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Definition

Definition: Convolution

If f and g are discrete functions, then f x g is the convolution of f
and g and is defined as:

(f x g)(x Z f(u)g(x —u)

u=—0o0

Intuitively, the convolution of two functions represents the amount
of overlap between the two functions. The function g is the input,
f the kernel of the convolution.

Convolutions are often used for filtering, both in the temporal or
frequency domain (one dimensional) and in the spatial domain
(two dimensional).
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Definition

Theorem: Properties of Convolution

If £, g, and h are functions and a is a constant, then:

o fxg=gx*f (commutativity)
o fx(g=h)=(f xg)=h (associativity)
o fx(g+h)=(fxg)+ (f = h) (distributivity)

e a(f xg) = (af) x g = f x (ag) (associativity with scalar
multiplication)

Note that it doesn't matter if g or f is the kernel, due to
commutativity.
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Convolution of Vectors

If a function f ranges over a finite set of values a = a1, ap, ..., a,,
then it can be represented as vector [al a ... a,,].

Definition: Convolution of Vectors

If the functions f and g are represented as vectors
a=[ay a ... amjandb=[by b, ... by], then fxgisa
vector ¢ = [cl c ... cm+,,,1] as follows:

Cx = Z aubx—u—s—l
u

where u ranges over all legal subscripts for a, and by_,+1,
specifically u = max(1,x — n+1)...min(x, m).
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Convolution of Vectors

If we assume that the two vectors a and b have the same
dimensionality, then the convolution c is:

G = albl
C = arby + axby
c3 = aibs + axby + azb;

Cph = aib, + acbp—1+--- 4+ anby

Con—1 = anbp

Note that the sum for each component only includes those
products for which the subscripts are valid.
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Convolution of Vectors

1 0
Assumea= | 0 | ,b= |1].
-1 2
Then
albl
albz SN a2b1
axb= |aibs+ axby + azb;| =
axbz + azby
a3b3

1-0 0
1-140-0 1
1.240-14+(-1)0| = | 2
0-2+(-1)1 -1
(—1)2 —2
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Mid-lecture Problem

What happens if the kernel is smaller than the input vector (this is
actually the typical case)?

_1
Assume a = [ 12} b= 1 . Compute a *b.
2

What is the purpose of the kernel a?
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Convolution of Matrices

We can extend convolution to functions of two variables f(x, y)
and g(x,y).

Definition: Convolution for Functions of two Variables

If f and g are discrete functions of two variables, then f x g is the
convolution of f and g and is defined as:

“+o00

(Fxg)(x,y) = Z Z f(u,v)g(x —u,y —v)

U=——0o00 Vv=—00
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Convolution of Matrices

We can regard functions of two variables as matrices with
Axy = f(x,y), and obtain a matrix definition of convolution.

Definition: Convolution of Matrices

If the functions f and g are represented as the n x m matrix A and
the k x | matrix B, then fxgisan (n+k—1) x (m+/—1)

matrix C:
Cxy = § g auva7u+1,y7v+1
u v

where u and v range over all legal subscripts for a,, and
bx7u+1,y7v+1-

Note: the treatment of subscripts can vary from implementation to
implementation, and affects the size of C (this is parameterizable in
Matlab, see documentation of conv2 function).
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Convolution of Matrices

bi1 bz biz bis bis

ail are a3
b b b b b
Let A = ar1 ax a3z and B = 21 22 o 24 Z=
bs1 b3y b3z b3s bss

a3] amp a
3t 932 933 ba1  bap bsz bag  bys

Then for C = A x B, the entry ¢33 = aj1b3z + aipbsp + aizbs +
a21bo3 + axobon + ax3bo1 + az1b13 + aszb1o + aszbia.

Here, B could represent an image, and A could represent a kernel
performing an image operation, for instance.
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Example: Image Processing

Convolving and image with a kernel (typically a 3 x 3 matrix) is a
powerful tool for image processing.

B= Kx*B=
1/9 1/9 1/9

K=11/9 1/9 1/9| implements a mean filter which smooths an
1/9 1/9 1/9

image by replacing each pixel value with the mean of its neighbors.
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Example: Image Processing

1 0 -1
The kernel K = |2 0 —2| implements the Sobel edge detector.
1 0 -1

It detects gradients in the pixel values (sudden changes in brightness),
which correspond to edges. The example is for vertical edges.
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Definition

We can also define convolution for continuous functions. In this
case, we replace the sums by integrals in the definition.

Definition: Convolution

If f and g are continuous functions, then f x g is the convolution
of f and g and is defined as:

(800 = [ gl uyde

—00

Convolutions of continuous functions are widely used in signal
processing for filtering continuous signals, e.g., speech.
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Example

Assume the following step functions:

_ 3 ifosx<4 1 if —1<x<1
g(x) = 0 otherwise (x) = 0 otherwise
0 ifx<O0
If we integrate g(x), we get: G(x) =¢ 3x if0<x<4 .
12 if x> 4

Then the convolution f x g is:
[e'S) 1
(F*g)(x) = [ f(u)g(x — u)du = § [*, g(x — u)du =

—1 [ g(u)du = ~3(G(x — 1) - G(x+1)) =
3(x+1) if —1<x<1
3 if1<x<3
—3(x-1)+6 f3<x<5
0 otherwise
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Function g(x) (blue) and convolution f x g(x) (green):

4

35 B
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Example: Signal Processing

Assume we have a function /(x) that represents the intensity of a
signal over time. This can be a very spiky function.

We can make this function less spiky by convolving it with a
Gaussian kernel. This is a kernel given by the Gaussian function:
1 1
G(x) = —=e2¥
) V2m
The convolution G * | is a smoothed version of the original
intensity function.

2

We will learn more about the Gaussian function (aka normal
distribution) in the second half of this course.
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Example: Signal Processing

Gaussian function G(x):

0.4
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Example: Signal Processing

Original intensity function /(x):
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Example: Signal Processing

Smoothed function obtained by convolution with a Gaussian kernel:
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Summary

@ The convolution (f % g)(x) =Y f(u)g(x — u) represents the
overlap between a discrete function g and a kernel f;

@ convolutions in one dimension can be represented as vectors,
convolutions in two dimensions as matrices;

@ in image processing, two dimensional convolution can be used
to filter an image or for edge detection;

@ for continuous functions, convolution is defined as
(f « &)(x) = [ f(u)g(x — u)du;
@ this can be used in signal processing, e.g., to smooth a signal.
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