x , c) having two input arguments
and which satisfies causality in the first argument. When
working with autoregressive models, if both x and c are
texts we can do this easily be considering c as part of the
input sequence and working with a single concatenated
input x ′ = [c∥x]. For example, with the user’s prompt “The
capital of France”, taking for simplicity a word tokenizer
we might have:5

fcausal([The, capital, of, France]) = is

fcausal([The, capital, of, France, is]) = Paris

Hence, we can handle unconditional and conditional
modeling simultaneously with a single model.6 In the next
volume we will see other examples of conditional
generative models in which more sophisticated strategies
are needed. We will also extend upon this topic when we
discuss decoder-only transformer models in Chapter 11.

5We ignore the presence of an end-of-sequence token (EOS) to stop
the autoregressive generation.

6We will see in Chapter 11 that almost any type of data can be
converted into a sequence of tokens. Suppose we are generating
a text sequence conditioned on an image prompt (e.g., image
captioning). If both text and images are converted to tokens having
the same embedding size, we can apply an autoregressive model
by concatenating the tokens from the two input types (also called
modalities in this context), where we view the image tokens as the
conditioning set c.
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From theory to practice

Working with text data is more complex
than image classification, due to many
subtleties involved with tokenization,
data formatting, weird characters, and
variable-length sequences. PyTorch
has its own text library, torchtext,
which at the time of writing is less
documented than the main library and relies on another
beta library (torchdata) to handle the data pipelines.
Thus, we ignore it here, but we invite you to check it out
on your own.

Hugging Face Datasets is probably the most versatile tool
in this case, as it provides a vast array of datasets and pre-
trained tokenizers, which can be exported immediately to
PyTorch.7 Familiarize yourself a bit with the library before
proceeding with the exercise.

1. Choose a text classification dataset, such as the classic
IMDB dataset.8

2. Tokenize it to obtain a dataset of the form (x , y),
where x is a list of integers as in (E.8.4) and y is the
text label.

3. Build and train a 1D CNN model similar to Box C.8.2.
Experiment a bit with the model’s design to see its
impact on the final accuracy.

PyTorch does not have a quick way to make a 1D
convolution causal, so we will postpone our autoregressive

7See this tutorial for a guide: https://huggingface.co/docs/

datasets/use_dataset.
8
https://huggingface.co/datasets/stanfordnlp/imdb
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experiments for when we introduce transformers.9

Training your own tokenizer is a very good didactic
exercise, although it’s far beyond the scope of the book.
For an introduction, you can check this minimalistic BPE
implementation: https://github.com/karpathy/minbpe.

9If you want to try, you can emulate a causal convolution with
proper padding; see Lecture 10.2 here: https://fleuret.org/dlc/. The
entire course is really good if you are looking for streamed lectures.
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9 | Scaling up
the models

About this chapter

We now turn to the task of designing differentiable
models having dozens (or hundreds) of layers. As
we saw, the receptive field of convolutional models
grows linearly with the number of layers, motivating
architectures with such depth. This can be done by
properly stabilizing training using a plethora of methods,
ranging from data augmentation to normalization of the
hidden states.

9.1 The ImageNet challenge

Let us consider again the task of image classification, which
holds a strong interest for neural networks, both practically
and historically. In fact, interest in these models in the
period 2012-2018 can be associated in large part to the
ImageNet Large Scale Visual Recognition Challenge1

(later ImageNet for simplicity). ImageNet was a yearly

1
https://image-net.org/challenges/LSVRC/
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challenge that run from 2010 to 2017 to evaluate state-of-
the-art models for image classification. The challenge was
run on a subset of the entire ImageNet dataset, consisting
of approximately 1M images tagged across 1k classes.

It is instructive to take a look at the early editions of the
challenges. In 20102 and in 2011,3 the winners were
linear kernels methods built with a combination of
specialized image descriptors and kernels, with a top-5%
error of 28% (2010) and 26% (2011). Despite a number
of promising results,4 convolutional models trained by
gradient descent remained a niche topic in computer
vision. Then, In 2012 the winner model (AlexNet,
[KSH12]) achieved a top-5% error of 15.3%, 10% lower
than all (non-neural) competitors.

This was followed by a veritable “Copernican revolution”
(apologies to Copernicus) in the field, since in a matter of
a few years almost all submissions turned to convolutional
models, and the overall accuracy grew at an unprecedented
speed, upward of 95% (leading to the end of the challenge
in 2017), as shown in Figure F.9.1. In a span of 5 years,
convolutional models trained with gradient descent became
the leading paradigm in computer vision, including other
subfields we are not mentioning here, from object detection
to semantic segmentation and depth estimation.

AlexNet was a relatively simple model consisting of 5
convolutional layers and 3 fully-connected layers, totaling
approximately 60M parameters, while the top-performing
models in Figure F.9.1 require up to hundreds of layers.
This is basic example of a scaling law (Chapter 1): adding

2
https://image-net.org/challenges/LSVRC/2010/

3
https://image-net.org/challenges/LSVRC/2011/

4
https://people.idsia.ch/~juergen/computer-vision-contests-won-

by-gpu-cnns.html
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Figure F.9.1: Top-
1 accuracy on the
ImageNet dataset.
Reproduced from Papers
With Code.

layers and compute power for training is proportionally
linked to the accuracy of the model up to a saturation
point given by the dataset. However, scaling up
convolutional models beyond a few layers is non-trivial, as
it runs into a number of problems ranging from slow
optimization to gradient issues and numerical instabilities.
As a consequence, a large array of techniques were
developed in 2012-2017 to stabilize training of very large
models.

In this chapter we provide an overview of some of these
techniques. We focus on ideas and methods that are still
fundamental nowadays, even for other architectures (e.g.,
transformers). We begin by three techniques to improve
training that are well-known in machine learning: weight
regularization, data augmentation, and early stopping.
Then, we describe three of the most influential techniques
popularized in 2012-2017: dropout, batch normalization,
and residual connections, more or less in chronological
order of introduction. For each method we describe the
basic algorithm along with some variants that work well in
practice (e.g., layer normalization).
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9.2 Data and training strategies

9.2.1 Weight regularization

One possible way to improve training is to penalize
solutions that may seem unplausible, such as having one
or two extremely large weights. Denote by w the vector of
all parameters of our model, and by L(w,Sn) the loss
function on our dataset (e.g., average cross-entropy). We
can formalize the previous idea by defining a so-called
regularization term R(w) that scores solutions based on
our preference, and penalize the loss by adding the
regularization term to the original loss function:

Lreg = L(w,Sn) +λR(w)

where we assume that a higher value of R(w) corresponds
to a worse solution, and λ≥ 0 is a scalar that weights the
two terms. For λ = 0 the regularization term has no effect,
while for λ→∞ we simply select the best function based
on our a priori knowledge.

This can also be justified as performing maximum a-priori
(instead of maximum likelihood) inference based on the
combination of a prior distribution on the weights p(w)
and a standard likelihood function on our data (Section
3.3):

w∗ = arg max
w

{log p(Sn |w) + log p(w)} (E.9.1)

where having a regularization term corresponds to a non-
uniform prior distribution p(w). We have already seen one
example of regularization in Section 4.1.5, i.e., the ℓ2 norm
of the weights:
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R(w) = ∥w∥2 =
∑

i

w2
i

For the same unregularized loss, penalizing the ℓ2 norm
will favor solutions with a lower weight magnitude,
corresponding to “less abrupt” changes in the output for a
small deviation in the input.5 Consider now the effect of
the regularization term on the gradient term:

∇Lreg =∇L(w,Sn) + 2λw

Written in this form, this is sometimes called weight
decay, because absent the first term, its net effect is to
decay the weights by a small proportional factor λ
(sending them to 0 exponentially fast in the number of
iterations if ∇L(w,Sn) = 0). For (S)GD, ℓ2 regularization
and weight decay coincide. However, for other types of
optimization algorithms (e.g., momentum-based SGD,
Adam), a post-processing is generally applied on the
gradients. Denoting by g(∇L(w,Sn)) the post-processed
gradients of the (unregularized) loss, we can write a
generalized weight decay formulation (ignoring the
constant term 2) as:

wt =wt−1 − g(∇L(wt−1,Sn)) −λwt−1

Unregularized gradient

Weight decay term

This is different from pure ℓ2 regularization, in which case
the gradients of the regularization term would be inside
g(·). This is especially important for algorithms like Adam,

5With respect to (E.9.1), ℓ2 regularization is equivalent to choosing
a Gaussian prior on the weights with diagonal σ2I covariance.
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for which the weight decay formulation can work better
[LH19].

We can also consider other types of regularization terms.
For example, the ℓ1 norm:

R(w) = ∥w∥1 =
∑

i

|x i|

can favor sparse solutions having a high percentage of zero
values (and it corresponds to placing a Laplace prior on
the weights). This can also be generalized to group sparse
variants to enforce structured sparsity on the neurons
[SCHU17].6 Sparse ℓ1 penalization is less common than
for other machine learning models because it does not
interact well with the strong non-convexity of the
optimization problem and the use of gradient descent
[ZW23]. However, it is possible to re-parameterize the
optimization problem to mitigate this issue at the cost of a
larger memory footprint. In particular, [ZW23] showed
that we can replace w with two equivalently shaped
vectors a and b, and:

w= a⊙ b , ∥w∥1 ≈ ∥a∥2 + ∥b∥2 (E.9.2)

where ≈ means that the two problems can be shown to be
almost equivalent under very general conditions [ZW23].

We can gain some geometric insights as to why (and how)
regularization works by considering a convex loss function
L(·, ·) (e.g., least-squares), in which case the regularized

6Training sparse models is a huge topic with many connections
also to efficient hardware execution. See [BJMO12] for a review on
sparse penalties in the context of convex models, and [HABN+21] for
an overview of sparsity and pruning in general differentiable models.
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problem can be rewritten in an explicitly constrained form
as:

argmin L(w,Sn)
subject to R(w)≤ µ (E.9.3)

where µ depends proportionally on λ, with the
unconstrained formulation arising by rewriting (E.9.3)
with a Lagrange multiplier. In this case, ℓ2 regularization
corresponds to constraining the solution to lie inside a
circle centered in the origin, while ℓ1 regularization
corresponds to having a solution inside (or on the vertices)
of a regular polyhedron centered in the origin, with the
sparse solutions lying at the vertices intersecting the axes.

9.2.2 Early stopping

From the point of view of optimization, minimizing a
function L(w) is the task of finding a stationary point as
quickly as possible, i.e., a point wt such that ∇L(wt)≈ 0:

∥L(wt)− L(wt−1)∥2 ≤ ϵ

for some tolerance ϵ > 0. However, this does not
necessarily correspond to what we want when optimizing
a model. In particular, in a low-data regime training for
too long can incur in overfitting and, in general, anything
which improves generalization is good irrespective of its
net effect on the value on L(·) or the descent direction
(e.g., weight decay).

Early stopping is a simple example of the difference
between pure optimization and learning. Suppose we
have access to a small supervised dataset, separate from
the training and test dataset, that we call validation
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dataset. At the end of every epoch, we track a metric of
interest on the validation dataset, such as the accuracy or
the F1-score. We denote the score at the t-th epoch as at .
The idea of early stopping is to check this metric to see if it
keeps improving: if not, we may be entering an overfitting
regime and we should stop training. Because the accuracy
can oscillate a bit due to random fluctuations, we do this
robustly by considering a window of k epochs (the
patience):

If at ≤ ai, ∀i = t − 1, t − 2, . . . , t − k → Stop training

Wait for k epochs

For a high value of the patience hyper-parameter k, the
algorithm will wait more, but we will be more robust to
possible oscillations. If we have a mechanism to store the
weights of the model (checkpointing) we can also rollback
the weights to the last epoch that showed improvement,
corresponding to the epoch number t − k.

Early stopping can be seen as a simple form of model
selection, where we select the optimal number of epochs
based on a given metric. Differently from the optimization
of the model, we can optimize here for any metric of
interest, such as the F1-score, even if not differentiable.

Interestingly, for large over-parameterized models early
stopping is not always beneficial, as the relation between
epochs and validation error can be non-monotone with
multiple phases of ascent and descent (a phenomenon
called multiple descents [RM22]) and sudden drops in
the loss after long periods of stasis [PBE+22]. Hence, early
stopping is useful mostly when optimizing on small
datasets.
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9.2.3 Data augmentation

Generally speaking, the most effective method to improve
performance for a model is to increase the amount of
available data. However, labelling data can be costly and
time-consuming, and generating data artificially (e.g.,
with the help of large language models) requires
customized pipelines to work effectively [PRCB24].

In many cases, it is possible to partially mitigate this issue
by virtually increasing the amount of available data by
transforming them according to some pre-specified
number of (semantic preserving) transformations. As a
simple example, consider a vector input x and a
transformation induced by adding Gaussian noise:

x′ = x+ ϵ, ϵ ∼N (0,σ2I)

This creates a virtually infinite amount of data comprised
in a small ball centered around x. In addition, this data
must not be stored in the disk, and the process can be
simulated by applying the transformation at runtime every
time a new mini-batch is selected. In fact, it is known
that training in this way can make the model more robust
and it is connected to ℓ2 regularization [Bis95]. However,
vectorial data is unstructured, and adding noise with too
high variance can generate points that are invalid.

For images, we can do better by noting that there is in
general a large number of transformations that can change
an image while preserving its semantic: zooms, rotations,
brightness modifications, contrast changes, etc. Denote by
T(x; c) one such transformation (e.g., rotation),
parameterized by some parameter c (e.g., the rotation
angle). Most transformations include the base image as a
special case (in this case, for example, with a rotation
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angle c = 0). Data augmentation is the process of
transforming images during training according to one or
more of these transformations:

x ′ = T (x; c), c ∼ p(c) (E.9.4)

where p(c) denotes the distribution of all valid parameters
(e.g., rotation angles between −20◦ and +20◦). During
training, each element of the dataset is sampled once per
epoch, and each time a different transformation (E.9.4)
can be applied, creating a (virtually) unlimited stream of
unique data points.

Data augmentation is very common for images (or similar
data, such as audio and video), but it requires a number of
design choices: what transformations to include, which
parameters to consider, and how to compose these
transformations. A simple strategy called RandAugment
[CZSL20] considers a wide set of transformations, and for
every mini-batch samples a small number of them (e.g., 2
or 3), to be applied sequentially with the same magnitude.
Still, the user must verify that the transformations are
valid (e.g., if recognizing text, horizontal flipping can
make the resulting image invalid). From a practical point
of view, data augmentation can be included either as part
of the data loading components (see Box C.9.1), or as part
of the model.

Data augmentation pipelines and methods can be more
complex than simple intuitive transformations. Even for
more sophisticated types, the intuition remains that, as long
as the model is able to solve a task in a complex scenario
(e.g., recognizing an object in all brightness conditions)
it should perform even better in a realistic, mild scenario.
Additionally, data augmentation can prevent overfitting by
avoiding the repetition of the same input multiple times.
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# Image tensor (b, c, h, w)
img = torch.randint(0, 256,

size=(32, 3, 256, 256))

# Data augmentation pipeline
from torchvision.transforms import v2
transforms = v2.Compose([

v2.RandomHorizontalFlip(p=0.5),
v2.RandomRotation(10),

])

# Applying the data augmentation pipeline:
# each function call returns a different
# mini-batch starting from the same
# input tensor.
img = transforms(img)

Box C.9.1: Data augmentation pipeline with two transformations
applied in sequence, taken from the torchvision package. In
PyTorch, augmentations can be passed to the data loaders or used
independently. In other frameworks, such as TensorFlow and Keras,
data augmentation can also be included natively as layers inside
the model.

As an example of more sophisticated methods, we describe
mixup [ZCDLP17] for vectors, and its extension cutmix
[YHO+19] for images. For the former, suppose we sample
two examples, (x1, y1) and (x2, y2). The idea of mixup is
to create a new, virtual example which is given by their
convex combination:

x= λx1 + (1−λ)x2 (E.9.5)

y = λy1 + (1−λ)y2 (E.9.6)

where λ is chosen randomly in the interval [0,1]. This
procedure should push the model to have a simple (linear)
output in-between the two examples, avoiding abrupt
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changes in output. From a geometric viewpoint, for two
points that are close, we can think of (E.9.6) as slowly
moving on the manifold of the data, by following the line
that connects two points as λ goes from 0 to 1.

Mixup may not work for images, because linearly
interpolating two images pixel-by-pixel gives rise to
blurred images. With cutmix, we sample instead a small
patch of fixed shape (e.g., 32 × 32) on the first image.
Denote by M a binary mask of the same shape as the
images, with 1 for pixels inside the patch, and 0 for pixels
outside the patch. In cutmix, we combine two images x1

and x2 by “stitching” a piece from the first one on top of
the second one:

x =M⊙ x1 + (1−M)⊙ x2

while the labels are still linearly interpolated as before with
a random coefficient λ. See Figure F.9.2 for an example of
data augmentation using both rotation and cutmix.

9.3 Dropout and normalization

The strategies we have described in the previous section
are very general, in the sense that they imply modifications
to the optimization algorithm or to the dataset itself, and
they can be applied to a wide range of algorithms.

Instead, we now focus on three ideas that were
popularized in the period between 2012 and 2016, mostly
in the context of the ImageNet challenge. All three are
specific to differentiable models, since they can be
implemented as additional layers or connections in the
model that simplify training of very deep models. We list
the methods in roughly chronological order. As we will see
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Augmentation
1

Augmentation
2 ... Augmentation

n

Rotation Cutmix

Sample

Figure F.9.2: High-level overview of data augmentation. For every
mini-batch, a set of data augmentations are randomly sampled
from a base set, and they are applied to the images of the mini-
batch. Here, we show an example of rotation and an example of
cutmix. Illustrations by John Tenniel, reproduced from Wikimedia.

in the following chapters, these methods remain
fundamental also beyond convolutional models.

9.3.1 Regularization via dropout

When discussing data augmentation, we mentioned that
one insight is that augmentation forces the network to
learn in a more difficult setup, so that its performance in a
simpler environment can improve in terms of accuracy
and robustness. Dropout [SHK+14] extends this idea to
the internal embeddings of the model: by artificially
introducing noise during training to the intermediate
outputs of the model, the solution can improve.

There are many choices of possible noise types: for
example, training with small amounts of Gaussian noise in
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Original model Model with dropout 0

1

1

0

0

1

1

0

1

0

Sample masks

Figure F.9.3: Schematic overview of dropout: starting from a base
model, we add additional units after each layer of interest, shown
in blue. At training time, each dropout unit is randomly assigned a
binary value, masking part of the preceding layers. Hence, we select
one out of exponentially many possible models having a subset of
active hidden units every time a forward pass is made. Dropout
can also be applied at the input level, by randomly removing some
input features.

the activation has always been a popular alternative in the
literature of recurrent models. As the name suggests,
dropout’s idea is to randomly remove certain units
(neurons) during the computation, reducing the
dependence on any single internal feature and (hopefully)
leading to training robust layers with a good amount of
redundancy.

We define dropout in the case of a fully-connected layer,
which is its most common use case.

Definition D.9.1 (Dropout layer)

Denote by X∼ (n, c) a mini-batch of internal activations
of the model (e.g., the output of some intermediate fully-
connected layer) with n elements in the mini-batch and
c features. In a dropout layer, we first sample a binary
matrix M∼ Binary(n, c) of the same size, whose elements
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are drawn from a Bernoulli distribution with probability
p (where p ∈ [0,1] is a user’s hyper-parameter):a

Mi j ∼ Bern(p) (E.9.7)

The output of the layer is obtained by masking the input:

Dropout(X) =M⊙X

The layer has a single hyper-parameter, p, and no
trainable parameters.

aThe samples from Bern(p) are 1 with probability p and 0 with
probability 1− p.

We call 1 − p the drop probability. Hence, for any
element in the mini-batch, a random number of units
(approximately (1 − p)%) will be set to zero, effectively
removing them. This is shown in Figure F.9.3, where the
additional dropout units are shown in blue. Sampling the
mask is part of the layer’s forward pass: for two different
forward passes, the output will be different since different
elements will be masked, as shown on the right in Figure
F.9.3.

As the figure shows, we can implement dropout as a layer,
which is inserted after each layer that we want to drop.
For example, consider the fully-connected model with two
layers shown in Figure F.9.3:

y = (FC ◦ FC)(x)

Adding dropout regularization over the input and over the
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model = nn.Sequential(
nn.Dropout(0.3),
nn.Linear(2, 3), nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(3, 1)

)

Box C.9.2: The model in Figure F.9.3 implemented as a sequence
of four layers in PyTorch. During training, the output of the model
will be stochastic due to the presence of the two dropout layers.

output of the first layer returns a new model having four
layers:

y = (FC ◦Dropout ◦ FC ◦Dropout)(x)

See Box C.9.2 for an implementation in PyTorch.

While dropout can improve the performance, the output
y is now a random variable with respect to the sampling
of the different masks inside the dropout layers, which
is undesirable after training. For example, two forward
passes of the network can return two different outputs,
and some draws (e.g., with a very large number of zeroes)
can be suboptimal. Hence, we require some strategy to
replace the forward pass with a deterministic operation.

Suppose we have m dropout layers. Let us denote by Mi

the mask in the i-th dropout layer, by p(M1, . . . ,Mm) =
∏m

i=1 p(Mi) the probability distribution over the union of
the masks, and by f (x;M) the deterministic output once a
given set of masks M∼ p(M) are chosen. One choice is to
replace the dropout effect with its expected value during
inference:
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f (x) =

¨

f (x;M), M∼ p(M) [training]

Ep(M) [ f (x;M)] [inference]

We can approximate the expected value via Monte Carlo
sampling (Appendix A) by repeatedly sampling masks
values and averaging:

Ep(M) [ f (x;M)]≈
1
k

k
∑

i=1

f (x;Zi), Zi ∼ p(M)

which is simply the average of k forward passes. This is
called Monte Carlo dropout [GG16]. The output is still
stochastic, but with a proper choice of k, the variance can
be contained. In addition, the outputs of the different
forward passes can provide a measure of uncertainty over
the prediction.

However, performing multiple forward passes can be
expensive. A simpler (and more common) option is to
replace the random variables layer-by-layer, which is a
reasonable approximation. The expected value in this case
can be written in closed form:

Ep(M) [Dropout(X)] = pX

which is the input rescaled by a constant factor p (the
probability of sampling a 1 in the mask). This leads to an
even simpler formulation, inverted dropout, where this
correction is accounted for during training:
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x = torch.randn((16, 2))

# Training with dropout
model.train()
y = model(x)

# Inference with dropout
model.eval()
y = model(x)

# Monte Carlo dropout for inference
k = 10
model.train()
y = model(x[:, None, :].repeat(1, k, 1))

.mean(1)

Box C.9.3: Applying the model from Box C.9.2 on a mini-batch of
16 examples. For layers like dropout, a framework requires a way
to differentiate between a forward pass executed during training
or during inference. In PyTorch, this is done by calling the train
and eval methods of a model, which set an internal train flag
on all layers. We also show a vectorized implementation of Monte
Carlo dropout.

Dropout(X) =







M⊙X
p

[training]

X [inference]

In this case, the dropout layer has no effect when applied
during inference and can be directly removed. This is the
preferred implementation in most frameworks. See Box
C.9.3 for some comparisons.

As we mentioned, dropout (possibly with a low drop
probability, such as p = 0.8 or p = 0.9) is common for
fully-connected layers. It is also common for attention
maps (introduced in the next chapter). It is less common
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for convolutional layers, where dropping single elements
of the input tensor results in sparsity patterns which are
too unstructured. Variants of dropout have been devised
which take into consideration the specific structure of
images: for example, spatial dropout [TGJ+15] drops
entire channels of the tensor, while cutout [DT17] drops
spatial patches of a single channel.

Other alternatives are also possible. For example,
DropConnect [WZZ+13] drops single weights of a
fully-connected layer:

DropConnect(x) = (M⊙W)x+ b

DropConnect in inference can also be approximated
efficiently with moment matching [WZZ+13]. However,
these are less common in practice, and the techniques
described next are preferred.

9.3.2 Batch (and layer) normalization

When dealing with tabular data, a common pre-processing
operation that we have not discussed yet is normalization,
i.e., ensuring that all features (all columns of the input
matrix) share similar ranges and statistics. For example,
we can pre-process the data to squash all columns in a
[0, 1] range (min-max normalization) or to ensure a zero
mean and unitary variance for each column (called either
standard scaling or normal scaling or z-score scaling).

Batch normalization (BN, [IS15]) replicates these ideas,
but for the intermediate embeddings of the model. This
is non trivial, since the statistics of a unit (e.g., its mean)
will change from iteration to iteration after each gradient
descent update. Hence, to compute the mean of a unit
we should perform a forward pass on the entire training
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dataset at every iteration, which is unfeasible. As the name
implies, BN’s core idea is to approximate these statistics
using only the data in the mini-batch itself.

Consider again the output of any fully-connected layer
X ∼ (n, c), where n is the mini-batch size. We will see
shortly how to extend the ideas to images and other types
of data. In BN, we normalize each feature (each column
of X) to have zero mean and unitary variance, based on
the mini-batch alone. To this end, we start by computing
the empirical column-wise mean µ ∼ (c) and variances
σ2 ∼ (c):

Mean of column j: µ j =
1
n

∑

i

X i j (E.9.8)

Variance of column j: σ2
j =

1
n

∑

i

(X i j −µ j)
2 (E.9.9)

We then proceed to normalize the columns:

X′ =
X−µ
p
σ2 + ϵ

Set the column mean to 0

Set the column variance to 1

where we consider the standard broadcasting rules (µ and
σ2 are broadcasted over the first dimension), and ϵ > 0 is
a small positive term added to avoid division by zero.
Differently from normalization for tabular data, where this
operation is applied once to the entire dataset before
training, in BN this operation must be recomputed for
every mini-batch during each forward pass.

The choice of zero mean and unitary variance is just a
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convention, not necessarily the best one. To generalize it,
we can let the optimization algorithm select the best choice,
for a small overhead in term of parameters. Consider two
trainable parameters α ∼ (c) and β ∼ (c) (which we can
initialize as 1 and 0 respectively), we perform:

X′′ = αX′ + β

with similar broadcasting rules as above. The resulting
matrix will have mean βi and variance αi for the i-th
column. The BN layer is defined by the combination of
these two operations.

Definition D.9.2 (Batch normalization layer)

Given an input matrix X∼ (n, c), a batch normalization
(BN) layer applies the following normalization:

BN(X) = α
�

X−µ
p
σ2 + ϵ

�

+ β

where µ and σ2 are computed according to (E.9.8) and
(E.9.9), while α ∼ (c) and β ∼ (c) are trainable
parameters. The layer has no hyper-parameters. During
inference, µ and σ2 are fixed as described next.

The layer has only 2c trainable parameters, and it can be
shown to greatly simplify training of complex models when
inserted across each block. In particular, it is common to
consider BN placed in-between the linear and non-linear
components of the model:

H= (ReLU ◦ BN ◦ Linear)(X)

Centering the data before the ReLU can lead to better

223



224 Dropout and normalization

exploiting its negative (sparse) quadrant. In addition, this
setup renders the bias in the linear layer redundant (as it
conflates with the β parameter), allowing to remove it.
Finally, the double linear operation can be easily
optimized by standard compilers in most frameworks.

BN is so effective that is has led to a vast literature on
understanding why [BGSW18]. The original derivation
considered a problem known as internal covariate shift,
i.e., the fact that, from the point of view of a single layer,
the statistics of the inputs it receives will change during
optimization due to the changes in weights of the preceding
layers. However, current literature agrees that the effects of
BN is more evident in the optimization itself, both in terms
of stability and the possibility of using higher learning rates,
due to a combination of scaling and centering effects on
the gradients [BGSW18].7

Extending BN beyond tabular data is simple. For example,
consider a mini-batch of image embeddings X ∼ (n, h, w, c).
We can apply BN on each channel by considering the first
three dimensions together, i.e., we compute a channel-wise
mean as:

µz =
1

nhw

∑

i, j,k

X i jkz

Mean of channel z (all pixels)

7See also https://iclr-blog-track.github.io/2022/03/25/

unnormalized-resnets/ for a nice entry point into this literature
(and the corresponding literature on developing normalizer-free
models.
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Batch normalization during inference

BN introduces a dependency between the prediction over
an input and the mini-batch it finds itself in, which is
unwarranted during inference (stated differently, moving
an image from one mini-batch to another will modify its
prediction). However, we can exploit the fact that the
model’s parameters do not change after training, and we
can freeze the mean and the variance to a preset value.
There are two possibilities to this end:

1. After training, we perform another forward pass on
the entire training set to compute the empirical mean
and variance with respect to the dataset [WJ21].

2. More commonly, we can keep a rolling set of
statistics that are updated after each forward pass of
the model during training, and use these after
training. Considering the mean only for simplicity,
suppose we initialize another vector bµ = 0,
corresponding to the “rolling mean of the mean”.
After computing µ as in (E.9.8), we update the
rolling mean with an exponential moving average:

bµ← λbµ+ (1−λ)µ

where λ is set to a small value, e.g., λ = 0.01.
Assuming training converges, the rolling mean will
also converge to an approximation of the average
given by option (1). Hence, after training we can
use BN by replacing µ with the (pre-computed) bµ,
and similarly for the variance.8

8
bµ is the first example of a layer’s tensor which is part of the layer’s

state, is adapted during training, but is not needed for gradient descent.
In PyTorch, these are referred to as buffers.
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Variants of batch normalization

Despite its good empirical performance, BN has a few
important drawbacks. We have already mentioned the
dependence on the mini-batch, which has other
implications: for example, the variance of µ during
training will grow large for small mini-batches, and
training can be unfeasible for very small mini-batch sizes.
In addition, training can be difficult in distributed contexts
(where each GPU holds a separate part of the mini-batch).
Finally, replacing µ with a different value after training
creates an undesirable mismatch between training and
inference.

Variants of BN have been proposed to address these issues.
A common idea is to keep the overall structure of the layer,
but to modify the axes along which the normalization is
performed. For example, layer normalization [BKH16]
computes the empirical mean and variance over the rows
of the matrix, i.e., for each input independently:

Mean of row i: µi =
1
c

∑

j

X ji (E.9.10)

Variance of row i: σ2
i =

1
c

∑

j

(X ji −µi)
2 (E.9.11)

Consider Figure F.9.4, where we show a comparison
between BN and LN for tabular and image-like data. In
particular, we show in blue all the samples used to
compute a single mean and variance. For layer
normalization, we can compute the statistics on h, w, c
simultaneously (variant A) or for each spatial location
separately (variant B). The latter choice is common in
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Figure F.9.4:
Comparison between
BN and LN for tabular
and image data. Blue
regions show the sets
over which we compute
means and variances.
For LN we have two
variants, discussed
better in the main text.
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transformer models, discussed in the next chapter. Other
variants are also possible, e.g., group normalization
restricts the operation to a subset of channels, with the
case of a single channel known as instance
normalization.9

In BN, the axes across which we compute the statistics in
(E.9.8) and (E.9.9) are the same as the axes across which
we apply the trainable parameters. In LN, the two are
decoupled. For example, consider a PyTorch LN layer
applied on mini-batches of dimension (b, 3, 32, 32):

nn.LayerNorm(normalized_shape=[3, 32, 32])

This corresponds to variant A in Figure F.9.4. In this case, α
and β will have the same shape as the axes over which we
are computing the normalization, i.e., α,β ∼ (3,32,32),
for a total of 2× 3× 32× 32= 6144 trainable parameters.
The specific implementation of LN and BN must be checked
for each framework and model.

We close by mentioning another common variant of layer

9See https://iclr-blog-track.github.io/2022/03/25/unnormalized-

resnets/ for a nicer variant of Figure F.9.4.
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normalization, called root mean square normalization
(RMSNorm) [ZS19]. It simplifies LN by removing the mean
centering and shifting, which for a single input vector x∼
(c) can be written as:

RMSNorm(x) =
x

q

1
c

∑

i x2
i

⊙α (E.9.12)

When β = 0 and the data is already zero-centered, LN and
RMSNorm are identical.

9.4 Residual connections

9.4.1 Residual connections and residual
networks

The combination of all techniques seen in the previous
section is enough to increase significantly the number of
layers in our models, but only up to a certain upper bound.
Consider three generic sequence of layers f1, f2, and f3,
and two models where one is a subset of the other:

g1(x) = ( f3 ◦ f1)(x)
g2(x) = ( f3 ◦ f2 ◦ f1)(x)

Intuitively, by the universal approximation theorem it
should always be possible for the intermediate part, f2, to
approximate the identity function f2(x)≈ x , in which case
g2(x) ≈ g1(x). Hence, there is always a setting of the
parameters in which the second (deeper) model should
perform at least as well as the first (shallower) one.
However, this was not observed in practice, as shown in
Figure F.9.5.

We can solve this by biasing the blocks in the network
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Figure F.9.5:
Bigger models do
not always improve
monotonically in
training error, despite
representing larger
classes of functions.
Reproduced from
[HZRS16].

towards the identity function. This can be done easily by
rewriting a block f (x) with what is called a residual (skip)
connection [HZRS16]:

r(x) = f (x) + x

Hence, we use the block to model deviations from the
identity, f (x) = r(x)− x , instead of modeling deviations
from the zero function. This small trick alone helps in
training models up to hundreds of layers. We call f (x) the
residual path, r(x) a residual block, and a convolutional
model composed of residual blocks a residual network
(abbreviated to ResNet).

Residual connections work well with batch normalization
on the residual path, which can be shown to further bias
the model towards the identity at the beginning of training
[DS20]. However, residual connections can be added only
if the input and output dimensionality of f (x) are identical.
Otherwise, some rescaling can be added to the residual
connection. For example, if x is an image and f (x)modifies
the number of channels, we can add a 1× 1 convolution:

r(x) = f (x) +Conv2D1×1(x)
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The benefit of a residual block can be understood also in
terms of its backward pass. Consider the VJP of the residual
block:

vjpr(v) = vjp f (v) + v⊤I= vjp f (v) + v⊤

VJP of f

VJP of the skip connection

Hence, the forward pass lets the input x pass through
unmodified on the skip connection, while the backward
pass adds the unmodified back-propagated gradient v to
the original VJP, which can help mitigating gradient
instabilities.

On the design of the residual block

How to design the block f (x)? Consider the
batch-normalized block introduced earlier:

h= (ReLU ◦ BN ◦Conv2D)
︸ ︷︷ ︸

= f (x)

(x) + x

Because the output of ReLU is always positive, we have that
h≥ x (element-wise). Hence, a stack of residual blocks of
this form can only increase the values of the input tensor, or
set it to zero. For this reason, the original design proposed
in [HZRS16] considered a stack of blocks of this form by
removing the last activation function. As an example, for
two blocks we obtain the following design:

h= (BN ◦Conv2D ◦ReLU ◦ BN ◦Conv2D)(x) + x

A series of blocks of this form can be preceded by a small
component with non-residual connections to reduce the
image dimensionality, sometimes called the stem. The
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1x1 Convolution
64 channels

3x3 Convolution
64 channels

3x3 Convolution
256 channels

Input (256 channels)

Original ResNet design ResNeXt design

7x7 separable Convolution
96 channels

1x1 Convolution
384 channels

1x1 Convolution
96 channels

Input (96 channels)

Figure F.9.6: The original ResNet block [HZRS16], and the more
recent ResNeXt [LMW+22] block. As can be seen, the design has
shifted from an early channel reduction to a later compression
(bottleneck). Additional details (not shown) are the switch from
BN to LN and the use of GELU activation functions. Adapted from
[LMW+22].

specific choice of hyper-parameters for this block has varied
significantly over the years.

The original ResNet block proposed a compression in the
number of channels for the first operation, followed by a
standard 3 × 3 convolution and a final upscaling in the
number of channels. Recently, instead, bottleneck layers
like the ResNeXt block [LMW+22] (on the right in Figure
F.9.6) have become popular. To increase the receptive field
of the convolution, the initial layer is replaced by a
depthwise convolution. To exploit the reduced number of
parameters, the number of channels is increased by a given
factor (e.g., 3×, 4×), before being reduced by the last
1× 1 convolution.
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Figure F.9.7: Residual
paths: the black, red,
and blue paths are
implemented explicitly;
the green path is only
implicit.

9.4.2 Additional perspectives on residual
connections

We close the chapter by discussing two interesting
perspectives on the use of residual connections, which
have both been explored in-depth in current research.
First, consider a network composed of two residual blocks:

h1 = f1(x) + x (E.9.13)

h2 = f2(h1) + h1 (E.9.14)

If we unroll the computation:

h2 = f2( f1(x) + x) + f1(x) + x

This corresponds to the sum of several paths in the network,
where the input is either left unmodified, it goes through
only a single transformation ( f1 or f2), or through their
combination.

It should be clear that the number of such paths grows
exponentially with the number of residual blocks. Hence,
deep residual models can be seen as a combination (an
ensemble) of a very large number of smaller models,
implemented through weight-sharing. This view can be
tested to show, for example, that ResNets tend to be robust
to small deletions or modifications of their elements
[VWB16]. This is shown visually in Figure F.9.7.
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Second, consider the following differential equation,
expressed in terms of a continuous parameter t
representing time:

∂t x t = f (x , t)

We are using a neural network with arguments x and t (a
scalar) to parameterize the time derivative of some function.
This is called an ordinary differential equation (ODE). A
common problem with ODEs is integrating from a known
starting value x0 up to some specified time instant T :

xT = x0 +

∫ T

t=0

f (x , t)d t

Euler’s method10 for computing xT works by selecting a
small step size h and computing iteratively a first-order
discretization:

x t = x t−1 + hf (x t−1, t)

Merging h into f , this corresponds to a restricted form of
residual model, where all residual blocks share the same
weights, each layer corresponds to a discretized
time-instant, and xT is the output of the network. Under
this point of view, we can directly work with the original
continuous-time equation, and compute the output by
integrating it with modern ODE solvers. This is called a
neural ODE [CRBD18]. Continuous-time variants of
back-propagation can be derived that take the form of
another ODE problem. We will see in the next volume an
interesting connection between neural ODEs and a class of
generative models known as normalizing flows
[PNR+21].

10
https://en.wikipedia.org/wiki/Euler_method
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From theory to practice

All the layers we discussed in this
chapter (batch normalization, dropout,
...) are already implemented in
PyTorch, Equinox, and practically every
other framework. For what concerns
the rest of the techniques we described,
it depends on the framework: for
example, weight decay in implemented natively in
all PyTorch’s optimizers, data augmentation can be
found as transformations inside torchvision (and other
corresponding libraries), while early stopping must be
implemented manually.11

1. Before proceeding to the next chapter, I suggest you
try implementing either dropout or batch
normalization as a layer using only standard linear
algebra routines, comparing the results with the
built-in layers.

2. In Chapter 7 you should have implemented a simple
convolutional model for image classification. Try
progressively increasing its size, adding
normalization, dropout, or residual connections as
needed.

3. Take a standard architecture, such as a ResNet
[HZRS16], or a ResNeXt [LMW+22]. Try
implementing the entire model by following the
suggestions from the original papers. Training on

11In PyTorch, a common alternative is to use an external library such
as PyTorch Lightning to handle the training process. Modifications to
the training procedure, such as early stopping, are pre-implemented in
the form of callback functions.
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ImageNet-like datasets can be challenging on
consumer’s GPU – if you do not have access to good
hardware or cloud GPU hours, you can keep
focusing on simpler datasets, such as CIFAR-10.

4. At this point, you may have realized that training
from scratch very large models (e.g., ResNet-50) on
smaller datasets is practically impossible. One
solution is to initialize the weights of the model
from an online repository using, e.g., the weights of
a model trained on ImageNet, and fine-tuning the
model by modifying the last layer, corresponding to
the classification head. By this point of the book,
this should come as relatively easy – I suggest using
one of the many pre-trained models available on
torchvision or on the Hugging Face Hub.12 We will
cover fine-tuning more in-depth in the next volume.

12For an example tutorial: https://pytorch.org/tutorials/beginner/

transfer_learning_tutorial.html.
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Part III

Down the rabbit-hole

“It would be so nice if

something made sense for a

change.”

—Alice in Wonderland,

1951 movie
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10 | Transformer
models

About this chapter

Convolutional models are strong baselines, especially
for images and sequences where local relations prevail,
but they are limited in handling very long sequences or
non-local dependencies between elements of a sequence.
In this chapter we introduce another class of models,
called transformers, which are designed to overcome
such challenges.

10.1 Long convolutions and
non-local models

After the key developments in the period 2012-2016,
discussed in the previous chapter, the next important
breakthrough in the design of differentiable models came
in 2016-2017 with the popularization of the transformer
[VSP+17], an architecture designed to handle efficiently
long-range dependencies in natural language processing.
Due to its strong scaling laws, the architecture was then
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extended to other types of data, from images to time-series
and graphs, and it is today a state-of-the-art model in
many fields due to its very good scaling laws when trained
on large amounts of data [KMH+20, BPA+24].

As we will see, an interesting aspect of the transformer is a
decoupling between the data type (through the use of
appropriate tokenizers) and the architecture, which for
the most part remains data-agnostic. This opens up
several interesting directions, such as simple multimodal
architectures and transfer learning strategies. We begin by
motivating the core component of the transformer, called
the multi-head attention (MHA) layer. We will defer a
discussion on the original transformer model from
[VSP+17] to the next chapter.

A bit of history

Historically, this chapter is out of order: in 2015,
the most common alternative to CNNs for text were
recurrent neural networks (RNNs). As an isolated
component, MHA was introduced for RNNs [BCB15],
before being used as the core component in the
transformer model. We cover RNNs and their
modern incarnation, linearized RNNs, in Chapter 13.
Recently, RNNs have become an attractive competitor to
transformers for language modeling.
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10.1.1 Handling long-range and sparse
dependencies

Consider these two sentences:

“The cat is on the table”

and a longer one:

“The cat, who belongs to my mother, is on the
table”.

In order to be processed by a differentiable model, the
sentences must be tokenized and the tokens embedded as
vectors (Chapter 8). From a semantic point of view, the
tokens belonging to the red word (cat) and to the green
word (table) share a similar dependency in both sentences.
However, their relative offset varies in the two cases, and
their distance can become arbitrarily large. Hence,
dependencies in text can be both long-range and
input-dependent.

Denote by X∼ (n, e) a sentence of n tokens embedded in
e-dimensional vectors and denote by xi the ith token. We
can rewrite a 1D convolution with kernel size k on token i
as follows:

hi =
2k+1
∑

j=1

W jxi+k+1− j (E.10.1)

Each token inside the receptive field is processed with a
fixed weight matrix Wi that only depends on the specific
offset i. Modeling long-range dependencies inside the
layer requires us to increase the receptive field of the layer,
increasing the number of parameters linearly in the
receptive field.

One possibility to solve this is the following: instead of
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Input
tokens

Output
tokens

(a) Conv1D, kernel size 3 (b) Continuous convolution (c) Non-local model

Output token Input token inside the
Conv1D receptive field

Input token outside the
Conv1D receptive field

Figure F.10.1: Comparison between different types of convolution
for a 1D sequence. We show how one output token (in red )
interacts with two tokens, one inside the receptive field of the
convolution (in green ), and one outside (in blue ). (a) In a
standard convolution, the blue token is ignored because it is outside
of the receptive field of the filter. (b) For a continuous convolution,
both tokens are considered, and the resulting weight matrices are
given by g(−1) and g(2) respectively. (c) In the non-local case,
the weight matrices depend on a pairwise comparison between the
tokens themselves.

explicitly learning the matrices W1,W2, . . ., we can define
them implicitly by defining a separate neural block g(i) :
R → Re×e that outputs all weight matrices based on the
relative offset i. Hence, we rewrite (E.10.1) as:

hi =
n
∑

j=1

g(i − j)x j

The sum is now on all tokens

This is called a long convolution, as the convolution
spans the entire input matrix X. It is also called a
continuous convolution [RKG+22], because we can use
g(·) to parameterize intermediate positions or variable
resolutions [RKG+22]. The number of parameters in this
case only depends on the parameters of g, while it does
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not depend on n, the length of the sequence. Defining g is
non-trivial because it needs to output an entire weight
matrix. We can recover a standard convolution easily:

g(i, j) =

¨

Wi− j if |i − j| ≤ k
0 otherwise

(E.10.2)

This partially solves the problem of long-range
dependencies, but it does not solve the problem of
dependencies which are conditional on the input, since
the weight given to a token depends only on the relative
offset with respect to the index i. However, this
formulation provides a simple way to tackle this problem
by letting the trained function g depend on the content of
the tokens instead of their positions:

hi =
n
∑

j=1

g(xi,x j)x j (E.10.3)

In the context of computer vision, these models are also
called non-local networks [WGGH18]. We provide a
comparison of standard convolutions, continuous
convolutions, and non-local convolutions in Figure F.10.1.

10.1.2 The attention layer

The MHA layer is a simplification of (E.10.3). First,
working with functions having matrix outputs is difficult,
so we restrict the layer to work with scalar weights. In
particular, a simple measure of similarity between tokens
is their dot-product:
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g(xi,x j) = x⊤i x j

As we will see, this results in an easily parallelizable
algorithm for the entire sequence. For the following we
consider a normalized version of the dot-product:

g(xi,x j) =
1
p

e
x⊤i x j

This can be motivated as follows: if we assume
xi ∼N (0,σ2I), the variance of each element of x⊤i x j is σ4,
hence the elements can easily grow very large in
magnitude. The scaling factor ensures that the variance of
the dot product remains bounded at σ2.

Because we are summing over a potentially variable
number of tokens n, it is also helpful to include a
normalization operation, such as a softmax:1

hi =
n
∑

j=1

softmax j(g(xi,x j))x j (E.10.4)

In this context, we refer to g(·, ·) as the attention scoring
function, and to the output of the softmax as the
attention scores. Because of the normalization properties
of the softmax, we can imagine that each token i has a
certain amount of “attention” it can allocate across the
other tokens: by increasing the budget on a token, the
attention over the other tokens will necessarily decrease
due to the denominator in the softmax.

1The notation softmax j in (E.10.4) means we are applying the
softmax normalization to the set

�

g(xi ,x j)
	n

j=1, independently for each
i. This is easier to see in the vectorized case, described below.
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If we use a “dot-product attention”, our g does not have
trainable parameters. The idea of an attention layer is to
recover them by adding trainable projections to the input
before computing the previous equation. To this end, we
define three trainable matrices Wk ∼ (k, e), Wv ∼ (v, e),
Wq ∼ (k, e), where k and v are hyper-parameters. Each
token is projected using these three matrices, obtaining 3n
tokens in total:

Key tokens: ki =Wkxi (E.10.5)

Value tokens: vi =Wvxi (E.10.6)

Query tokens: qi =Wqxi (E.10.7)

These processed tokens are called the keys, the values, and
the queries (you can ignore the choice of terminology for
now; we will return on this point at the end of the section).
The self-attention (SA) layer is obtained by combining the
three projections (E.10.5)-(E.10.6)-(E.10.7) with (E.10.4):

hi =
n
∑

j=1

softmax j(g(qi,k j))vj

Hence, we compute the updated representation of token i
by comparing its query to all possible keys, and we use the
normalized weights to combine the corresponding value
tokens. Note that the dimensionality of keys and queries
must be identical, while the dimensionality of the values
can be different.

If we use the dot product, we can rewrite the operation
of the SA layer compactly for all tokens. To this end, we
define three matrices with the stack of all possible keys,
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queries, and values:

K= XWk (E.10.8)

V= XWv (E.10.9)

Q= XWq (E.10.10)

The three matrices have shape (n, k), (n, v), and (n, k)
respectively. As a side note, we can also implement them
as a single matrix multiplication whose output is chunked
in three parts:





K
V
Q



= X





Wk

Wv

Wq





The SA layer is then written as:

SA(X) = softmax

�

QK⊤
p

k

�

V

where we assume the softmax is applied row-wise. We can
also make the projections explicit, as follows.

Definition D.10.1 (Self-attention layer)

The self-attention (SA) layer is defined for an input
X∼ (n, e) as:

SA(X) = softmax

�

XWqW
⊤
k X⊤

p
k

�

XWv (E.10.11)
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Queries

Keys

Values

Softm
ax

Row-normalized

Figure F.10.2: Visualization of the main operations of the SA
layer (excluding projections).

The trainable parameters are Wq ∼ (k, e), Wk ∼ (k, e)
and Wv ∼ (v, e), where k and v are hyper-parameters.
Hence, there are 2ke + ve trainable parameters,
independent of n.

We show the operation of the layer visually in Figure F.10.2.

10.1.3 Multi-head attention

The previous layer is also called a single-head attention
operation. It allows to model pairwise dependencies across
tokens with high flexibility. However, in some cases we
may have multiple sets of dependencies to consider: taking
again the example of “the cat, which belongs to my mother,
is on the table”, the dependencies between “cat” and “table”
are different with respect to the dependencies between
“cat” and “mother”, and we may want the layer to be able
to model them separately.2

A multi-head layer achieves this by running multiple
attention operations in parallel, each with its own set of

2And everything depends on the cat, of course.
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trainable parameters, before aggregating the results with
some pooling operation. To this end, we define a new
hyper-parameter h, that we call the number of heads of
the layer. We instantiate h separate projections for the
tokens, for a total of 3hn tokens (3n for each “head”):

Ke = XWk,e (E.10.12)

Ve = XWv,e (E.10.13)

Qe = XWq,e (E.10.14)

Wk,e represents the key projection for the e-th head, and
similarly for the other quantities. The multi-head
attention (MHA) layer performs h separate SA operations,
stacks the resulting output embeddings, and projects them
a final time to the desired dimensionality:

MHA(X) =
�

SA1(X) ∥ . . . ∥ SAh(X)
�

Wo (E.10.15)

Individual SA layer

Output projection

where:

SAi(X) = softmax

�

QiK
⊤
ip

k

�

Vi

Each SA operation returns a matrix of shape (n, v). These
h matrices are concatenated across the second dimension
to obtain a matrix (n, hv), which is then projected with
a matrix Wo ∼ (o, hv), where o is an additional hyper-
parameter allowing flexibility in the choice of the output
dimensionality.

248



Chapter 10: Transformer models 249

Heads and circuits

We will see shortly that the MHA layer is always
combined with a residual connection (Section 9.4). In
this case we can write its output for the i-th token as:

xi ← xi +
∑

e

∑

j

αe(xi ,x j)W
⊤
e x j (E.10.16)

Sum over heads

Sum over tokens

where αe(xi ,x j) is the attention score between tokens i
and j in head e, and We combines the value projection of
the e-th head with the e-th block of the output projection
in (E.10.15). The token embeddings are sometimes
called the residual stream of the model.a Hence, the
heads can be understood as “reading” from the residual
stream (via the projection by We and the selection via
the attention scores), and linearly “writing” back on the
streams.

aThis has been popularized in the context of mechanistic
interpretability, which tries to retro-engineer the layers’
behaviour to find interpretable components called circuits:
https://transformer-circuits.pub. The linearity of the stream
is fundamental for the analisys.

An explanation of the terminology

In order to understand why the three tokens are called
queries, keys, and values, we consider the analogy of a SA
layer with a standard Python dictionary, which is shown in
Box C.10.1.

Formally, a dictionary is a set of pairs of the form (key,
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d = dict()
d["Alice"] = 2
d["Alice"] # Returns 2
d["Alce"] # Returns an error

Box C.10.1: A dictionary in Python: a value is returned only if a
perfect key-query match is found. Otherwise, we get an error.

value), where the key acts as an univocal ID to retrieve
the corresponding value. For example, in the third and
fourth line of Box C.10.1 we query the dictionary with
two different strings (“Alice” and “Alce”): the dictionary
compares the query string to all keys which are stored
inside, returning the corresponding value if a perfect match
is found, an error otherwise.

Given a measure of similarity over pair of keys, we can
consider a variant of a standard dictionary which always
returns the value corresponding to the closest key found in
the dictionary. If the keys, queries, and values are vectors,
this dictionary variant is equivalent to our SA layer if we
replace the softmax operation with an argmax over the
tokens, as shown in Figure F.10.3.

This “hard” variant of attention is difficult to implement
because the gradients of the argmax operation are zero
almost everywhere (we will cover discrete sampling and
approximating the argmax operation with a discrete
relaxation in the next volume). Hence, we can interpret
the SA layer as a soft approximation in which each token
is updated with a weighted combination of all values
based on the corresponding key/query similarities.
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     1,      0

Argm
ax

Figure F.10.3: SA with a “hard” attention is equivalent to a
vector-valued dictionary.

10.2 Positional embeddings

With the MHA layer in hand, we consider the design of
the complete transformer model, which requires another
component, positional embeddings.

10.2.1 Permutation equivariance

It is interesting to consider what happens to the output of
a MHA layer when the order of the tokens is re-arranged
(permuted). To formalize this, we introduce the concept of
permutation matrices.

Definition D.10.2 (Permutation matrix)

A permutation matrix of size n is a square binary matrix
P ∼ Binary(n, n) such that only a single 1 is present on
each row or column:

1⊤P= 1, P1= 1

If we remove the requirement for the matrix to have
binary entries and we only constrain the entries to be
non-negative, we obtain the set of doubly stochastic
matrices (matrices whose rows and columns sum to one).
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MHA

MHA

Figure F.10.4: The output of a MHA layer after permuting the
ordering of the tokens is trivially the permutation of the original
outputs.

The effect of applying a permutation matrix is to rearrange
the corresponding rows / columns of a matrix. For example,
consider the following permutation:

P=





1 0 0
0 0 1
0 1 0





Looking at the rows, we see that the second and third
elements are swapped by its application:

P





x1

x2

x3



=





x1

x3

x2





Interestingly, the only effect of applying a permutation
matrix to the inputs of a MHA layer is to rearrange the
outputs of the layer in an equivalent way:

MHA(PX) = P · MHA(X)
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This is immediate to prove. We focus on the single headed
variant as the multi-headed variant proceeds similarly. First,
the softmax renormalizes the elements over the columns
of a matrix, so it is trivially permutation equivariant across
both rows and columns:

softmax(PXP⊤) = P [softmax(X)]P⊤

From this we can immediately deduce the positional
equivariance of SA:

SA(PX) = softmax

�

P
XWqW

⊤
k X⊤

p
k

P⊤
�

PXWv (E.10.17)

= Psoftmax

�

XWqW
⊤
k X⊤

p
k

�

XWv = P · SA(X) (E.10.18)

where we make use of the fact that P⊤P = I for any
permutation matrix. This can also be seen by reasoning on
the SA layer for each token: the output is given by a sum
of elements, each weighted by a pairwise comparison.
Hence, for a given token the operation is permutation
invariant. Instead, for the entire input matrix, the
operation is permutation equivariant.

Translational equivariance was a desirable property for a
convolutional layer, but permutation equivariance is
undesirable (at least here), because it discards the valuable
ordering of the input sequence. As an example, the only
effect of processing a text whose tokens have been
reversed would be to reverse the output of the layer,
despite the fact that the resulting reversed input is
probably invalid. Formally, the SA and MHA layers are set
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functions, not sequence functions.

Instead of modifying the layer or adding layers that are
not permutation equivariant, the transformer operates by
introducing the new concept of positional embeddings,
which are auxiliary tokens that depend only on the
position of a token in a sequence (absolute positional
embeddings) or the offset of two tokens (relative
positional embeddings). We describe the two in turn.

10.2.2 Absolute positional embeddings

Each token in the input matrix X ∼ (n, e) represents the
content of the specific piece of text (e.g., a subword).
Suppose we fix the maximum length of any sequence to m
tokens. To overcome positional equivariance, we
introduce an additional set of positional embeddings
S ∼ (m, e), where the vector Si uniquely encodes the
concept of “being in position i”. Hence, the sum of the
input matrix with the first rows of S:

X′ = X+ S1:n

is such that [X′]i represents “token Xi in position i”.
Because it does not make sense to permute the positional
embeddings (as they only depend on the position), the
resulting layer is not permutation equivariant anymore:

MHA(PX+ S) ̸= P · MHA(X+ S)

See Figure F.10.5 for a visualization of this idea.

How should we build positional embeddings? The easiest
strategy is to consider S as part of the model’s parameters,
and train it together with the rest of the trainable
parameters, similarly to the token embeddings. This
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"Tut Tut Child"

Tokenization

Tut

Tut

Child

+

+

+

1

2

3

=

=

= Child/3

Tut/2

Tut/1

Figure F.10.5: Positional embeddings ( green ) added to the

tokens’ embeddings ( red ). The same token in different positions

has different outputs ( blue ).

strategy works well when the number of tokens is
relatively stable; we will see an example in the next
chapter in the context of computer vision.

Alternatively, we can define some deterministic function
from the set of tokens’ positions to a given vector that
uniquely identifies the position. Some strategies are clearly
poor choices, for example:

1. We can associate to each position a scalar p = i/m
which is linearly increasing with the position.
However, adding a single scalar to the token
embeddings has a minor effect.

2. We can one-hot encode the position into a binary
vector of size m, but the resulting vector would be
extremely sparse and high-dimensional.

A possibility, introduced in the original transformer paper
[VSP+17], is that of sinusoidal embeddings. To
understand them, consider a sine function:

y = sin(x)

The sine assigns a unique value to any input x inside the
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range [0,2π]. We can also vary the frequency of the sine:

y = sin(ωx)

This oscillates more or less rapidly based on the frequency
ω, and it assigns a unique value to any input in the range
[0, 2π

ω ].

There is an analogy with an (analogical) clock: the
seconds’ hand makes a full rotation with a frequency of 1

60
Hz (once every minute). Hence, every “point in time”
inside a minute can be distinguished by looking at the
hand, but two time instants in general can only be
identified modulo 60 seconds. We overcome this in a clock
by adding a separate hand (the minute hand) that rotates
with a much slower frequency of 1

3600 Hz. Hence, by
looking at the pair of coordinates (second, minute) (the
“embedding” of time) we can distinguish any point inside
an hour. Adding yet another hand with an even slower
frequency (the hour hand) we can distinguish any point
inside a day. This can be generalized: we could design
clocks with lower or higher frequencies to distinguish
months, years, or milliseconds.

A similar strategy can be applied here: we can distinguish
each position i by encoding it through a set of e sines (with
e an hyper-parameter) of increasing frequencies:

Si = [sin(ω1i), sin(ω2i), . . . , sin(ωei)]

In practice, the original proposal from [VSP+17] uses only
e/2 possible frequencies, but adds both sines and cosines:

Si =
�

sin(ω1i), cos(ω1i), . . . , sin(ωe/2i), cos(ωe/2i)
�

This can be justified by noting that in this embedding, two
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Figure F.10.6:
We show three
sin functions with
ω = 0.1, ω = 1,
and ω = 10. The
embedding for
position x = 6
is given by the
corresponding values
(red circles).
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positions are related via a simple linear transformation, a
rotation, that depends only on the relative offset of the two
positions.3 Any choice of frequency is valid provided they
are sufficiently large and increasing at a super-linear rate.
The choice from [VSP+17] was a geometric progression:

ωi =
1

10000i/e

that varies from ω0 = 1 to ωe =
1

10000 . See Figure F.10.6
for a visualization.

10.2.3 Relative positional embeddings

Trainable positional embeddings and sinuisodal positional
embeddings are examples of absolute embeddings,
because they encode a specific position in the sequence.
An alternative that has become common with very long
sequences are relative positional embeddings. In this
case, instead of adding a positional encoding to a token,
we modify the attention function to make it dependent on

3See https://kazemnejad.com/blog/transformer_architecture_

positional_encoding/ for a worked-out computation.
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the offset between any two tokens:

g(xi,x j)→ g(xi,x j, i − j)

This is a combination of the two ideas we introduced at
the beginning of this chapter (Figure F.10.1). Note that
while absolute embeddings are added only once (at the
input), relative embeddings must be added every time an
MHA layer is used. As an example, we can add a trainable
bias matrix B ∼ (m, m) and rewrite the dot product with
an offset-dependent bias:

g(xi,x j) = x⊤i x j + Bi j

A simpler variant, attention with linear biases (ALiBi)
[PSL22], considers a single trainable scalar in each head
which is multiplied by a matrix of offsets. More advanced
strategies, such as rotary positional embeddings (RoPE),
are also possible [SAL+24].

10.3 Building the transformer model

10.3.1 The transformer block and model

A model could be built, in principle, from a stack of
multiple MHA layers (with the softmax providing the
non-linearity necessary to avoid the collapse of multiple
linear projections). Empirically, however, it is found that
the MHA works best when interleaved with a separate
fully-connected block that operates on each token
independently. These two operations can be understood as
mixing the tokens (MHA), and mixing the channels (MLP),
similarly to the depthwise-separable convolution model.

In particular, for the MLP block it is common to choose a
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Figure F.10.7: Schematic
view of pre-normalized and
post-normalized transformer
blocks. In the post-normalized
variant the LN block is
applied after the MHA or MLP
operation, while in the pre-
normalized one before each
layer.

MHA

LN

Inputs

MLP

LN

(a) Post-normalized block

MHA

LN

Inputs

MLP

LN

(b) Pre-normalized block

bottleneck architecture composed of two fully-connected
layers of the form:

MLP(x) =W2φ (W1x)

where x ∼ (e) is a token, W1 ∼ (p, e), with p selected
as an integer multiple of e (e.g., p = 3e or p = 4e), and
W2 ∼ (e, p) reprojecting back to the original embedding
dimension. Biases are generally removed as the increased
hidden dimension provides sufficient degrees of freedom.

To ensure efficient training of deep models we also need
a few additional regularization strategies. In particular, it
is common to include two layer normalization steps and
two residual connections, respectively for the MHA and
MLP blocks. Depending on where the layer normalization
is applied, we obtain two variants of the basic transformer
block, sometimes denoted as pre-normalized and post-
normalized. These are shown in Figure F.10.7.

While the post-normalized version corresponds to the
original transformer block, the pre-normalized variant is
generally found to be more stable and faster to train
[XYH+20]. The design of the block in Figure F.10.7 is,
fundamentally, an empirical choice, and many variants
have been proposed and tested in the literature. We
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review some of these later on in Section 11.3.

We can now complete the description of a basic transformer
model:

1. Tokenize and embed the original input sequence in a
matrix X∼ (n, e).

2. If using absolute positional embeddings, add them
to the input matrix.

3. Apply 1 or more blocks of the form discussed above.

4. Include a final head depending on the task.

The output of step (3) is a set of processed tokens
H ∼ (n, e), where neither n nor e are changed by the
transformer model (the former because we do not have
local pooling operations on sets, the latter because of the
residual connections in the block). Considering for
example a classification task, we can apply a standard
classification head by pooling over the tokens and
proceeding with a fully-connected block:

y = softmax

�

MLP

�

1
n

∑

i

Hi

��

This part is identical to its corresponding CNN design.
However, the transformer has a number of interesting
properties, mostly stemming by the fact that it
manipulates its input as a set, without modifying its
dimensionality throughout the architecture. We
investigate one simple example next.
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10.3.2 Class tokens and register tokens

While up to now we have assumed that each token
corresponds to one part of our input sequence, nothing
prevents us from adding additional tokens to the input of
the transformer. This is strictly dependent on its specific
architecture: a CNN, for example, requires its input to be
precisely ordered, and it is not clear how we could add
additional tokens to an image or to a sequence. This is a
very powerful idea, and we only consider two specific
implementations here.

First, we consider the use of a class token [DBK+21], an
additional token which is added explicitly for classification
in order to replace the global pooling operation above.
Suppose we initialize a single trainable token c∼ (e), which
is added to the input matrix:

X←
�

X
c⊤

�

The new matrix has shape (n + 1, e). The class token is
identical for all sequences in a mini-batch. After step (3)
above, the transformer outputs a matrix H∼ (n+ 1, e) of
updated representations for all tokens, including the class
one. The idea is that, instead of pooling over the tokens,
the model should be able to “compress” all information
related to the classification task inside the class token, and
we can rewrite the classification head by simply discarding
all other tokens:4

y = softmax (MLP (Hn+1))

4In the language of circuits and heads from Section 10.1.3, we could
say equivalently that the model must learn to move all information
related to the classification in the residual stream of the class token.
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Additional trainable tokens can be useful even if not
explicitly used. For example, [DOMB24] has shown that
adding a few additional tokens (called registers in this
case) can improve the quality of the attention maps by
providing the model with the possibility of using the
registers to “store” auxiliary information that does not
depend explicitly on a given position.

From theory to practice

We will introduce many important
concepts related to transformers in the
next chapter. Thus, for this chapter I
am suggesting a slightly unconventional
exercise which combines a convolutional backbone with a
transformer-like head – as depicted in Figure F.10.8.

The convolutional models you developed in Chapters 7
and 9 were applied to a single image. However, sometimes
we have available a set of images of the same object to
be recognized – for example, in a monitoring system, we
may have multiple screenshots of a suspicious person. This
is called a multi-view system in the literature, and each
image is called a view of the object. A multi-view model
should provide a single prediction for the entire set of views,
while being invariant to the order of the views in input. For
this exercise we will implement a simple multi-view model
– see Figure F.10.8.

1. Using any image classification dataset, you can
simulate a multi-view model by applying a fixed
number of data transformations to the input (gray
block in Figure F.10.8). Ignoring the batch
dimension, for each input image of shape
x ∼ (h, w, c) (height, width, channels), you obtain a
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Convolutional
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Transform
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Pooling 
(e.g., average)

C
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head "Lizard"

Views Multi-view model

Figure F.10.8: Multi-view model to be implemented in this
chapter. The image is augmented through a set of random data
augmentation strategies to obtain a set of views of the input
( gray ). Each view is processed by the same convolutional

backbone to obtain a fixed-sized dimensional embedding ( red ).
The set of embeddings are processed by a transformer block before
the final classification ( green ). Illustration by John Tenniel.

multi-view input of shape x ′ ∼ (v, h, w, c), where v is
the number of views. A single label y is associated
to this tensor – the label of the original image. The
number of views can also be different from
mini-batch to mini-batch, as no part of the model is
constrained to a pre-specified number of view.

2. The multi-view model is composed of three
components. Denote by g(x) a model that processes
a single view to a fixed-dimensional embedding – for
example, this can be any convolutional backbone
you trained for the previous exercises. The first part
of the full model (red part in Figure F.10.8) applies g
in parallel to all views, hi = g(x i)∼ (e), where e is a
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264 Building the transformer model

hyper-parameter (the output size of the backbone).

3. After concatenating the embeddings of the views we
obtain a matrix H ∼ (v, e). In order for the full
model to be permutation invariant, any component
applied on H must be permutation equivariant.5 For
the purposes of this exercise, implement and apply a
single transformer block as per Section 10.3.1. You
can implement MHA using basic PyTorch, or you can
try a more advanced implementation using
einops.6 You can also compare with the
pre-implemented version in torch.nn.

4. The transformer block does not modify the input
shape. To complete the model, perform an average
over the views (which represent the tokens in this
scenario), and apply a final classification head. You
can also experiment with adding a class token
(Section 10.3.2). It is easy to show that a model
built in this way is permutation invariant with
respect to the views.

5An average operation over the views is the simplest example of
permutation invariant layer. Hence, removing the MHA block from
Figure F.10.8 is also a valid baseline. Alternatively, deep sets [ZKR+17]
characterize the full spectrum of linear, permutation invariant layers.

6See https://einops.rocks/pytorch-examples.html.
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11 | Transformers
in practice

About this chapter

We now consider a few variations of the basic
transformer model, including encoder-decoder
architectures, causal MHA layers, and applications to
the image and audio domains.

11.1 Encoder-decoder transformers

The model we described in Chapter 10 can be used to
perform regression or classification of a given sequence.
However, the original transformer [VSP+17] was a more
complex model, designed for what are called
sequence-to-sequence (seq2seq) tasks. In a seq2seq task,
both input and output are sequences, and there is no
trivial correspondence between their tokens. A notable
example is machine translation, in which the output is
the translation of the input sequence in a different
language.
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266 Encoder-decoder transformers

One possibility to build a differentiable model for seq2seq
tasks is an encoder-decoder (ED) design [SVL14]. An ED
model is composed of two blocks: an encoder that
processes the input sequence to a transformed
representation (possibly of a fixed dimensionality), and a
decoder that autoregressively generates the output
sequence conditioned on the output of the encoder. The
transformer model we described before can be used to
build the encoder: transformers of this type for
classification are called encoder-only transformers. In
order to build the decoder we need two additional
components: a way to make the model causal (to perform
autoregression), and a way to condition its computation to
a separate input (the output of the encoder).

11.1.1 Causal multi-head attention

Let us consider first the problem of making the
transformer block causal. The only component in which
tokens interact is the MHA block. Hence, having a causal
variant of MHA is enough to make the entire model causal.
Remember that, for convolutions, we designed a causal
variant by appropriately masking the weights in the
convolutional filter. For MHA, we can mask instead all
interactions between tokens that do not satisfy the
causality property:

Masked-SA(X) = softmax

�

QK⊤⊙M
p

k

�

V

It is essential to perform the masking inside the softmax.
Consider the following (wrong) variant:

Wrong:

�

softmax

�

QK⊤
p

k

�

⊙M

�

V
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Softm
ax

Figure F.11.1: Visual depiction of causal attention implemented
with attention masking.

Because of the denominator in the softmax, all tokens
participate in the computation of each token, irrespective
of the later masking. Also note that setting Mi j = 0 for
non-causal links does not work, because exp(0) = 1.
Hence, the correct implementation of a masked variant of
MHA is to select an upper triangular matrix with −∞ on
the upper part, since exp(−∞) = 0 as desired:

Mi j =

¨

−∞ if i > j
0 otherwise

Practically, the values can be set to a very large, negative
number instead (e.g., −109).

11.1.2 Cross-attention

Second, let us consider the problem of making the output
of the MHA layer depend on a separate block of inputs.
To this end, let us rewrite the MHA operation by explicitly
separating the three appearances of the input matrix:

SA(X1,X2,X3) = softmax

�

X1WqW
⊤
k X⊤2p

k

�

X3Wv

The SA layer corresponds to X1 = X2 = X3 = X (which,
coincidentally, explains the name we gave to it). However,
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268 Encoder-decoder transformers

the formulation also works if we consider keys, values, and
queries belonging to separate sets. One important case is
cross-attention (CA), in which we assume that the keys
and values are computed from a second matrix Z∼ (m, e):

CA(X,Z) = softmax





XWqW
⊤
k Z⊤

p
k



ZWv (E.11.1)

Cross-attention between X and Z

such that CA(X,Z) = SA(X,Z,Z). The interpretation is that
the embeddings of X are updated based on their similarity
with a set of external (key, values) pairs provided by Z: we
say that X is cross-attending on Z. Note that this formulation
is very similar to a concatenation of the two set of input
tokens followed by an appropriate masking of the attention
matrix.

Comparison with feedforward layers

Consider a simplified variant of the cross-attention
operation in (E.11.1), in which we parameterize explicitly
the keys and values matrices:1

NeuralMemory(X) = softmax
�XWqK
p

k

�

V (E.11.2)

The layer is now parameterized by a query projection
matrix Wq and by the two matrices K and V. (E.11.2) is
called a memory layer [SWF+15], in the sense that rows

1See also the discussion on the perceiver network in Section 11.2.1.
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Predicted next
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Figure F.11.2: Encoder-decoder architecture, adapted from
[VSP+17]. Padded tokens in the decoder are greyed out.

of the key and value matrices are used by the model to
store interesting patterns to be retrieved dynamically by
an attention-like operation. If we further simplify the layer
by setting Wq = I, ignoring the normalization by

p
k, and

replacing the softmax with a generic activation function φ,
we obtain a two-layer MLP:

MLP(X) = φ (XK)V (E.11.3)

Hence, MLPs in transformer networks can be seen as
approximating an attention operation over trainable keys
and values. Visualizing the closest tokens in the training
data shows human-understandable patterns [GSBL20].

11.1.3 The encoder-decoder transformer

With these two components in hand, we are ready to
discuss the original transformer model, shown in Figure
F.11.2.2 First, the input sequence X is processed by a

2A pedantic note: technically, Transformer (upper-cased) is a proper
noun in [VSP+17]. In the book, I use transformer (lower-cased) to
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standard transformer model (called the encoder),
providing an updated embedding sequence H. Next, the
output sequence is predicted autoregressively by another
transformer model (called the decoder). Differently from
the encoder, the decoder has three components for each
block:

1. A masked variant of the MHA layer (to ensure
autoregression is possible).

2. A cross-attention layer where the queries are given
by the input sequence embedding H.

3. A standard token-wise MLP.

Decoder-only models are also possible, in which case the
second block of the decoder is removed and only masked
MHA and MLPs are used. Most modern LLMs are built by
decoder-only models trained to autoregressively generate
text tokens [RWC+19], as discussed below. In fact,
encoder-decoder models have become less common with
the realization that many seq2seq tasks can be solved
directly with decoder-only models by concatenating the
input sequence to the generated output sequence, as
described in Section 8.4.3.

11.2 Computational considerations

11.2.1 Time complexity and linear-time
transformers

The MHA performance does not come without a cost:
since every token must attend to all other tokens, its
complexity is higher than a simpler convolutional

refer to any model composed primarily of attention layers.
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def self_attention(Q: Float[Array, "n k"],
K: Float[Array, "n k"],
V: Float[Array, "n v"]

) -> Float[Array, "n v"]:
return nn.softmax(Q @ K.T) @ V

Box C.11.1: Simple implementation of the SA layer, explicitly
parameterized in terms of the query, key, and value matrices.

operation. To understand this, we look at its complexity
from two points of view: memory and time. We use a
naive implementation of the SA layer for reference, shown
in Box C.11.1.

Let us look first at the time complexity. The operation inside
the softmax scales as O (n2k) because it needs to compute
n2 dot products (one for each pair of tokens). Compare
this to a 1D convolutional layer, which scales only linearly
in the sequence length. Theoretically, this quadratic growth
in complexity can be problematic for very large sequences,
which are common in, e.g., LLMs.

This has led to the development of several strategies for
speeding up autoregressive generation (e.g., speculative
decoding [LKM23]), as long as linear or sub-quadratic
variants of transformers. As an example, we can replace
the SA layer with a cross-attention layer having a trainable
set of tokens Z, where the number of tokens can be chosen
as hyper-parameter and controlled by the user. This
strategy was popularized by the Perceiver architecture
[JGB+21] to distill the original set of tokens into smaller
latent bottlenecks. There are many alternative strategies
for designing linearized transformers: we discuss a few
variants in Section 11.3 and Chapter 13.

Importantly, an implementation such as the one in Box
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C.11.1 can be shown to be heavily memory-bound on
modern hardware [DFE+22], meaning that its compute
cost is dominated by memory and I/O operations. Hence,
the theoretical gains of linear-time attention variants are
not correlated with actual speedup on hardware.
Combined with a possible reduction in performance, this
makes them less attractive than a strongly-optimized
implementation of MHA, such as the one described next.

11.2.2 Online softmax

In terms of memory, the implementation in Box C.11.1 has
also a quadratic n2 complexity factor because the attention
matrix QK⊤ is fully materialized during computation.
However, this is unnecessary and this complexity can be
drastically reduced to a linear factor by chunking the
computation in blocks and only performing the softmax
normalization at the end [RS21].

To understand this, consider a single query vector q, and
suppose we split our keys and values into two blocks, which
are loaded in turn in memory:

K=
�

K1

K2

�

, V=
�

V1

V2

�

(E.11.4)

If we ignore the denominator in the softmax, we can
decompose the SA operation, computing the output for
each chunk in turn:

SA(q,K,V) =
1

L1 + L2
[h1 + h2] (E.11.5)

where for the two chunks i = 1,2 we have defined two
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auxiliary quantities:

hi = exp (Kiq)Vi (E.11.6)

Li =
∑

j

[exp (Kiq) ] j (E.11.7)

Remember we are loading the chunks in memory
separately, hence for chunk 1 we compute h1 and L1; then
we offload the previous chunk and we compute h2 and L2

for chunk 2. Note that the operation is not
fully-decomposable unless we keep track of the additional
statistics Li (which is needed to compute the
normalization coefficients of the softmax operation). More
in general, for multiple chunks i = 1, . . . , m we will have:

SA(q,K,V) =
1

∑m
i=1 Li

�

m
∑

i=1

hi

�

(E.11.8)

Hence, we can design a simple iterative algorithm where
for every block of keys and values loaded in memory, we
update and store the cumulative sum of the numerator
and denominator in (E.11.8), only performing the
normalization at the end. This trick (sometimes called
online softmax), combined with an IO-aware
implementation and kernel fusion has led to highly
memory- and compute- efficient implementations of
attention such as FlashAttention-2.3 Distributed
implementations of attention (e.g., RingAttention
[LZA23]) can also be devised by assigning groups of
queries to different devices and rotating chunks of keys
and queries among the devices. Optimizing the operation
for specific hardware can lead to some counter-intuitive
behaviours, such as increased speed for larger sequence

3
https://github.com/Dao-AILab/flash-attention
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Figure F.11.3: Official benchmark of FlashAttention and
FlashAttention-2 on an NVIDIA A100 GPU card, reproduced from
https://github.com/Dao-AILab/flash-attention.

lengths - see Figure F.11.3.

11.2.3 The KV cache

An important implementative aspect of MHA occurs when
dealing with autoregressive generation in decoder-only
models. For each new token to be generated, only a new
row of the attention matrix and one value token must be
computed, meaning that the previous keys and values can
be stored in memory, as shown in Figure F.11.4. This is
called the KV cache and it is a standard in most optimized
implementations of MHA.

The size of the KV cache is linearly increasing in the
sequence length. Once again, you can compare this to an
equivalent implementation of a causal convolutional layer,
where memory is upper-bounded by the size of the
receptive field. Designing expressive layers with a fixed
memory cost in autoregressive generation is a motivating
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Figure F.11.4: To
compute masked self-
attention on a new token,
most of the previous
computation can be
reused (in gray). This
is called the KV cache.

KV Cache

factor for Chapter 13.

11.2.4 Transformers for images and audio

Transformers were originally developed for text, and they
soon became the default choice for language modeling. In
particular, the popular GPT-2 model [RWC+19] (and later
variants) is a decoder-only architecture which is
pre-trained by forecasting tokens in text sequences. Most
open-source LLMs, such as LLaMa [TLI+23], follow a
similar architecture. By constrast, BERT [DCLT18] is
another popular family of pre-trained word embeddings
based on an encoder-only architecture trained to predict
masked tokens (masked language modeling). Differently
from GPT-like models, BERT-like models cannot be used to
generate text but only to perform text embedding or as the
first part of a fine-tuned architecture. Encoder-decoder
models for language modeling also exist (e.g., the T5
family [RSR+20]), but they have become less popular.

From a high-level point of view, a transformer is composed
of three components: a tokenization / embedding step,
which converts the original input into a sequence of
vectors; positional embeddings to encode information
about the ordering of the original sequence; and the
transformer blocks themselves. Hence, transformers for
other types of data can be designed by defining the
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Patch extraction Flattening Projection

Patch size: p x p

Embedding size: ppc Embedding size: e

Figure F.11.5: Image tokenization: the image is split into non-
overlapping patches of shape p× p (with p an hyper-parameter).
Then, each patch is flattened and undergoes a further linear
projection to a user-defined embedding size e. c is the number
of channels of the input image.

appropriate tokenization procedure and positional
embeddings.

Let us consider first computer vision. Tokenizing an image
at the pixel level is too expensive, because of the quadratic
growth in complexity with respect to the sequence length.
The core idea of Vision Transformers (ViTs, [DBK+21]) is
to split the original input into non-overlapping patches of
fixed length, which are then flattened and projected to an
embedding of pre-defined size, as shown in Figure F.11.5.

The embedding step in Figure F.11.5 can be achieved with
a convolutional layer, having stride equal to the kernel
size. Alternatively, libraries like einops4 extend the einsum
operation (Section 2.1) to allow for grouping of elements
into blocks of pre-determined shape. An example is shown
in Box C.11.2.

The original ViT used trainable positional embeddings
along with an additional class token to perform image
classification. ViTs can also be used for image generation
by predicting the patches in a row-major or column-major
order. In this case, we can train a separate module that

4
http://einops.rocks
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from einops import rearrange
# A batch of images
xb = torch.randn((32, 3, 64, 64))

# Define the operation: differently from
# standard einsum, we can split the output
# in blocks using brackets
op = 'b c (h ph) (w pw) \

-> b (h w) (ph pw c)'

# Run the operation with a given patch size
patches = rearrange(xb, op, ph=8, pw=8)
print(patches.shape) # [Out]: (32, 64, 192)

Box C.11.2: einops can be used to decompose an image into
patches with a simple extension of the einsum syntax.

converts each patch into a discrete set of tokens using, e.g.,
a vector-quantized variational autoencoder [CZJ+22],
or we can work directly with continuous outputs [TEM23].
For image generation, however, other non-autoregressive
approaches such as diffusion models and flow matching
tend to be preferred; we cover them in the next volume.

By developing proper tokenization mechanisms and
positional embeddings, transformers have also been
developed for audio, in particular for speech recognition.
In this case, it is common to have a small 1D convolutional
model (with pooling) as the tokenization block
[BZMA20, RKX+23]. For example, Wav2Vec [BZMA20] is
an encoder-only model whose output is trained with an
extension of the cross-entropy loss, called connectionist
temporal classification loss [GFGS06], to align the
output embeddings to the transcription. Because labeled
data with precise alignments is scarce, Wav2Vec models
are pre-trained on large amounts of unlabeled audio with
a variant of a masked language modeling loss. By contrast,
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"Describe the image"

Image
tokenization

Text 
tokenization

Autoregressive
transformer

"An illustration of Alice"

Figure F.11.6: An example of a bimodal transformer that
operates on both images and text: the outputs of the two tokenizers
are concatenated and sent to the model.

Whisper [RKX+23] is an encoder-decoder model where
the decoder is trained to autoregressively generate the
transcription. This provides more flexibility to the model
and reduces the need for strongly labeled data, but at the
cost of possible hallucinations in the transcription phase.
Neural audio codecs can also be trained to compress
audio into a sequence of discrete tokens [DCSA23], which
in turn form the basis for generative applications such as
text-to-speech generation [WCW+23].

Transformers can also be defined for time-series [AST+24],
graphs (covered in the next chapter) and other types of
data. The decoupling between data and architecture is
also the basis for multimodal variants, which can take as
input (or provide as output) different types of data. This
is achieved by tokenizing each modality (image, audio,
...) with its appropriate tokenizer, and concatenating the
different tokens together into a single sequence [BPA+24].
We show an example for an image-text model in Figure
F.11.6.
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11.3 Transformer variants

We close the chapter by discussing a few interesting
variation on the basic transformer block. First, several
variants have been devised for very large transformers to
slightly reduce the computational time or parameter’s
count. As an example, parallel blocks [DDM+23] perform
the MLP and MHA operation in parallel:

H= H+MLP(H) +MHA(H)

In this way, the initial and final linear projections in the
MLP and MHA layers can be fused for a more efficient
implementation. As another example, multi-query MHA
[Sha19] shares the same key and value projection matrix
for each head, varying only the queries.

More in general, we can replace the MHA layer with a
simpler (linear complexity in the sequence length)
operation, while keeping the overall structure of the
transformer block, i.e., alternating token and channel
mixing with layer normalization and residual connections.
As an example, suppose the sequence length is fixed (e.g.,
for computer vision, the number of patches can be fixed a
priori). In this case, the MHA layer can be replaced by an
MLP operating on a single input channel, corresponding to
one dimension of the embedding. This type of model is
called a mixer model [THK+21] - see Figure F.11.7.
Ignoring the normalization operations, this can be written
as alternating MLPs on transpositions of the input matrix:

H=MLP(H) +H (E.11.9)

H=
�

MLP(H⊤) +H⊤
�⊤

(E.11.10)

Other variants of the mixer model are also possible using,

279



280 Transformer variants

Figure F.11.7: Mixer
block, composed of
alternating MLPs on
the rows and columns of
the input matrix.

MLP

MLP

e.g., 1D convolutions, Fourier transforms, or pooling. In
particular, in the S2-MLP [YLC+22]model the token mixing
operation is replaced by an even simpler MLP applied on
a shifted version of its input. The general class of such
models has been called MetaFormers by [YLZ+22].

Gated (multiplicative) interactions can also be used in the
composition of the block. In this case, several blocks are
executed in parallel but their output is combined via
Hadamard multiplication. We can write a generic gated
unit as:

f (X) = φ1(X)⊙φ2(X) (E.11.11)

where φ1 and φ2 are trainable blocks. For example, with
φ1(X) = σ(XA) andφ2(X) = XB we obtain the gated linear
unit (GLU) described in Section 5.4.

As a few representative examples, the gMLP model
[LDSL21] uses gated units instead of a channel mixing
block in a mixer model; the LLaMa family of models
[TLI+23] uses GLU-like units instead of the standard MLP
block; while the gated attention unit (GAU) [HDLL22]
uses a simpler attention-like model having a single head
for φ1 and a linear projection for φ2. These designs are
especially popular in some recent variants of recurrent
models, discussed later on in Chapter 13.

To simplify the design even further, the multilinear operator
network (MONet) removes all activation functions to define
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a block which is composed only of linear projections and
element-wise multiplications [CCGC24]:

H= E(AX⊙BX+DX)

where E is similar to the output projection in the
transformer block, DX acts as a residual connection, and B
is implemented via a low-rank decomposition to reduce
the number of parameters [CCGC24]. In order to
introduce token mixing, a token-shift operation is
implemented in all odd-numbered blocks in the model.

From theory to practice

There are many interesting exercises
that can be done at this point –
you are almost a master in designing
differentiable models! To begin, using
any image classification dataset, you
can try implementing from scratch a Vision Transformer
as described in Section 11.2.4, following [DBK+21] for
choosing the hyper-parameters. Training a ViT from scratch
on a small dataset is quite challenging [LLS21, SKZ+21],
so be ready for some disappointment unless you have
sufficient computational power to consider million-size
datasets. You can also try a simpler variant, such as the
Mixer model described in Section 11.3. All these exercises
should be relatively simple.

1. For tokenizing the image you can use Einops as in
Box C.11.2 or other strategies (e.g., a convolution
with large stride). For small images you can also try
using each pixel as token.

2. For positional embeddings, all strategies described in
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Section 10.2 are valid. The simplest one for a ViT is
to initialize a matrix of trainable embeddings, but I
suggest you experiment with sinusoidal and relative
embeddings as practice.

You can also try implementing a small GPT-like model.
There are many sophistications in the tokenization of text
data that we do not cover. However, the minGPT
repository5 is a fantastic didactic implementation that you
can use as starting point.

5
https://github.com/karpathy/minGPT
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About this chapter

In this chapter we consider graph-structured data, i.e.,
nodes connected by a set of (known) relations. Graph
are pervasive in the real world, ranging from proteins
to traffic networks, social networks, and recommender
systems. We introduce specialized layers to work on
graphs, broadly categorized as either message-passing
layers or graph transformers architectures.

12.1 Learning on graph-based data

12.1.1 Graphs and features on graphs

Up to now we have considered data which is either
completely unstructured (tabular data represented as a
vector) or structured in simple ways, including sets,
sequences, and grids such as images. However, many
types of data are defined by more sophisticated
dependencies between its constituents. For example,
molecules are composed by atoms which are only sparsely
connected via chemical bonds. Networks of many kinds
(social networks, transportation networks, energy
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Image
Regular graph

Sequence
Linear graph Generic graphSet

Empty graph

Figure F.12.1: Graphs generalize many types of data: sets can
be seen as empty graphs (or graphs having only self-loops), images
as regular graphs, and sequences as linear graphs. In this chapter
we look at more general graph structures.

networks) are composed of millions of units (people,
products, users) which interact only through a small set of
connections, e.g., roads, feedbacks, or friendships. These
are more naturally defined in the language of graph
theory. The aim of this chapter is to introduce
differentiable models to work with data defined in such a
way.

In its simplest form, a graph can be described by a pair of
sets G = (V ,E ), where V = {1, . . . , n} is the set of nodes
(vertices), while:

E =
¦

(i, j) | i, j ∈ N
©

Two nodes of the graph

is the set of edges present in the graph. In most datasets,
the number of nodes n and the number of edges m= |E |
can vary from graph to graph.

Graph generalize many concepts we have already seen:
for example, graphs containing only self-loops of the form
(i, i) represent sets of objects, while graphs containing all
possible edges (fully-connected graphs) are connected to
attention layers, as we show next. Images can be
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represented as a graph by associating each pixel to a node
of the graph and connecting close pixels based on a
regular grid-like structure - see Figure F.12.1.1

Connections in a graph can be equivalently represented by
a matrix representation called the adjacency matrix. This
is a binary square matrix A∼ Binary(n, n) such that:

Ai j =

¨

1 if (i, j) ∈ E
0 otherwise

In this format, a set is represented by the identity matrix
A= I, a fully-connected graph by a matrix of all ones, and
an image by a Toeplitz matrix. A graph where connections
are always bidirectional (i.e., (i, j) and ( j, i) are always
present as pairs among the edges) is called undirected,
and we have A⊤ = A. We will deal with undirected graphs
for simplicity, but the methods can be easily extended to
the directed case. We note that there are also alternative
matrix representations, e.g., the incidence matrix
B ∼ Binary(n, |E |) is such that Bi j = 1 if node i
participates in edge j, and we have B1⊤ = 2 because each
edge connects exactly two nodes. See Figure F.12.2 for an
example.

We will assume our graphs to have self-loops, i.e., Aii = 1.
If the adjacency matrix does not have self-loops, we can
add them by re-assigning it as:

A← A+ I

1There are many variants of this basic setup, including heterogenous
graphs (graphs with different types of nodes), directed graphs, signed
graphs, etc. Most of them can be handled by variations of the
techniques we describe next.
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Neighbors of
node 1 

Nodes connected
by edge 2

Graph Set format Adjacency matrix Incidence matrix

Figure F.12.2: We can represent the graph connectivity in three
ways: as a set E of pairs (second column); as an (n, n) adjacency
matrix (third column); or as an (n, |E |) incidence matrix (fourth
column).

12.1.2 Graph features

Graphs come with a variety of possible features describing
them. For example, atoms and bonds in a molecule can
be described by categorical features denoting their types;
roads in a transportation network can have a capacity and
a traffic flow; and two friends in a social networks can be
described by how many years they have known each other.

In general, these features can be of three types: node
features associated to each node, edge features associated
to each edge, and graph features associated to the entire
graph. We will begin with the simplest case of having access
to only unstructured node features, i.e., each node i has
associated a vector xi ∼ (c). The complete graph can then
be described by two matrices X ∼ (n, c), that we call the
feature matrix, and the adjacency matrix A∼ (n, n).

In most cases, the ordering of the nodes is irrelevant, i.e.,
if we consider a permutation matrix P∼ Binary(n, n) (see
Section 10.2), a graph and its permuted version are
fundamentally identical, in other words:
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(X,A) is the same graph as (PX,PAP⊤)

Note that the permutation matrix acts by swapping the
rows in X, while it swaps both rows and columns in the
adjacency matrix.

Some features can also be extracted directly from the
topology of the graph. For example, we can associate to
each node a scalar value di, called the degree, which
describes how many nodes it is connected to:

di =
∑

j

Ai j

The distribution of the degrees across the graph is an
important characteristic of the graph itself, as shown in
Figure F.12.3. We can collect the degrees into a single
diagonal matrix called the degree matrix:

D=





d1 . . . 0
...

. . .
...

0 . . . dn





We can use the degree matrix to define several types of
of weighted adjacency matrices. For example, the row-
normalized adjacency matrix is defined as:

A′← D−1Ai j → A′i j =
1
di

Ai j

This is normalized in the sense that
∑

i A′i j = 1. We can
also define a column-normalized adjacency matrix as A′ =
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(a) Erdős–Rényi
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Figure F.12.3: (a) Random graph generated by drawing each
edge independently from a Bernoulli distribution (Erdős–Rényi
model). (b) These graphs show a Gaussian-like degree distribution.
(c) Random graph generated by adding nodes sequentially, and for
each of them drawing 3 connections towards existing nodes with a
probability proportional to their degree (preferential attachment
process or Barabasi-Albert model). (d) These graphs have a few
nodes with many connections acting as hubs for the graph.

AD−1. Both these matrices can be interpreted as “random
walks” over the graph, in the sense that, given a node i, the
corresponding row or column of the normalized adjacency
matrix represents a probability distribution of moving at
random towards any of its neighbours. A more general
symmetrically normalized adjacency matrix is given by:

A′ = D−1/2AD−1/2

This is defined by A′i j =
Ai jp
di d j

, giving a weight to each

connection based on the degree of both nodes it connects
to. Both the adjacency matrix and its weighted variants
have the property that Ai j = 0 whenever (i, j) /∈ E . In signal
processing terms, these are called graph-shift matrices.
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Sparsity in matrices

Consider a generic adjacency matrix for a 6-nodes graph
(try drawing the graph as an exercise):

A=















0 1 1 1 1 1
1 0 0 0 1 0
1 0 0 0 1 1
1 0 0 0 0 1
1 1 1 0 0 0
1 0 1 1 0 0















The adjacency is very sparse (many zeros). This
is an important property, because sparse matrices
have customized implementations and techniques
for manipulating them, with better computational
complexity than their dense counterparts.a

aAs an example, in JAX: https://jax.readthedocs.io/en/

latest/jax.experimental.sparse.html.

12.1.3 Diffusion operations over graphs

The fundamental graph operation we are interested into is
something called diffusion, which corresponds to a
smoothing of the node features with respect to the graph
topology. To understand it, consider a scalar feature on
each node, that we collect in a vector x ∼ (n), and the
following operation over the features:

x′ = Ax

where A can be the adjacency matrix, a normalized variant,
or any weighted adjacency matrix. We can re-write this
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operation node-wise as:

x ′i =
∑

j∈N (i)

Ai j x j

where we have defined the 1-hop neighborhood:

N (i) =
¦

j | (i, j) ∈ E
©

All edges with node i as a vertex

If we interpret the node feature as a physical quantity,
projection by the adjacency matrix can be seen as a
“diffusion” process which replaces the quantity at each
node by a weighted average of the quantity in its
neighborhood.

Another fundamental matrix in the context of graph
analysis is the Laplacian matrix:

L= D−A

where the degree matrix is computed as Dii =
∑

j Ai j

irrespective of whether the adjacency matrix is normalized
or not. One step of diffusion by the Laplacian can be
written as:

[Lx]i =
∑

(i, j)∈E

Ai j(x i − x j) (E.12.1)

We can see from here that the Laplacian is intimately linked
to the idea of a gradient over a graph, and its analysis is
at the core of the field of spectral graph theory. As an
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(a) Initial
graph (b) 10 steps (c) 20 steps (d) 30 steps

Figure F.12.4: (a) A random graph with 15 nodes and a scalar
feature on each node (denoted with variable colors). (b)-(d) The
result after 10, 20, and 30 steps of diffusion with the Laplacian
matrix. The features converge to a stable state.

example, in (E.12.1) 1 is always an eigenvector of the
Laplacian associated to a zero eigenvalue (in particular, the
smallest one). We show an example of diffusion with the
Laplacian matrix in Figure F.12.4.

12.1.4 Manifold regularization

From (E.12.1) we can also derive a quadratic form built
on the Laplacian:

x⊤Lx=
∑

(i, j)∈E

Ai j(x i − x j)
2 (E.12.2)

Informally, this is a scalar value that measures how
“smooth” the signal over the graph is, i.e., how quickly it
changes for pairs of nodes that are connected in the graph.
To see a simple application of this concept, consider a
tabular classification dataset Sn = {(xi, yi)}. Suppose we
build a graph over this dataset, where each node is an
element of the dataset, and the adjacency matrix is built
based on the distance between features:
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Ai j =

¨

exp(−∥xi − x j∥2) if ∥xi − x j∥2 < τ

0 otherwise
(E.12.3)

where τ is a user-defined hyper-parameter. Given a
classification model f (x), we may want to constrain its
output to be similar for similar inputs, where similarity is
defined proportionally to (E.12.3). To this end, we can
define the features of the graph as the outputs of out
model:

f=





f (x1)
...

f (xn)



∼ (n)

The quadratic form (E.12.2) tells us exactly how much
similar inputs vary in terms of their predictions:

f⊤Lf=
∑

i, j

Ai j( f (xi)− f (x j))
2 (E.12.4)

The optimal model can be found by a regularized
optimization problem, where the regularizer is given by
(E.12.4) :

f ∗(x) = arg min

¨

n
∑

i=1

L(yi, f (x)) +λ f⊤Lf

«

where L is a generic loss function and λ is a scalar hyper-
parameter:

This is called manifold regularization [BNS06] and it can
be used as a generic regularization tool to force the model
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to be smooth over a graph, where the adjacency is either
given or is built by the user as in (E.12.3). This is especially
helpful in a semi-supervised scenario where we have a
small labeled dataset and a large unlabeled one from the
same distribution, since the regularizer in (E.12.4) does
not require labels [BNS06]. However, the prediction of
the model depends only on a single element xi, and the
graph is thrown away after training. In the next section,
we will introduce more natural ways of embedding the
connectivity inside the model itself.

12.2 Graph convolutional layers

12.2.1 Properties of a graph layer

In order to design models whose predictions are conditional
on the connectivity, we can augment standard layers f (X)
with knowledge of the adjacency matrix, i.e., we consider
layers of the form:

H= f (X,A)

where as before X ∼ (n, c) (with n the number of nodes
and c the features at each node) and H ∼ (n, c′), i.e., the
operation does not change the connectivity of the graph,
and it returns an updated embedding Hi ∼ (c′) for each
node i in the graph. For what follows, A can be the
adjacency or any matrix with the same sparsity pattern (a
graph-shift matrix), including a weighted adjacency
matrix, the Laplacian matrix, and so on.

Since permuting the nodes in a graph should have no
impact on the final predictions, the layer should not
depend on the specific ordering of the nodes, i.e., for any
permutation matrix P the output of the layer should be
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permutation equivariant:

f (PX,PAP⊤) = P · f (X,A)

We can define a notion of “locality” for a graph layer,
similar to the image case. To this end, we first introduce
the concept of a subgraph. Given a subset of nodes T ∈ V
from the full graph, we define the subgraph induced by T
as:

GT = (XT ,AT )

where XT is a (|T |, c) matrix collecting the features of the
nodes in T , and A∼ (|T |, |T |) is the corresponding block
of the full adjacency matrix.

Definition D.12.1 (Graph locality)

A graph layer H = f (X,A) is local if for every node, Hi =
f (XN (i),AN (i)), where N (i) is the 1-hop neighborhood
of node i.

This is similar to considering all pixels at distance 1 in the
image case, except that (a) nodes in N (i) have no specific
ordering in this case, and (b) the size ofN (i) can vary a lot
depending on i. Hence, we cannot define a convolution like
we did in the image case, as its definition requires these two
properties (think of the weight tensor in a convolutional
layer).

For what follows, note that we can extend our definition of
locality beyond 1-hop neighbors. For example, the 2-hop
neighborhood N 2(i) is defined as all nodes at distance at
most 2:

N 2(i) =
⋃

j∈N (i)
N ( j)

where ∪ is the set union operator. We can extend the
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definition of locality to take higher-order neighborhoods
into consideration and design the equivalent of 3×3 filters,
5× 5 filters, and so on.

12.2.2 The graph convolutional layer

In order to define a graph layer that mimicks the
convolutional layer, we need it to be permutation
equivariant (instead of translation equivariant) and local.
The MHA layer is naturally permutation equivariant, but it
is not local and it does not depend explicitly on the
adjacency matrix A. We will see possible extensions to this
end in the next section. For now, let us focus on a simpler
fully-connected layer:

f (X, _) = φ(XW+ b)

where W ∼ (c, c′) and b ∼ (c′). This is also naturally
permutation equivariant, but it does not depend on the
connectivity of the graph, which is ignored. To build an
appropriate differentiable layer, we can alternate the layer’s
operation with a diffusion step.

Definition D.12.2 (Graph convolution)

Given a graph represented by a node feature matrix X∼
(n, c) and a generic graph-shift matrix A ∼ (n, n) (the
adjacency, the Laplacian, ...), a graph convolutional
(GC) layer is given by [KW17]:

f (X,A) = φ(A(XW+ b))

where the trainable parameters are W ∼ (c, c′) and
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Node-wise update:

Aggregation:

Figure F.12.5: Two stages of a GC layer: each node updates
its embedding in parallel to all other nodes; the output is given
by a weighted average of all updated embeddings in the node’s
neighbourhood.

b ∼ (c′), with c′ an hyper-parameter. φ is a standard
activation function, such as a ReLU.

Note the similarity with a standard convolutional layer: we
are performing a “channel mixing” operation via the matrix
W, and a “node mixing” operation via the matrix A, the
difference being that the former is untrainable in this case
(due to, once again, variable degrees between nodes and
the need to make the layer permutation equivariant). See
Figure F.12.5 for a visualization. The analogy can also be
justified more formally by leveraging concepts from graph
signal processing, which is beyond the scope of this book
[BBL+17].

Ignoring the bias, we can rewrite this for a single node i
as:

Hi = φ

 

∑

j∈N (i)

Ai jX jW

!
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Hence, we first perform a simultaneous update of all node
embeddings (given by the right multiplication by W).
Then, each node computes a weighted average of the
updated node embeddings from itself and its neighbors.
Since the number of neighbors can vary from node to
node, working with the normalized variants of the
adjacency matrix can help significantly in training. It is
trivial to show permutation equivariance for the layer:

f (PX,PAP⊤) = φ
�

PAP⊤PXW
�

= P · f (X,A)

12.2.3 Building a graph convolutional
network

A single GC layer is local, but the stack of multiple layers
is not. For example, consider a two-layered GC model:

f (X,A) = φ(A φ (AXW1) W2) (E.12.5)

First GC layer

with two trainable weight matrices W1 and W2. Similarly
to the image case, we can define a notion of receptive field.

Definition D.12.3 (Graph receptive field)

Given a generic graph neural network H= f (X,A), the
receptive field of node i is the smallest set of nodes V (i) ∈
V such that Hi = f (XV (i),AV (i)).

For a single GC layer, the receptive field is V (i) = N (i).
For a two-layer network as in (E.12.5), we need to
consider neighbors of neighbors, and the receptive field
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becomes V (i) =N 2(i). In general, for a stack of k layers
we will have a receptive field of V (i) = N k(i). The
smallest number of steps which is needed to move from
any two nodes in the graph is called the diameter of the
graph. The diameter defines the smallest number of layers
which is required to achieve a global receptive field for all
the nodes.

Polynomial GC layers

Alternatively, we can increase the receptive field of a
single GC layer. For example, if we remove the self-
loops from the adjacency matrix, we can make the layer
local with respect to N 2(i) instead of N (i) by also
considering the square of the adjacency matrix:

H= φ
�

XW0 +AXW1 +A2XW2

�

where we have three sets of parameters W0, W1, and
W2 to handle self-loops, neighbors, and neighbors of
neighbors respectively. This is called a polynomial
GC layer. Larger receptive fields can be obtained with
higher powers. More complex layers can be designed by
considering ratios of polynomials [BGLA21].

We can combine GC layers with standard normalization
layers, residual connections, dropout, or any other
operation that is permutation equivariant. Differently
from the image case, pooling is harder because there is no
immediate way to subsample a graph connectivity. Pooling
layers can still be defined by leveraging tools from graph
theory or adding additional trainable components, but
they are less common [GZBA22].

Denote by H = f (X,A) a generic combination of layers
providing an updated embedding for each node (without
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GCN
Backbone

Node head

Edge head

Graph headAverage

Node
prediction

Edge
prediction

Graph
prediction

Figure F.12.6: Different types of graph heads: (a) node tasks
need to process the features of a single node; (b) edge tasks require
heads that are conditioned on two nodes simultaneously; (c) graph
tasks can be achieved by pooling all node representations into a
fixed-dimensional vector.

modifying the connectivity). In analogy with CNNs, we call
it the backbone network. We can complete the design of a
generic graph convolutional network (GCN) by adding a
small head of top of these representations:

y = (g ◦ f )(X,A)

The design of the head depends on the task we are trying
to solve. The most common tasks fall into one of three
basic categories: node-level tasks (e.g., node classification),
edge-level task (e.g., edge classification), or graph-level
tasks (e.g., graph classification). We briefly consider an
example for each of them in turn, see Figure F.12.6.

Node classification

First, suppose the input graph describes some kind of social
network, where each user is associated to a node. For a
given subset of users, T ⊆ V , we know a label yi, i ∈ T
(e.g., whether the user if a real user, a bot, or another
kind of automated profile). We are interested in predicting
the label for all other nodes. In this case, we can obtain
a node-wise prediction by processing each updated node
embedding, e.g.:
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ŷi = g(Hi) = softmax(MLP(Hi))

Running this operation over the entire matrix H gives us a
prediction for all nodes, but we only know the true labels
for a small subset. We can train the GCN by discarding the
nodes outside of the training set:

argmin
1
|T |

∑

i∈T

CE( ŷi, yi)

where CE is the cross-entropy loss. Importantly, even if we
are discarding the output predictions for nodes outside our
training set, their input features are still involved in the
training process due to the diffusion steps inside the GCN.
The rest of the nodes can then be classified by running
the GCN a final time after training. This scenario, where
only a subset of the training data is labeled, is called a
semi-supervised problem.

Edge classification

As a second example, suppose we have a label for a subset
of edges, i.e., TE ⊆ E . As an example, our graph could be a
traffic network, of which we know the traffic flow only on
a subset of roads. In this case, we can obtain an edge-wise
prediction by adding an head that depends on the features
of the two connected nodes, e.g., by concatenating them:

ŷi j = g(Hi,H j) =MLP
��

Hi ∥ H j

��

For binary classification (e.g., predicting the affinity of
two users with a scalar value between 0 and 1) we can
simplify this by considering the dot product between the
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two features:

ŷi j = σ(H
⊤
i H j)

Like before, we can train the network by minimizing a loss
over the known edges.

Graph classification

Finally, suppose we are interested in classifying (or
regressing) the entire graph. As an example, the graph
could be a molecule of which we want to predict some
chemical property, such as reactivity against a given
compound. We can achieve this by pooling the node
representations (e.g., via a sum), and processing the
resulting fixed-dimensional embedding:

y =MLP

�

1
n

n
∑

i=1

Hi

�

The final pooling layer makes the network invariant to the
permutation of the nodes. In this case, our dataset will
be composed of multiple graphs (e.g., several molecules),
making it similar to a standard image classification task.
For node and edge tasks, instead, some datasets may be
composed of a single graph (e.g., a large social network),
while other datasets can have more than a single graph
(e.g., several unconnected road networks from different
towns). This opens up the question of how to efficiently
build mini-batches of graphs.
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12.2.4 On the implementation of graph
neural networks

As mentioned, the peculiarity of working with graphs is that
several matrices can be very sparse. For example, consider
the following adjacency matrix:

A=





0 0 1
0 0 0
1 0 0





This corresponds to a three-node graph with a single
bidirectional edge between nodes 1 and 3. We can store
this more efficiently by only storing the indices of the
non-zero values, e.g., in code:

A = [[0,2], [2,0]]

This is called a coordinate list format. For very sparse
matrices, specialized formats like this one can reduce
storage but also significantly improve the runtime of
operating on sparse matrices or on combinations of sparse
and dense matrices. As an example, pytorch-sparse2

supports highly-efficient implementations of transposition
and several types of matrix multiplications in PyTorch.
This is also reflected on the layers’ implementation. The
forward pass of the layers in PyTorch Geometric3 (one of
the most common libraries for working with graph neural
networks in PyTorch) is parameterized by providing as
inputs the features of the graph and the connectivity as a
list of edge coordinates.

2
https://github.com/rusty1s/pytorch_sparse

3
https://pytorch-geometric.readthedocs.io/en/latest/get_

started/introduction.html#learning-methods-on-graphs

302

https://github.com/rusty1s/pytorch_sparse
https://pytorch-geometric.readthedocs.io/en/latest/get_started/introduction.html#learning-methods-on-graphs
https://pytorch-geometric.readthedocs.io/en/latest/get_started/introduction.html#learning-methods-on-graphs


Chapter 12: Graph models 303

Figure F.12.7: Two graphs
in a mini-batch can be seen
as a single graph with two
disconnected components. In
order to distinguish them,
we need to introduce an
additional vector containing
the mapping between nodes
and graph IDs.
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4

5
6
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Working with sparse matrices has another interesting
consequence in terms of mini-batches. Suppose we have b
graphs (Xi,Ai)bi=1. For each graph we have the same
number of node features c but a different number of nodes
ni, so that Xi ∼ (ni, c) and Ai ∼ Binary(ni, ni). In order to
build a mini-batch, we can create two rank-3 tensors:

X ∼ (b, n, c) (E.12.6)

A∼ Binary(b, n, n) (E.12.7)

where n=max(n1, . . . , nb), and both matrices are padded
with zeros to fill up the two tensors. However, a more
elegant alternative can be obtained by noting that in a GC
layer, two nodes that are not connected by any path (a
sequence of edges) will never communicate. Hence, we
can build a single graph describing the entire mini-batch
by simply merging all the nodes:

X=





X1
...

Xb



 (E.12.8)

A=





A1 . . . 0
...

. . .
...

0 . . . Ab



 (E.12.9)
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where X ∼ (
∑

i ni, c) and A ∼ Binary(
∑

i ni,
∑

i ni). The
adjacency matrix of the mini-batch has a block-diagonal
structure, where all elements outside the diagonal blocks
are zero (nodes from different graphs are not connected).
While seemingly wasteful, this actually increases the
sparsity ratio of the graph, making better use of the sparse
matrix operations. Hence, for graph datasets in many
cases there is no real difference between working with a
single graph or a mini-batch of graphs.

In order to keep track which node belongs to each input
graph, we can augment the representation with an
additional vector b ∼ (

∑

i ni) such that bi is an index in
[1, . . . , b] identifying one of the b input graphs - see
Figure F.12.7. For graph classification, we can exploit b to
perform pooling separately on groups of nodes
corresponding to different graphs. Suppose H∼ (n, c′) is
the output of the GCN backbone, then:

scatter_sum (H,b) = Y∼ (b, c′) (E.12.10)

is called a scattered sum operation and is such that the
Yi is the sum of all rows of H such that b j = i, as shown
in Figure F.12.8. Similar operations can be defined for
other types of pooling operations, such as averages and
maximums.

As a separate problem, sometimes we may have a single
graph that does not fit into memory: in this case, mini-
batches should be formed by sampling subgraphs from the
original graph [HYL17]. This is a relatively complex task
that goes beyond the scope of this chapter.
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Sum

Sum

Figure F.12.8: Example of scattered sum on the graph of Figure
F.12.7. In this example nodes (1,2,3,4) belong to graph 1, and
nodes (5,6,7) to graph 2. After pooling, we obtain a pooled
representation for each of the two graphs.

12.3 Beyond graph convolutional
layers

With the GC layer as template, we now overview a few
extensions, either in terms of adaptivity or graph features
that can be handled. We close by discussing graph
transformers, a different family of layers in which the
graph is embedded into a structural embedding which is
summed to the node features.

12.3.1 Graph attention layers

One issue with GC layers is that the weights that are used
to sum up contributions from the neighborhoods are fixed
and are given by the adjacency matrix (or a proper
normalized variant). Most of the time this is equivalent to
assuming that, apart from the relative number of
connections, all neighbors are equally important. A graph
where nodes are connected mostly with similar nodes is
called homophilic: empirically, homophily is a good
predictor of the performance of graph convolutional layers
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[LLLG22]. Not all graphs are homophilic: for example, in
a dating network, most people will be connected with
people from the opposite sex. Hence, in these scenarios
we need techniques that can properly adapt the weights
given from each node to another node adaptively.

For sufficiently small graphs, we can let the non-zero
elements of the weight matrix A adapt from their starting
value through gradient descent. However, the number of
trainable parameters in this case increases quadratically
with the number of nodes, and this solution does not apply
to a scenario with more than a single graph. If we assume
that an edge depends only on the features of the two
nodes it connects, we can generalize the GC layer with an
attention-like operator:

hi = φ

 

∑

j∈N (i)

softmax(α(xi,x j))W
⊤x j

!

where α is some generic MLP block having two inputs and a
scalar output, and the softmax is applied, for each node, to
the set of outputs of α with respect to N (i), to normalize
the weights irrespective of the size of the neighborhood.
Due to the similarity to the attention layer, these are called
graph attention (GAT) layers [VCC+18]. Seen from the
perspective of the entire graph, this is very similar to a
MHA layer, where the attention operation is restricted only
on nodes having an edge that connects them.

The choice of α is relatively free. Instead of a dot product,
the original GAT formulation considered an MLP applied
on a concatenation of features:

α(xi,x j) = LeakyReLU(a⊤
�

Vxi ∥ Vx j

�

)
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where V and a are trainable. This was later found to be
restrictive, in the sense that the ordering between
elements does not depend on the central node [BAY22]. A
less restrictive variant, called GATv2 [BAY22] is obtained
as:

α(xi,x j) = a⊤LeakyReLU(V
�

xi ∥ x j

�

)

Both GAT and GATv2 are very popular baselines nowadays.

12.3.2 Message-passing neural networks

Suppose we have available additional edge features ei j,
e.g., in a molecular dataset we may know a one-hot
encoded representation of the type of each molecular
bond. We can generalize the GAT layer to include these
features by properly modifying the attention function:

α(xi,x j) = a⊤LeakyReLU(V
�

xi ∥ x j ∥ ei j

�

)

We can further generalize all the layers seen up to now
(GC, GAT, GATv2, GAT with edge features) by abstracting
away their basic components. Consider a very general layer
formulation:

hi =ψ
�

xi, Aggr
�

�

M(xi,x j,ei j)
	

N (i)

��

(E.12.11)

where:

1. M builds a feature vector (which we call a message)
relative to the edge between node i and node j.
Contrary to GC and GAT layers, we are not
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restricting the message to be scalar-valued.

2. Aggr is a generic permutation invariant function (e.g.,
a sum) to aggregate the messages from all nodes
connected to node i.

3. ψ is a final block that combines the aggregated
message with the node features xi. In this way, two
nodes with the same neighborhood can still be
distinguished.

As an example, in a GC layer the message is built as
M(_,x j, _) = Ai jW

⊤x j, the aggregation is a simple sum,
and ψ(_,x) = φ(x). The general layer (E.12.11) was
introduced in [GSR+17] with the name of
message-passing layer, and it has become a very popular
way to categorize (and generalize) layers operating on
graphs [Vel22].

Let us consider a few examples of using this
message-passing framework. First, we may want to give
more highlight to the central node in the message-passing
phase. We can do this by modifying the ψ function:

ψ(x,m) = φ(Vx+m)

where V is a generically trainable matrix (this was
introduced in [MRF+19] and popularized in PyTorch
Geometric as the GraphConv4 layer). Second, suppose
nodes have available more complex features such as a
time series per node (e.g., a distributed set of sensors).
Note that in the message-passing framework, node-wise
operations are decoupled from the way messages are

4
https://pytorch-geometric.readthedocs.io/en/latest/generated/

torch_geometric.nn.conv.GraphConv.html
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aggregated and processed. Denoting by x i the time-series
at node i, we can generalize the GC layer by simply
modifying the message function with a layer working on
time series, e.g., a Conv1d layer:

hi =
∑

j∈N (i)

Ai jConv1d(x i)

This is an example of a spatio-temporal GC layer [YYZ17].
Furthermore, up to now we have assumed that only node
features should be updated. However, it is easy to also
update edge features by an additional edge update layer:

ei j ←MLP(ei j,hi,h j)

This can also be seen as a message-passing iteration, in
which the edge aggregates messages from its neighbors
(the two connected nodes). This line of reasoning allows to
further generalize these layers to consider more extended
neighborhoods and graph features [BHB+18].

This is a very brief overview that provides a gist of many
possible message-passing variants. There are many topics
we are not able to cover in detail due to space: among
these, we single out building MP layers for higher-order
graphs (in which edges connect more that a pair of nodes)
[CPPM22] and MP layers for point cloud data, in which
we are interested in satisfying additional symmetries
(rotational and translational symmetries)
[SHW21, EHB23].
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12.3.3 Graph transformers

We have seen two techniques to employ the graph
structure: one is to add a regularization term that forces
the network’s outputs to be smooth relative to the graph;
the second is to constrain the operations of the graph to
follow the graph connectivity. In particular, in the GAT
layer we have used a standard attention operation by
properly masking the pairwise comparisons. However, we
have also seen in the previous chapter that transformers
have become popular because they provide an architecture
that is completely agnostic from the type of data. Can we
design the equivalent of a graph transformer
[MGMR24]?

Recall that the two basic steps for building a transformer
are tokenization of the input data and definition of the
positional embedding. Tokenization for a graph is simple:
for example, we can consider each node as a token, or
(if edge features are given) each node and each edge as
separate tokens after embedding them in a shared space.
Let us ignore for now edge features. Consider the generic
architecture taking as input the node features:

H= Transformer(X)

This is permutation equivariant but completely agnostic to
the connectivity. We can partially solve this by augmenting
the node features with some graph-based features, such
as the degree of the node, or the shortest path distance to
some pre-selected nodes (anchors) [RGD+22, MGMR24].
More in general, however, we can consider an embedding
of the graph connectivity into what we call a structural
embedding:
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Positional
embeddings

Transformer

Figure F.12.9: General idea of a graph transformer: the
connectivity is embedded into a set of positional embeddings, which
are added to the collected features. The result is then processed by
a standard transformer network.

H= Transformer(X+ Embedding(A))

Each row of Embedding(A) provides a vectorial
embedding of the connectivity of the graph relative to a
single node, ignoring all features (see Figure F.12.9).
Luckily, embedding the structure of a graph into a vector
space is a broad field. As an example, we describe here a
common embedding procedure based on random walks
[DLL+22]. Recall that the following matrix:

R= AD−1

can be interpreted as a “random walk”, in which Ri j is the
probability of moving from node i to node j. We can iterate
the random walk multiple times, for a fixed k set a priori
by the user:

R,R2, . . . ,Rk

Random walk embeddings are built by collecting all the
walk probabilities of a node returning on itself, and
projecting them to a fixed-dimensional embedding:
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Embedding(A) =









diag(R)
diag(R2)

...
diag(Rk)









W

Under specific conditions on the graph structure, this can
be shown to provide a unique representation for each
node [DLL+22]. Alternative types of embeddings can be
obtained by considering eigen-decompositions of the
Laplacian matrix [LRZ+23]. For a fuller exposition of
graph transformers, we refer to [MGMR24]. Building
graph transformers opens up the possibility of GPT-like
foundation models for the graph domain, and also of
adding graph-based data as an additional modality to
existing language models [MCT+].

From theory to practice

Handling efficiently graph data requires
extensions of the basic frameworks,
due to the problems described in this
chapter (e.g., sparsity). Common
libraries include PyTorch Geometric for
PyTorch, and Jraph for JAX. Both have ample sets of
tutorials, for example for node classification in small
citation networks.5

If you implemented a Vision Transformer in Chapter 11, I
suggest a funny exercise which has (mostly) didactic value,
as shown in Figure F.12.10. Suppose we tokenize the image
into patches, but instead of adding positional embeddings,

5Recommended example in PyTorch Geometric: https://pytorch-

geometric.readthedocs.io/en/latest/get_started/introduction.html.
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Im
age tokenizer

Graph model

Figure F.12.10: A GNN for computer vision: the image is
tokenized into patches, an adjacency matrix is built over the patches,
and the two are propagated through a graph model.

we construct an adjacency matrix A ∼ (p, p) (where p is
the number of patches) as:

Ai j =

¨

1 if the two patches share a border in the image

0 otherwise
(E.12.12)

We now have a graph classification dataset, where the
node features are given by the patch embedding, and the
adjacency matrix by (E.12.12). Thus, we can perform
image classification by adapting the GNN from the
previously-mentioned tutorials.
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About this chapter

Transformer models are very effective at processing
sequences, but they are hindered by their quadratic
complexity in the sequence length. One possibility
is to replace them with recurrent layers, having only
constant-time for processing each element of a sequence,
irrespective of its length. In this final chapter we
provide an overview of several recurrent models and
their characteristics. The field has been moving very
rapidly in the last two years, and we provide a wide
overview at the expense of precision – see [TCB+24] for
a recent survey.

13.1 Linearized attention models

13.1.1 Replacing the dot product

To provide some intuition on why recurrent neural
networks (RNNs) can be useful, we begin with a
generalization of the attention layer (called the linearized
attention layer [KVPF20]) that can be written in a
recurrent form. We start by rewriting the SA layer in an
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abstract form with a generic scalar-valued attention
function α(·, ·) instead of the dot product:

hi =

∑n
j=1α

�

qi,k j

�

v j
∑n

j=1α
�

qi,k j

� (E.13.1)

where for the standard SA, α(x,y) = exp(x⊤y). If the
elements of the sequence must be processed in order (as
in autoregressive generation), (E.13.1) is inconvenient
because its cost grows quadratically in the sequence
length. Even if a KV cache is used, memory still grows
linearly. By comparison, a convolutional layer has fixed
time and memory cost for each element to be processed,
but information is lost if a token is outside the receptive
field. What we would like, instead, is a mechanism to
compress all the information of the sequence into a
fixed-size input (which we will call a memory or state
tensor), so that the cost of running the model on our
current input token plus the memory is constant. We call
models of this form recurrent.

To begin, note that any non-negative α is a valid similarity
function. In machine learning, this requirement is
equivalent to α being what is called a kernel function
[HSS08]. Many such kernel functions can be written as a
generalized dot product:

α(x,y) = φ(x)⊤φ(y) (E.13.2)

for some function φ : Rc → Re performing a feature
expansion.

Based on (E.13.2) we can rewrite (E.13.1) as:
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hi =

∑n
j=1φ(qi)⊤φ(k j)v⊤j
∑n

j=1φ(qi)⊤φ(k j)

where we have added a transpose operation on v j to be
consistent with the dimensions. Because φ(qi) does not
depend on j we can bring it outside the sum to obtain:

hi =
φ(qi)⊤

∑n
j=1φ(k j)v⊤j

φ(qi)⊤
∑n

j=1φ(k j)
(E.13.3)

This is called a linearized attention model [KVPF20].
Computing (E.13.3) for all tokens has complexity
O (n(e2 + ev)), which is linear in the sequence length and
advantageous whenever n < e2. φ can be chosen freely,
e.g., in [KVPF20] they consider a quadratic feature
expansion or even a simpler φ(x) = ELU(x) + 1 for short
sequences.

Kernel functions

As an example of kernel function, the polynomial kernel
function α(x,y) = (1 + x⊤y)d can be rewritten as
(E.13.2) if φ(•) explicitly computes all polynomials of
its input up to order d [HSS08]. Some kernel functions
correspond to infinite-dimensional expansions (e.g., the
Gaussian kernel), in which case (E.13.2) can still be
recovered in terms of an approximated kernel expansion,
such as working with random Fourier features [SW17].
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13.1.2 A recurrent formulation

We now rewrite the linearized attention model in a
recurrent form, by considering what happens for a causal
variant of the layer. First, we modify (E.13.3) by
constraining the sum only on past input elements to make
it causal:

hi =
φ(qi)⊤

∑i
j=1φ(k j)v⊤j

φ(qi)⊤
∑i

j=1φ(k j)
(E.13.4)

Attention memory Si

Normalizer memory zi

This is our first example of a recurrent layer. To
understand the name, we note that the attention and
normalizer memories can be written recursively as:

Si = Si−1 +φ(ki)v
⊤
i (E.13.5)

zi = zi−1 +φ(ki) (E.13.6)

where the base case of the recurrence is given by their
initialization:

S0 = 0 (E.13.7)

z0 = 0 (E.13.8)

The output is then given by:

hi =
φ(qi)⊤Si

φ(qi)⊤zi
(E.13.9)

Equations (E.13.5)-(E.13.9) are particularly interesting
for an autoregressive scenario: for any new token to be
generated, we update the two memory states (equations
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Figure F.13.1:
Overview of a recurrent
layer: past tokens are
shown in gray, current
input token in blue, the
memory state in yellow.

R
ecurrence

R
ecurrence

Readout

Previous token

Current token

Memory (state)

(E.13.5) and (E.13.6)), and we use these updated states
to compute the output for the i-th element. Importantly,
the total computation for generating a new token is
constant, and the cost in memory is also fixed since the
previous memories Si−1 and zi−1 can be discarded. We can
alternate between the two formulations of the layer: we
can use a vectorized variant for training (for efficient
implementation on GPUs) and the recurrent formulation
for inference.

13.2 Classical recurrent layers

13.2.1 General formulation

Let us now abstract away the key components of a recurrent
layer, using the previous section as reference. First, we need
a state of fixed size, which is used to compress all useful
information up to the i-th element of the sequence. We
denote it generically as si, and without lack of generality
we assume it is a single vector from now on. Second, we
need a transition function (recurrence) that updates the
state vector based on the previous value and the value of
the current token, which we denote as f (si−1,xi). Third,
we need what we call a readout function that provides an
output for the i-th element of the sequence. We denote it
as g(si,xi). See also Figure F.13.1 for a visualization.
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Definition D.13.1 (Recurrent layer)

Given a sequence of tokens x1,x2, . . ., a generic recurrent
layer can be written as:

si = f (si−1,xi) (E.13.10)

hi = g(si,xi) (E.13.11)

where the state vector si ∼ (e) is initialized as zero by
convention, s0 = 0. The size of the state vector, e, and the
size of the output vector hi ∼ (o) are hyper-parameters.
We call f the state transition function and g the readout
function.

In this format, a recurrent layer represents a discrete-time,
input-driven dynamical system, and it is a causal layer by
definition. In control engineering, this is also known as a
state-space model. For tasks in which causality is
unnecessary, bidirectional layers [SP97] can also be
defined. In a bidirectional layer we initialize two recurrent
layers (with separate parameters), one of which processes
the sequence left-to-right, and the second one right-to-left.
Their output states are then concatenated to provide the
final output.

Recurrent neural networks (RNNs) can be built by
stacking multiple recurrent layers on the updated
sequence h1,h2, . . . ,hn [PGCB14]. Interestingly, a
recurrent layer has no requirement on the length of the
sequence, which can (in principle) be unbounded. For this
reason, RNNs with unbounded precision or growing
architectures can be shown to be Turing-complete [CS21].
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Implicit layers

What happens if we apply a recurrent layers to a single
token x?

si = f (si−1,x) (E.13.12)

If we run the state transition several time starting from
a known initialization s0, this is similar to a model
with several layers (one per transition) sharing the
same parameters. Suppose we run (E.13.12) an infinite
number of times. If the dynamic system has a stable
attractor, the output will be defined by the fixed-point
equation:

s= f (s,x) (E.13.13)

If we take (E.13.13) as the definition of a layer, we
obtain what is called an implicit layer [BKK19]. The
implementation of implicit layers can be made feasible
by using fast solvers for the fixed-point equation and
computing the backward pass with the use of the implicit
function theorem [BKK19]. Implicit graph layers can
also be defined by running each diffusion operation to a
stable state [GMS05, SGT+08].

13.2.2 “Vanilla” recurrent layers

Historically, recurrent layers were instantiated by
considering two fully-connected layers as transition and
readout functions:

f (si−1,xi) = φ(Asi−1 +Bxi) (E.13.14)

g(si,xi) = Csi +Dxi (E.13.15)

where as always we ignore biases for simplicity, and we
have four trainable matrices A ∼ (e, e), B ∼ (e, c), C ∼
(o, e), and D∼ (o, c), where c is the input dimensionality
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(the size of each token). A layer in this form is sometimes
referred to generically as a “recurrent layer”, a “vanilla
recurrent layer”, or an Elman recurrent layer. When the
two matrices A and B are left untrained and we only have a
single layer, these models are called echo state networks
(ESNs) or reservoir computers [LJ09]. ESNs can be a
powerful baseline for time series forecasting, especially
when the untrained matrices (the reservoir) are initialized
in a proper way [GBGB21].

Despite their historical significance, layers of this form are
extremely inefficient (and hard) to train. To see this, note
that by its design the computation across elements of the
sequence cannot be parallelized efficiently, as shown in
Box C.13.1. Hence, we need to resort to iterative
(for-loops) implementations, and even highly customized
CUDA implementations1 are slower than most alternative
sequence layers.

Another issue stems from the gradients involved in the
layer’s computations. Consider a simplified case having
only the transition function. We can unroll the full
computation as:

s1 = f (s0,x1)
s2 = f (s1,x2)

...

sn = f (sn−1,xn)

1
https://docs.nvidia.com/deeplearning/performance/dl-

performance-recurrent/index.html
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# Input tensor
x = torch.randn(batch_size,

sequence_length,
features)

# State tensor
s = torch.zeros(batch_size,

state_size)

# State update
state_update = nn.RNNCell(features,

state_size)
for i in range(x.shape[1]):
s = state_update(x[:, i, :], s)

Box C.13.1: Vanilla recurrence in PyTorch. It is impossible
to parallelize the for-loop with linear algebra because of the
dependencies in the recurrence. In PyTorch, the state update
is called a recurrent cell, while the recurrent layers, such as
torch.nn.RNN, wrap a cell and perform the complete for-loop.

323



324 Classical recurrent layers

This is similar to a model with n layers, except that the
parameters are shared (the same) across the layers. Below
we focus on the quantity ∂Asn (the weight Jacobian with
respect to A), but similar considerations apply to all
gradients. Let us define the following cumulative product:

esi =
n
∏

j=i+1

∂s j−1
f (s j−1,x j) (E.13.16)

This represents the gradient of the transition function from
the end of the sequence backwards to element i, as shown
in Figure F.13.2. Because of weight sharing, the gradient
we are looking for has a separate term for each element in
the sequence which involves these cumulative products:

∂Asn = ∂A f (sn−1,xn) +
n−1
∑

i=1

esi

�

∂A f (si−1,xi)
�

(E.13.17)

Gradient from element n

Gradient from element i

The first term corresponds to a “standard” weight Jacobian,
describing the influence of A on the last element of the
sequence. The terms in the summation are the additional
contributions, one for each element of the sequence, which
are weighted by the chained input Jacobian computed over
the sequence itself.

Written in this form, reverse mode automatic
differentiation is also called backpropagation through
time (BPTT), and it can be a strong source of instability or
gradient problems during gradient descent. To see this,
note that each input Jacobian in the inner product in
(E.13.17) involves a multiplication by the derivative of the
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Figure F.13.2: Backward pass for a recurrent layer: the adjoint
values have to be propagated through all the transition steps. Each
state then contributes a single term to the full gradient of the
parameters.

activation function φ. Some of the earliest analyses of
vanishing and exploding gradients were done in this
context [Hoc98]. For long sequences, stability of the layer
is guaranteed only when the eigenvalues of the transition
matrix are properly constrained [GM17]. Layer
normalization was also originally developed to stabilize
training in RNNs, by computing statistics over the states’
sequence [BKH16].

Several techniques have been developed to partially solve
these instabilities in the context of recurrent layers. For
example, the sum in (E.13.17) can be truncated to a given
interval (truncated BPTT), or the gradients can be
thresholded if they exceed a pre-defined upper bound
(clipped gradients).

13.2.3 Gated recurrent networks

Over the years, several variants of the vanilla layer were
proposed to improve its performance. In this section we
focus on a popular class of such models, called gated RNNs.
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One issue of RNNs is that the entire state gets overwritten
at each transition, which is reflected in the partial products
in (E.13.17). However, we can assume that, for many
sequences, only a few elements of these transitions are
important: as an example, in an audio signal, empty regions
or regions with no information are typical. In these cases,
we may be interested in sparsifying the transition (similarly
to how most attention weights tend to be close to zero) and,
consequently, setting most elements in esi to 1. This can be
achieved with the addition of specialized gating layers.

We consider the simplest form of gated RNN, called light
gated recurrent unit (Li-GRU, [RBOB18]), having a single
gate. For our purposes, a gating function is simply a layer
that outputs values in the range [0,1] that can be used
to “mask” the input. As an example, a gate over the state
can be obtained by a fully-connected layer with a sigmoid
activation function:

γ(si−1,xi) = σ (Vsi−1 +Uxi)

where V and U have similar shapes to A and B. We can
interpret this as follows: if γi ≈ 0, the i-th feature of the
state should be kept untouched, while if γ1 ≈ 1, we should
propagate its updated value as output. Hence, we can
rewrite the transition function by properly masking the
new and old values as:

f (si−1,xi) =

New values
︷ ︸︸ ︷

γ(si−1,xi)⊙ (Asi−1 +Bxi)
+ (1− γ(si−1,xi))⊙ si−1
︸ ︷︷ ︸

Old values
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This can be seen as a soft (differentiable) approximation
to a “real” gate having only binary values, or as a convex
combination of the original layer and a skip connection.
We can theoretically control the goodness of this
approximation by adding an additional regularizer to the
loss that constrains the outputs of the gate to lie as close
as possible to 0 or 1.

Other gated recurrent layers can be obtained by adding
additional gates to this design: the original gated
recurrent unit (GRU) adds a so-called “reset gate” to the
layer [CVMG+14], while long-short term memory units
(LSTMs) have a third “forget gate” [HS97]. LSTMs were
the first gated variant to be introduced in the literature,
and for a long time they have been the most successful
deep architecture for processing sequences [Sch15].
Because of this, research on LSTM models is still very
active [BPS+24].

13.3 Structured state space models

13.3.1 Linear recurrent layers

We now consider a simplified class of recurrent layers, in
which we remove the intermediate nonlinearity in the
transition function:

f (si−1,xi) = Asi−1 +Bxi (E.13.18)

g(si,xi) = Csi +Dxi (E.13.19)

Written in this form, (E.13.18)-(E.13.19) are called state
space models (SSM).2 Intuitively, an SSM layer is “less

2Confusingly, any recurrent layer in the form (E.13.10)-(E.13.11) is
an SSM, but in the neural network’s literature the term SSM has come
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expressive” than a standard recurrent layer (because of the
lack of non-linearities). However, this can be recovered by
adding activation functions after the output, or by
interleaving these layers with token-wise MLPs [ODG+23].

Interest in this class of models (re)-started in 2020, when
[GDE+20] analyzed a theoretical construction for the
matrix A in (E.13.18) that could efficiently compress
one-dimensional input sequences according to some
pre-defined reconstruction criterion. The result was called
the HiPPO (High-Order Polynomial Projection
Operator) matrix. A family of neural networks built by a
stack of SSM layers based on the HiPPO theory soon
followed, leading to the Structured State Space for
Sequence Modeling (S4) layer in 2021 [GGR22] and the
simplified S4 model (S5) in 2022 [SWL23].

Because of their roots in HiPPO theory, the proposed SSM
layers up to S4 considered a stack of 1D models, one for
each channel of the input, with transition matrices
initialized as HiPPO matrices. By contrast, S5 introduced a
standard multi-input, multi-output model of the form in
(E.13.18)-(E.13.19), which is the one we describe here. In
particular, we focus our analysis on a simplified variant
known as the linear recurrent unit (LRU) [OSG+23].

This formulation has a number of interesting properties,
mostly stemming from the associativity of the linear
transition function. To see this, we start by noting that the
recurrence has a closed form solution:

to be associated only with the linear variant. Sometimes we refer to
them as structured SSMs because, as we will see, we need to properly
constrain the transition matrix to make them effective.
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si =
i
∑

j=1

Ai− jBx j (E.13.20)

We can view this summation from two different points of
view. First, we can aggregate all coefficients with respect
to the input sequence into a rank-3 tensor:

K = stack
�

An−1B,An−2B, . . . ,AB,B
�

We can compute all outputs via a single 1D convolution
of filter size equal to the length of the sequence (a long
convolution) between the input sequence stacked into a
single matrix X∼ (n, c) and the pre-computed kernel K:

S= Conv1D(X, K)

Hence, the SSM layer can be interpreted as a convolution
[GJG+21]. If the transition matrix is applied on a single
channel, this can be exploited to speed-up computations
by operating in a frequency domain, e.g., in the FlashConv
implementation.3 However, a more efficient solution can
be found by exploiting a family of algorithms known as
associative (parallel) scans (or all-prefix-sums).

13.3.2 An interlude: associative scans

We introduce parallel scans in their general formulation
before seeing their application to linear SSMs. Consider
a sequence of elements (x1, x2, . . . , xn), and an operation
⋆ which is assumed binary (it acts on any two elements
of the sequence) and associative. We want to compute all

3
https://www.together.ai/blog/h3
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Figure F.13.3: Parallel scan
on a sequence of six elements:
circles of the same color can be
computed in parallel; dashed
circles are the outputs of the
parallel scan.

partial applications of this operator to the sequence (using
separate colors for readability):

x1, x1 ⋆ x2, x1 ⋆ x2 ⋆ x3, . . . , x1 ⋆ x2 ⋆ · · · ⋆ xn

This can be done trivially by an iterative algorithm which
computes the elements one-by-one, adding one element at
every iteration (this corresponds to how a standard
recurrent layer would be computed). However, we can
devise an efficient parallel algorithm by exploiting the
associativity of the operator ⋆ [Ble90]. The key intuition is
that multiple pairs of elements can be computed in
parallel and then aggregated recursively.

As a simple example, consider a sequence of 6 elements
x1, x2, x3, x4, x5, x6 (an in-depth example applied to SSMs
can be found in [SWL23]). We will denote by x̂ i the i-th
prefix we want to compute. The overall procedure is shown
schematically in Figure F.13.3. We first aggregate pairs of
adjacent values as:

s1 = x1 ⋆ x2→ x̂2

s2 = x3 ⋆ x4

s3 = x5 ⋆ x6
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where we use arrows to denote outputs of the algorithm.
We now perform a second level of aggregations:

s1 ⋆ x3→ x̂3

o1 = s1 ⋆ s2→ x̂4

And finally:

o1 ⋆ x5→ x̂5

o1 ⋆ s3→ x̂6

While this looks strange (we made 7 steps instead of 5), the
three blocks of computations can be trivially parallelized
if we have access to 3 separate threads. In general, by
organizing the set of computations in a balanced fashion,
we are able to compute the parallel scan in O (T log n),
where T is the cost of the binary operator ⋆. An example
of implementation is the associative scan function in JAX.4

It is easy to show that the transition function in a linear SSM
is an example of an all-prefix-sums problem. We define the
elements of our sequence as pairs x i = (A,Bxi), and the
binary operator as:

(Z,z) ⋆ (V,v) = (VZ,Vz+ v)

The prefixes of ⋆ are then given by [SWL23]:

x1 ⋆ x2 ⋆ . . . ⋆ x i = (A
i, si)

Hence, running a parallel scan gives us the powers of A as
the first elements of the output, and all the states of the
layer as the second element of the output. The complexity

4
https://jax.readthedocs.io/en/latest/_autosummary/jax.lax.

associative_scan.html
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332 Structured state space models

of this operation is upper bounded by the complexity of
Ai−1A, which scales as O (n3). To make the entire
procedure viable, we can constrain A so that its powers
can be computed more efficiently. This is the topic of the
next section.

13.3.3 Diagonal SSMs

A common strategy to make the previous ideas feasible
is to work with diagonal transition matrices (or diagonal
matrices plus a low-rank term [GGR22]). In this case,
powers of A can be computed easily by taking powers of
the diagonal entries in linear time. In addition, as we will
see, working with diagonal matrices allows us to control
the dynamics of the transition function to avoid numerical
instabilities.

In particular, a square matrix A is said to be diagonalizable
if we can find another square (invertible) matrix P and a
diagonal matrix Λ such that:

A= PΛP−1 (E.13.21)

Diagonalizable matrices are (in a sense) “simpler” that
generic matrices, For example, if such a decomposition
exists, it is easy to show that powers can also be computed
efficiently as:

Ai = PΛiP−1

Suppose that the transition matrix is diagonalizable. Then,
we can re-write the SSM in an equivalent form having
a diagonal transition matrix. We begin by substituting
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(E.13.21) into the definition of the SSM and multiplying
on both sides by P−1:

P−1si =
i
∑

j=1

Λi− j PB x j

New state vector s̄i New input-state matrix B̄

We now rewrite the readout function in terms of the new
variable s̄:

yi = CP s̄i +Dxi

New readout matrix C̄

Putting everything together:

s̄i = Λs̄i−1 + B̄xi (E.13.22)

yi = C̄s̄i +Dxi (E.13.23)

Hence, whenever a diagonalization of A exists, we can
always rewrite the SSM into an equivalent form having a
diagonal transition matrix. In this case, we can directly
train the four matrices Λ = diag(λ),λ ∼ (e), B̄ ∼ (e, c),
C̄ ∼ (o, e) and D ∼ (o, c), with the diagonal matrix being
parameterized by a single vector of dimension e.

Not all matrices can be diagonalized. However, an
approximate diagonalization can always be found if one
allows for matrices P and Λ to have complex-valued
entries [OSG+23]. Care must be taken to parameterize the
values over the diagonal so that the eigenvalues of the
transition matrix stay < 1 in absolute value, to avoid
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diverging dynamics. We refer to [OSG+23] for a
description of both points and for a complete analysis of
the resulting LRU layer.

13.4 Additional variants

Balancing the different strengths of convolutions,
recurrence, and attention is an active research topic. To
close the book, we list some recurrent layers (or layers
that can be interpreted as recurrent) that have been
introduced very recently in the literature.

13.4.1 Attention-free transformers

One issue of the linearized transformer model (Section
13.1.1) is the quadratic complexity in the feature dimension
e. The attention-free transformer (ATF) was introduced as
a variant of the basic attention layer that is instead linear
in both sequence length and in the number of features
[ZTS+21].

The core idea is to replace the dot product interactions
between keys, query, and values with a simpler
multiplicative interaction (element-wise):

hi = σ(qi)⊙

∑

j exp
�

k j

�

⊙ v j
∑

j exp
�

k j

� (E.13.24)

This is similar to the self-attention layer, except that we
replace all dot products with element-wise (Hadamard)
multiplications. It is also inspired by the linearized
attention layer in that the query is only used as a global
modulation factor, in this case after normalizing it with a
sigmoid operation. In fact, we can recover a standard
attention formulation by rewriting (E.13.24) for a single
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dimension z (exploiting the fact that we only perform
element-wise operations):

hiz =
σ(qiz)

∑

j exp(k jz)
∑

j exp(k jz)
v jz

Hence, the ATF layer can be re-interpreted as a
channel-wise variant of attention, in the sense that for
every channel we can rewrite it as an attention operation
over the elements of the sequence. To increase flexibility,
[ZTS+21] also considered adding relative embeddings
W∼ (m, m) (where m is the maximum allowed length of
the sequences):

hi = σ(qi)⊙

∑

j exp
�

k j +Wi j

�

⊙ v j
∑

j exp
�

k j +Wi j

� (E.13.25)

The relative embeddings can also be trained via a low-
rank factorization to reduce the number of parameters.
See [ZTS+21] for this and for additional variants of the
basic ATF layer (e.g., hybridizing it with convolutional
operations). We can also convert (E.13.24) to a causal
(recurrent) variant by properly restricting the summation.

13.4.2 The Receptance Weighted Key Value
(RWKV) model

The RWKV model [PAA+23] extends the ATF layer by
incorporating a few additional architectural modifications.
At the time of writing, this is one of the only pre-trained
RNNs matching transformers at the largest scale, so we
describe it in more detail. First, the relative embeddings
are simplified by considering a single vector w∼ (e) which
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is scaled for each offset:

wi j = −(i − j)w

In addition, experiments showed that having a separate
offset u (in place of w) for the current element is beneficial.
Written in causal form, this gives:

hi =Wo

�

σ(qi)⊙

∑i−1
j=1 exp

�

k j +wi j

�

⊙ v j+exp (ki + u)⊙ vi
∑i−1

j=1 exp
�

k j +wi j

�

+exp (ki + u)

�

where we highlight the differences from the basic ATF layer
in red. The query is called the receptance in [PAA+23],
and an additional output projection Wo is added at the end.
Second, the RWKV model modifies the standard MLP in
the transformer block with a differently gated token-wise
block. For a given input token x this can be written as:

y= σ(W1x)⊙W2 max(0,W3x)2 (E.13.26)

where W1, W2, and W3 are trainable parameters. This
is a standard MLP except for the left-most gate and the
use of the squared ReLU. As a final modification, all three
projections in the first block (and also the two appearances
of x in (13.4.2)) are replaced with convex combinations of
xi and xi−1 to improve performance, which is called token
shift.

13.4.3 Selective state space models

We have seen three classes of recurrent models: standard
recurrent layers (and their gated versions), linearized
attention layers, and structured state space models.
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Figure F.13.4: Mamba block
(residual connections around
the block and normalization
are not shown). σ is the
sigmoid function. Adapted
from [GD23].

Linear

Convolution

Mamba SSM

Linear

Linear

Although they look different, it is relatively easy to move
from one class of models to the other. To see this, let us
consider a linearized attention layer where we ignore the
denominator:

Si = Si−1 +φ(ki)v
⊤
i (E.13.27)

hi = φ(qi)
⊤Si (E.13.28)

Apart from the matrix-valued state, we see this has the
form of a SSM layer, except that some matrices (e.g., C=
φ(qi)⊤) are not fixed but they depend on the specific input
token. From the point of view of dynamic systems, we say
that standard SSMs describe time-invariant systems, while
(E.13.27)-(E.13.28) describe a time-varying system. This
has inspired another class of SSM layers whose matrices
are not constrained to be time-invariant, which have been
called selective SSMs. Most of these models leverage the
idea of attention layers of projecting the input multiple
times before the layer’s computations.

As an example, we focus here on the so-called Mamba layer
[GD23] which, at the time of writing, is one of the few
SSM layers that was scaled to match the performance of
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transformer models at very large contexts and parameters’
counts. First, in order to make the SSM layer time-varying,
a subset of its matrices are made input-dependent:5

si = A(xi)si−1 + B(xi)xi (E.13.29)

hi = C(xi)si +Dxi (E.13.30)

where A(•), B(•), and C(•) are linear projections of their
input tokens. To make this feasible, the layer is applied to
each channel of the input independently, and the transition
matrix is selected as diagonal, so that all matrices of the
SSM can be represented with a single vector of values. This
layer looses a simple parallel scan implementation and
requires a customized hardware-aware implementation
[GD23]. It can be shown that the Mamba SSM variant and
several other SSM layers are degenerate case of a gated
recurrent layer [GJG+21, GD23].

To make the overall architecture simpler, Mamba avoids
alternating MLPs and SSMs, in favour of a gated
archicture (similar to the gated attention unit from
Section 11.3) where an MLP is used to weight the outputs
from the SSM. An additional depthwise convolution is
added for improved flexibility - see Figure F.13.4.

5The matrix D can be seen as a simple residual connection and
it is left untouched. The original layer has a slightly different
parameterization where A = exp(∆Ā), for some trainable Ā and input-
dependent scalar value ∆. This does not change our discussion.
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Goodbye (for now)

And so, Alice’s first trip in this differentiable wonderland
has come (for now) to an end. We only made a very broad
tour, with a focus on the many ways layers can be
designed and composed to create modern differentiable
models (a.k.a., neural networks).

There are many
topics we discussed
only briefly, including
how we can use these
models in practice: from
fine-tuning to generative
modeling, explainability,
and more. We
also skimmed on many
engineering aspects:
training and serving
large models is a huge engineering feat which requires,
among other things, distributed training strategies, fast
compilers, and DevOps techniques. And the emergence of
LLMs has opened up new avenues for their use where
knowledge of their inner workings is not even a
prerequisite, from prompt engineering to model chaining
and agentic behaviours.
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This book has a companion website,6 where I hope to
publish additional chapters that touch upon some of these
topics. If time allows, some of them may be joined
together in a new volume.

I hope you appreciated the journey! For comments,
suggestions, and feedback on the book do not hesitate to
contact me.

6
https://sscardapane.it/alice-book
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A | Probability theory

About this chapter

Machine learning deals with a wide array of uncertainties
(such as in the data collection phase), making the use of
probability fundamental. We review here - informally -
basic concepts associated with probability distributions
and probability densities that are helpful in the main text.
This appendix introduces many concepts, but many of
them should be familiar. For a more in-depth exposition
of probability in the context of machine learning and
neural networks, see [Bis06, BB23].

A.1 Basic laws of probability

Consider a simple lottery, where you can buy tickets with 3
possible outcomes: “no win”, “small win”, and “large win”.
For any 10 tickets, 1 of them will have a large win, 3 will
have a small win, and 6 will have no win. We can represent
this with a probability distribution describing the relative
frequency of the three events (we assume an unlimited
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342 Basic laws of probability

supply of tickets):

p(w= ‘no win’) = 6/10

p(w= ‘small win’) = 3/10

p(w= ‘large win’) = 1/10

Equivalently, we can associate an integer value w = {1, 2,3}
to the three events, and write p(w = 1) = 6/10, p(w =
2) = 3/10, and p(w = 3) = 1/10. We call w a random
variable. In the following we always write p(w) in place
of p(w = i) for readability when possible. The elements of
the probability distribution must be positive and they must
sum to one:

p(w)≥ 0,
∑

w

p(w) = 1

The space of all such vectors is called the probability
simplex.

Remember that we use p∼∆(n) to denote a vector
of size n belonging to the probability simplex.

Suppose we introduce a second random variable r, a binary
variable describing whether the ticket is real (1) or fake
(2). The fake tickets are more profitable but less probable
overall, as summarized in Table T.A.1.

We can use the numbers in the table to describe a joint
probability distribution, describing the probability of two
random variables taking a certain value jointly:

p(r = 2, w= 3) = 8/100

Alternatively, we can define a conditional probability
distribution, e.g., answering the question “what is the
probability of a certain event given that another event has
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Appendix A: Probability theory 343

Table T.A.1: Relative frequency of winning at an hypothetical
lottery, in which tickets can be either real or fake, shown for a set
of 100 tickets.

r = 1 (real ticket) r = 2 (fake ticket)

w= 1 (no win) 58 2
w= 2 (small win) 27 3
w= 3 (large win) 2 8

Sum 87 13

occurred?”:

p(r = 1 | w= 3) =
p(r = 1, w= 3)

p(w= 3)
= 0.2

This is called the product rule of probability. As before, we
can make the notation less verbose by using the random
variable in-place of its value:

p(r, w) = p(r | w)p(w) (E.A.1)

If p(r | w) = p(r) we have p(r, w) = p(r)p(w), and we
say that the two variables are independent. We can use
conditional probabilities to marginalize over one random
variable:

p(w) =
∑

r

p(w, r) =
∑

r

p(w | r)p(r) (E.A.2)

This is called the sum rule of probability. The product and
sum rules are the basic axioms that define the algebra of
probabilities. By combining them we obtain the
fundamental Bayes’s rule:
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344 Real-valued distributions

p(r | w) =
p(w | r)p(r)

p(w)
=

p(w | r)p(r)
∑

r ′ p(w | r ′)p(r ′)
(E.A.3)

Bayes’s rule allows us to “reverse” conditional distributions,
e.g., computing the probability that a winning ticket is real
or fake, by knowing the relative proportions of winning
tickets in both categories (try it).

A.2 Real-valued distributions

In the real-valued case, defining p(x) is more tricky,
because x can take infinitely possible values, each of
which has probability 0 by definition. However, we can
work around this by defining a probability cumulative
density function (CDF):

P(x) =

∫ x

0

p(t)d t

and defining the probability density function p(x) as its
derivative. We ignore most of the subtleties associated with
working with probability densities, which are best tackled
in the context of measure theory [BR07]. We only note
that the product and sum rules continue to be valid in this
case by suitably replacing sums with integrals:

p(x , y) = p(x | y)p(y) (E.A.4)

p(x) =

∫

y

p(x | y)p(y)d y (E.A.5)

Note that probability densities are not constrained to be
less than one.
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A.3 Common distributions

The previous random variables are example of categorical
probability distributions, describing the situation in which
a variable can take one out of k possible values. We can
write this down compactly by defining as p ∼ ∆(k) the
vector of probabilities, and by x ∼ Binary(k) a one-hot
encoding of the observed class:

p(x) = Cat(x;p) =
∏

i

px i
i

We use a semicolon to differentiate the input of the
distribution from its parameters. If k = 2, we can
equivalently rewrite the distribution with a single scalar
value p. The resulting distribution is called a Bernoulli
distribution:

p(x) = Bern(x; p) = px(1− p)(1−x)

In the continuous case, we will deal repeatedly with the
Gaussian distribution, denoted by N (x;µ,σ2), describing
a bell-shaped probability centered in µ (the mean) and
with a spread of σ2 (the variance):

p(x) =N (x;µ,σ2) =
1

p
2πσ2

exp
�

−
1
2

� x −µ
σ

�2�

345



346 Moments and expected values

In the simplest case of mean zero and unitary variance,
µ= 0, σ2 = 1, this is also called the normal distribution.
For a vector x∼ (k), a multivariate variant of the Gaussian
distribution is obtained by considering a mean vector µ∼
(k) and a covariance matrix Σ∼ (k, k):

p(x) =N (x;µ,Σ) =

(2π)−k/2 det(Σ)−1/2 exp
�

(x−µ)⊤Σ−1(x−µ)
�

Two interesting cases are Gaussian distributions with a
diagonal covariance matrix, and the even simpler isotropic
Gaussian having a diagonal covariance with all entries
identical:

Σ= σ2I

The first can be visualized as an axis-aligned ellipsoid, the
isotropic one as an axis-aligned sphere.

A.4 Moments and expected values

In many cases we need to summarize a probability
distribution with one or more values. Sometimes a finite
number of values are enough: for example, having access
to p for a categorical distribution or to µ and σ2 for a
Gaussian distribution completely describe the distribution
itself. These are called sufficient statistics.

More in general, for any given function f (x) we can define
its expected value as:

Ep(x) [ f (x)] =
∑

x

f (x)p(x) (E.A.6)
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In the real-valued case, we obtain the same definition by
replacing the sum with an integral. Of particular interest,
when f (x) = x p we have the moments (of order p) of the
distribution, with p = 1 called the mean of the distribution:

Ep(x) [x] =
∑

x

x p(x)

We may want to estimate some expected values despite not
having access to the underlying probability distribution. If
we have access to a way of sampling elements from p(x),
we can apply the so-called Monte Carlo estimator:

Ep(x) [ f (x)]≈
1
n

∑

x i∼p(x)

f (x i) (E.A.7)

where n controls the quality of the estimation and we use
x i ∼ p(x) to denote the operation of sampling from the
probability distribution p(x). For the first-order moment,
this reverts to the very familiar notation for computing the
mean of a quantity from several measurements:

Ep(x) [x] =
1
n

∑

x i∼p(x)

x i

A.5 Distance between distributions

At times we may also require some form of distance
between probability distributions, in order to evaluate how
close two distributions are. The Kullback-Leibler (KL)
divergence between p(x) and q(x) is a common choice:
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KL(p ∥ q) =

∫

p(x) log
p(x)
q(x)

d x

The KL divergence is not a proper metric (it is asymmetric
and does not respect the triangle inequality). It is lower
bounded at 0, but it is not upper bounded. The divergence
can only be defined if for any x such that q(x) = 0, then
p(x) = 0 (i.e., the support of p is a subset of the support
of q). The minimum of 0 is achieved whenever the two
distributions are identical. The KL divergence can be
written as an expected value, hence it can be estimated via
Monte Carlo sampling as in (E.A.7).

A.6 Maximum likelihood estimation

Monte Carlo sampling shows that we can estimate
quantities of interest concerning a probability distribution
if we have access to samples from it. However, we may be
interested in estimating the probability distribution itself.
Suppose we have a guess about its functional form f (x; s),
where s are the sufficient statistics (e.g., mean and
variance of a Gaussian distribution), and a set of n
samples x i ∼ p(x). We call these samples identical
(because they come from the same probability
distribution) and independently distributed, in short, i.i.d.
Because of independence, their joint distribution
factorizes for any choice of s:

p(x1, . . . , xn) =
n
∏

i=1

f (x i; s)

Large products are inconvenient computationally, but we
can equivalently rewrite this as a sum through a logarithmic
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transformation:

L(s) =
n
∑

i=1

log( f (x i; s))

Finding the parameters s that maximize the previous
quantity is called the maximum likelihood (ML)
approach. Because of its importance, we reframe it briefly
below.

Definition D.A.1 (Maximum likelihood)

Given a parametric family of probability distributions
f (x; s), and a set of n values {x i}

n
i=1 which are i.i.d.

samples from an unknown distribution p(x), the best
approximation to p(x) according to the maximum
likelihood (ML) principle is:

s∗ = argmax
s

n
∑

i=1

log( f (x i; s))

If f is differentiable, we can maximize the objective through
gradient descent. This is the core approach we follow
for training differentiable models. For now, we close the
appendix by describing simple examples of ML estimation
in the case of standard probability distributions. We do
not provide worked out calculations, for which we refer to
[Bis06, BB23].

Maximum likelihood for the Bernoulli distribution

Consider first the case of a Bernoulli distribution with
unknown parameter p. In this case, the ML estimator is:
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p∗ =

∑

i x i

n

which is the ratio of positive samples over the entire dataset.

Maximum likelihood for the Gaussian distribution

For the Gaussian distribution, we can rewrite its log
likelihood as:

L(µ,σ2) = −
n
2

log(2πσ2)−
1

2σ2

n
∑

i=1

(x i −µ)2

Maximizing for µ and σ2 separately returns the known
rules for computing the empirical mean and variance of a
Gaussian distribution:

µ∗ =
1
n

∑

i

x i (E.A.8)

σ2∗ =
1
n

∑

i

(x i −µ∗)2 (E.A.9)

The two can be computed sequentially. Because we are
using an estimate for the mean inside the variance’s
formula, it can be shown the resulting estimation is
slightly biased. This can be corrected by modifying the
normalization term to 1

n−1 ; this is known as Bessel’s
correction.1 For large n, the difference between the two
variants is minimal.

1
https://en.wikipedia.org/wiki/Bessel%27s_correction

350

https://en.wikipedia.org/wiki/Bessel%27s_correction


B | 1D universal
approximation

About this chapter

While formally proving the universal approximation
theorem is beyond the scope of this book, it is helpful
to get an intuitive feeling for how such proofs can be
constructed. In this appendix we follow and extend the
visual intuitions from a 2019 online book chapter by M.
Nielsen,a to which we refer for an extended discussion
(and some interactive visualizations), especially for the
case of multi-dimensional inputs.

a
http://neuralnetworksanddeeplearning.com/chap4.html

We focus on the original approximation theorem by
Cybenko [Cyb89] which considers models having one
hidden layer with sigmoid activation functions. We also
restrict the analysis to functions with a single input and a
single output, that can be visualized easily. The reasoning
can be extended to other activation functions and to
higher dimensions.

The outline of this visual proof is relatively simple:
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352 Approximating a step function

1. As a first step, we show how to manually set the
weights of a model with a single neuron in the hidden
layer to approximate a step function.

2. Then, we proceed to show how adding another unit in
the hidden layer allows to approximate any function
which is constant over a small interval, and zero
everywhere else (we call these interval functions “bin”
functions).

3. Finally, we describe a simple procedure to
approximate a generic function by first binning it to
the desired accuracy, and then adding as many
neurons as needed to approximate all bins in turn.
For m bins we obtain a network with 2m neurons.
For a generic function with multiple inputs, this
number would grow exponentially in the number of
dimensions, making the proof non constructive in a
practical case.

B.1 Approximating a step function

To begin, let us consider a single neuron in the hidden
layer, in which case we can write the network’s equation
as (ignoring the output bias term, as it is not helpful in our
derivation):

f (x) = aσ(wx + s)

For the purposes of visualization, we rewrite this by adding
a minus sign on the bias, and we factor the multiplication
term on the entire input of σ (the two variants are clearly
equivalent):
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Figure F.B.1: A network
with a single neuron in
the hidden layer can be
visualized as a sigmoid with
controllable slope, center,
and amplitude. We show
here an example where
we fix the amplitude and
the center, but we vary the
slope.

s

x

a

a
σ

(w
(x
−
s)

)

w=0.1 w=1 w=5

f (x) = a σ( w (x − s )) (E.B.1)

Amplitude Slope Shift

This is similar to the “tunable” variant of sigmoid we
introduce in Section 5.4. In particular, in this formulation
a controls the amplitude of the sigmoid, w controls the
slope, and s shifts the function by a fixed amount.

We show in Figure F.B.1 several plots of (E.B.1), where we
fix a and s while varying w. As can be seen, by increasing
w the slope gets steeper. Fixing it to a very large constant
(say, w = 104), we are left with a very good approximation
to a step function, of which we can control the location
of the step (the s parameter) and the amplitude (the a
parameter), as shown in Figure F.B.2a.

B.2 Approximating a constant
function

If we add a second neuron with opposite amplitude (and
slightly shifted position), we can approximate a function
which is constant over a small interval (we call it a “bin”
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(a) 1 neuron
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(b) 2 neurons
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(c) 4 neurons

Figure F.B.2: (a) A neural network with one input, one hidden
neuron, and one output can approximate any step function (here
shown with a = 1 and s = 0.3). (b) With two hidden neurons and
one output we can approximate any function which is constant over
a small interval. (c) With four neurons, we can approximate any
function which is piecewise constant over two non-zero intervals.
Note that bins can be negative by defining a negative amplitude.

function). Defining a width ∆ we can write:

f (x) = aσ

�

w

�

x − s−
∆

2

��

− aσ

�

w

�

x − s+
∆

2

��

(E.B.2)

Go up [down] at s− ∆2 Go down [up] at s+ ∆2

where we recall that w is now a large constant, e.g., 104.
(E.B.2) describes a function (equivalent to a model with
one hidden layer having two neurons) which increases
by a at s − ∆

2 , is constant with value f (x) = a over the
interval

�

s− ∆2 , s+ ∆2
�

, and then decreases to 0 afterwards.
An example is shown in Figure F.B.2b.

For the following, we can rewrite the previous function
as f (x; a, s,∆) to highlight the dependence on the three
parameters a, s, and ∆.
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B.3 Approximating a generic
function

Because fa,s,∆(x) is effectively 0 outside the corresponding
interval, two functions defined over non-intersecting
intervals will not influence each other, i.e., the “bin”
function we just defined is highly localized. Hence, by
adding two additional neurons in the hidden layer we can
define a function which is constant over two separate
intervals (an example of which is shown in Figure F.B.2c):

f (x) = f (x; a1, s2,∆1) + f (x; a2, s2,∆2)

The rest of the proof is now trivial and proceeds by
binning the function we want to approximate in many
small intervals. Given any (continuous) function g(x)
over an interval (which we assume [0,1] for simplicity),
we first bin the input domain into m equispaced intervals,
where m controls the accuracy of the approximation (the
higher m, the better the approximation). Hence, the i-th
bin spans the interval:

Bi =
�

i
m
−
∆

2
,

i
m
+
∆

2

�

where ∆ is the size of each bin. For each bin, we compute
the average value of g(x) inside the interval itself:

gi =
1
∆

∫

x∈Bi

g(x)d x

Finally, we define a network with 2m neurons in the hidden
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(b) 15 bins
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(c) 50 bins

Figure F.B.3: Approximating g(x) = sin(x)
x in [0,10] with (a)

m= 5, (b) m= 15, and (c) m= 50 bins. The original function is
in red, the approximation (E.B.3) in green. The average squared
error in the three cases decreases exponentially (approximately
0.02, 0.002, and 0.00016).

layer, two for each bin. Each bin function is centered in
the bin and takes value gi:

f (x) =
m
∑

i=1

f

�

x; gi ,
i
m

,∆

�

(E.B.3)

The i-th bin is centered in i
m

(Approximated) constant value

We show in Figure F.B.3 an example of such approximation
in the case of g(x) = sin(x)

x for increasing number of bins
(m = 5, m = 15, m = 50). It should be clear that the MSE is
inversely proportional to m, and we can decrease the error
as much as desired by simply increasing the resolution of
the approximation.

Similar reasonings can be applied to multi-dimensional
inputs and different activation functions.1

1
http://neuralnetworksanddeeplearning.com/chap4.html
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and M. Tegmark. KAN: Kolmogorov-Arnold networks. arXiv preprint
arXiv:2404.19756, 2024. 119

[LZA23] H. Liu, M. Zaharia, and P. Abbeel. Ring attention with blockwise
transformers for near-infinite context. In Foundation Models for Decision
Making Workshop, NeurIPS, 2023. 273

[MCT+] H. Mao, Z. Chen, W. Tang, J. Zhao, Y. Ma, T. Zhao, N. Shah, M. Galkin,
and J. Tang. Position: Graph foundation models are already here. In
ICML. 312

[Met22] C. Metz. Genius makers: the mavericks who brought AI to Google, Facebook,
and the world. Penguin, 2022. 7

[MGMR24] L. Müller, M. Galkin, C. Morris, and L. Rampášek. Attending to graph
transformers. Transactions on Machine Learning Research, 2024. 310, 312

[MKS+20] J. Mukhoti, V. Kulharia, A. Sanyal, S. Golodetz, P. Torr, and P. Dokania.
Calibrating deep neural networks using focal loss. In NeurIPS, 2020. 98

[MRF+19] C. Morris, M. Ritzert, M. Fey, W. L. Hamilton, J. E. Lenssen, G. Rattan, and
M. Grohe. Weisfeiler and Leman go neural: Higher-order graph neural
networks. In AAAI Conference on Artificial Intelligence, volume 33, pages
4602–4609, 2019. 308

[MRT18] M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of machine
learning. MIT Press, 2018. 60

363



364 Bibliography

[MSC+13] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed
representations of words and phrases and their compositionality. In
NeurIPS, 2013. 56

[MZBG18] G. Marra, D. Zanca, A. Betti, and M. Gori. Learning neuron non-linearities
with kernel-based deep neural networks. arXiv preprint arXiv:1807.06302,
2018. 118

[NCN+23] V. Niculae, C. F. Corro, N. Nangia, T. Mihaylova, and A. F. Martins. Discrete
latent structure in neural networks. arXiv preprint arXiv:2301.07473,
2023. 125

[ODG+23] A. Orvieto, S. De, C. Gulcehre, R. Pascanu, and S. L. Smith. On the
universality of linear recurrences followed by nonlinear projections. In
HLD 2023 Workshop, ICML, 2023. 328

[ODZ+16] A. v. d. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves,
N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. WaveNet: A generative
model for raw audio. In ISCA SSW Workshop, 2016. 186, 191, 194

[OSG+23] A. Orvieto, S. L. Smith, A. Gu, A. Fernando, C. Gulcehre, R. Pascanu, and
S. De. Resurrecting recurrent neural networks for long sequences. In
ICML, 2023. 328, 333, 334

[PAA+23] B. Peng, E. Alcaide, Q. Anthony, A. Albalak, S. Arcadinho, H. Cao, X. Cheng,
M. Chung, M. Grella, K. K. GV, et al. RWKV: Reinventing RNNs for the
transformer era. In EMNLP. ACL, 2023. 335, 336

[PABH+21] O. Puny, M. Atzmon, H. Ben-Hamu, I. Misra, A. Grover, E. J. Smith, and
Y. Lipman. Frame averaging for invariant and equivariant network design.
arXiv preprint arXiv:2110.03336, 2021. 167

[PBE+22] A. Power, Y. Burda, H. Edwards, I. Babuschkin, and V. Misra. Grokking:
Generalization beyond overfitting on small algorithmic datasets. In 1st
Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR,
2022. 3, 210

[PBL20] T. Poggio, A. Banburski, and Q. Liao. Theoretical issues in deep networks.
Proceedings of the National Academy of Sciences, 117(48):30039–30045,
2020. 60

[PGCB14] R. Pascanu, C. Gulcehre, K. Cho, and Y. Bengio. How to construct deep
recurrent neural networks. In ICLR, 2014. 320

[PKP+19] G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter. Continual
lifelong learning with neural networks: A review. Neural Networks,
113:54–71, 2019. 57

[PNR+21] G. Papamakarios, E. Nalisnick, D. J. Rezende, S. Mohamed, and
B. Lakshminarayanan. Normalizing flows for probabilistic modeling and
inference. Journal of Machine Learning Research, 22(57):1–64, 2021. 233

[PP08] K. B. Petersen and M. S. Pedersen. The matrix cookbook. Technical
University of Denmark, 2008. 36

[PPVF21] S. Pesme, L. Pillaud-Vivien, and N. Flammarion. Implicit bias of SGD for
diagonal linear networks: a provable benefit of stochasticity. In NeurIPS,
2021. 108

[PRCB24] A. Patel, C. Raffel, and C. Callison-Burch. Datadreamer: A tool for
synthetic data generation and reproducible LLM workflows. In ACL.
ACL, 2024. 211

[Pri23] S. J. Prince. Understanding Deep Learning. MIT Press, 2023. 12

364



Appendix B: Bibliography 365

[PS+03] T. Poggio, S. Smale, et al. The mathematics of learning: Dealing with
data. Notices of the AMS, 50(5):537–544, 2003. 60

[PSL22] O. Press, N. A. Smith, and M. Lewis. Train short, test long: Attention with
linear biases enables input length extrapolation. In ICLR, 2022. 258

[QPF+24] S. Qiu, A. Potapczynski, M. Finzi, M. Goldblum, and A. G. Wilson. Compute
better spent: Replacing dense layers with structured matrices. arXiv
preprint arXiv:2406.06248, 2024. 161

[RBOB18] M. Ravanelli, P. Brakel, M. Omologo, and Y. Bengio. Light gated recurrent
units for speech recognition. IEEE Transactions on Emerging Topics in
Computational Intelligence, 2(2):92–102, 2018. 326

[RGD+22] L. Rampášek, M. Galkin, V. P. Dwivedi, A. T. Luu, G. Wolf, and D. Beaini.
Recipe for a general, powerful, scalable graph transformer. In NeurIPS,
2022. 310

[RHM86] D. E. Rumelhart, G. E. Hinton, and J. L. McClelland. A general framework
for parallel distributed processing. In Parallel Distributed Processing Volume
1. MIT Press, 1986. 8

[RKG+22] D. W. Romero, D. M. Knigge, A. Gu, E. J. Bekkers, E. Gavves, J. M. Tomczak,
and M. Hoogendoorn. Towards a general purpose CNN for long range
dependencies in nD. arXiv preprint arXiv:2206.03398, 2022. 242

[RKX+23] A. Radford, J. W. Kim, T. Xu, G. Brockman, C. McLeavey, and I. Sutskever.
Robust speech recognition via large-scale weak supervision. In ICML,
2023. 277, 278

[RM22] J. W. Rocks and P. Mehta. Memorizing without overfitting: Bias, variance,
and interpolation in overparameterized models. Physical Review Research,
4(1):013201, 2022. 210

[RS21] M. N. Rabe and C. Staats. Self-attention does not need O (n2) memory.
arXiv preprint arXiv:2112.05682, 2021. 272

[RSR+20] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou,
W. Li, and P. J. Liu. Exploring the limits of transfer learning with a
unified text-to-text transformer. The Journal of Machine Learning Research,
21(1):5485–5551, 2020. 275

[RWC+19] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al.
Language models are unsupervised multitask learners. OpenAI blog, 2019.
55, 270, 275

[RZL17] P. Ramachandran, B. Zoph, and Q. V. Le. Searching for activation functions.
arXiv preprint arXiv:1710.05941, 2017. 117

[SAL+24] J. Su, M. Ahmed, Y. Lu, S. Pan, W. Bo, and Y. Liu. Roformer:
Enhanced transformer with rotary position embedding. Neurocomputing,
568:127063, 2024. 258

[Sch15] J. Schmidhuber. Deep learning in neural networks: An overview. Neural
Networks, 61:85–117, 2015. 327

[SCHU17] S. Scardapane, D. Comminiello, A. Hussain, and A. Uncini. Group sparse
regularization for deep neural networks. Neurocomputing, 241:81–89,
2017. 208

[SGT+08] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini.
The graph neural network model. IEEE Transactions on Neural Networks,
20(1):61–80, 2008. 321

[Sha19] N. Shazeer. Fast transformer decoding: One write-head is all you need.
arXiv preprint arXiv:1911.02150, 2019. 279

365



366 Bibliography

[Sha20] N. Shazeer. GLU variants improve transformer. arXiv preprint
arXiv:2002.05202, 2020. 119

[SHK+14] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The
Journal of Machine Learning Research, 15(1):1929–1958, 2014. 215

[SHW21] V. G. Satorras, E. Hoogeboom, and M. Welling. E(n) equivariant graph
neural networks. In ICML, 2021. 309

[SKF+99] Y. Shibata, T. Kida, S. Fukamachi, M. Takeda, A. Shinohara, T. Shinohara,
and S. Arikawa. Byte pair encoding: A text compression scheme that
accelerates pattern matching. 1999. 181

[SKZ+21] A. Steiner, A. Kolesnikov, X. Zhai, R. Wightman, J. Uszkoreit, and L. Beyer.
How to train your ViT? data, augmentation, and regularization in vision
transformers. Transactions on Machine Learning Researc, 2021. 281

[SLJ+15] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In
IEEE CVPR, 2015. 166

[SMDH13] I. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the importance of
initialization and momentum in deep learning. In ICML, 2013. 46

[SP97] M. Schuster and K. K. Paliwal. Bidirectional recurrent neural networks.
IEEE Transactions on Signal Processing, 45(11):2673–2681, 1997. 320

[SSBD14] S. Shalev-Shwartz and S. Ben-David. Understanding machine learning:
From theory to algorithms. Cambridge University Press, 2014. 60

[Sti81] S. M. Stigler. Gauss and the invention of least squares. The Annals of
Statistics, pages 465–474, 1981. 8

[SVL14] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with
neural networks. In NeurIPS, 2014. 266

[SVVTU19] S. Scardapane, S. Van Vaerenbergh, S. Totaro, and A. Uncini. Kafnets:
Kernel-based non-parametric activation functions for neural networks.
Neural Networks, 110:19–32, 2019. 118

[SW17] S. Scardapane and D. Wang. Randomness in neural networks: an overview.
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery,
7(2):e1200, 2017. 317

[SWF+15] S. Sukhbaatar, J. Weston, R. Fergus, et al. End-to-end memory networks.
In NeurIPS, 2015. 268

[SWL23] J. T. Smith, A. Warrington, and S. W. Linderman. Simplified state space
layers for sequence modeling. In ICLR, 2023. 328, 330, 331

[TCB+24] M. Tiezzi, M. Casoni, A. Betti, M. Gori, and S. Melacci. State-space
modeling in long sequence processing: A survey on recurrence in the
transformer era. arXiv preprint arXiv:2406.09062, 2024. 315

[TEM23] M. Tschannen, C. Eastwood, and F. Mentzer. GIVT: Generative infinite-
vocabulary transformers. arXiv preprint arXiv:2312.02116, 2023. 277

[TGJ+15] J. Tompson, R. Goroshin, A. Jain, Y. LeCun, and C. Bregler. Efficient object
localization using convolutional networks. In IEEE/CVF CVPR, 2015. 221

[THK+21] I. O. Tolstikhin, N. Houlsby, A. Kolesnikov, L. Beyer, X. Zhai, T. Unterthiner,
J. Yung, A. Steiner, D. Keysers, J. Uszkoreit, et al. MLP-Mixer: An all-MLP
architecture for vision. In NeurIPS, 2021. 279

[TLI+23] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix,
B. Rozière, N. Goyal, E. Hambro, F. Azhar, et al. Llama: Open and efficient

366



Appendix B: Bibliography 367

foundation language models. arXiv preprint arXiv:2302.13971, 2023. 3,
56, 275, 280

[TNHA24] D. Teney, A. M. Nicolicioiu, V. Hartmann, and E. Abbasnejad. Neural
redshift: Random networks are not random functions. In IEEE/CVF CVPR,
2024. 108

[Unc15] A. Uncini. Fundamentals of adaptive signal processing. Springer, 2015.
162

[Vap13] V. Vapnik. The nature of statistical learning theory. Springer Science &
Business Media, 2013. 60
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