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Definition: Convolution

If f and g are discrete functions, then f ∗ g is the convolution of f
and g and is defined as:

(f ∗ g)(x) =
+∞∑

u=−∞
f (u)g(x − u)

Intuitively, the convolution of two functions represents the amount
of overlap between the two functions. The function g is the input,
f the kernel of the convolution.

Convolutions are often used for filtering, both in the temporal or
frequency domain (one dimensional) and in the spatial domain
(two dimensional).
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Theorem: Properties of Convolution

If f , g , and h are functions and a is a constant, then:

f ∗ g = g ∗ f (commutativity)

f ∗ (g ∗ h) = (f ∗ g) ∗ h (associativity)

f ∗ (g + h) = (f ∗ g) + (f ∗ h) (distributivity)

a(f ∗ g) = (af ) ∗ g = f ∗ (ag) (associativity with scalar
multiplication)

Note that it doesn’t matter if g or f is the kernel, due to
commutativity.
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Convolution of Vectors

If a function f ranges over a finite set of values a = a1, a2, . . . , an,
then it can be represented as vector

[
a1 a2 . . . an

]
.

Definition: Convolution of Vectors

If the functions f and g are represented as vectors
a =

[
a1 a2 . . . am

]
and b =

[
b1 b2 . . . bn

]
, then f ∗ g is a

vector c =
[
c1 c2 . . . cm+n−1

]
as follows:

cx =
∑
u

aubx−u+1

where u ranges over all legal subscripts for au and bx−u+1,
specifically u = max(1, x − n + 1) . . .min(x ,m).

Frank Keller Computational Foundations of Cognitive Science 5



Convolutions of Discrete Functions
Convolutions of Continuous Functions

Definition
Convolution of Vectors
Mid-lecture Problem
Convolution of Matrices

Convolution of Vectors

If we assume that the two vectors a and b have the same
dimensionality, then the convolution c is:

c1 = a1b1

c2 = a1b2 + a2b1

c3 = a1b3 + a2b2 + a3b1

. . .
cn = a1bn + a2bn−1 + · · ·+ anb1

. . .
c2n−1 = anbn

Note that the sum for each component only includes those
products for which the subscripts are valid.
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Convolution of Vectors

Example

Assume a =

 1
0
−1

 ,b =

0
1
2

.

Then

a ∗ b =


a1b1

a1b2 + a2b1

a1b3 + a2b2 + a3b1

a2b3 + a3b2

a3b3

 =


1 · 0

1 · 1 + 0 · 0
1 · 2 + 0 · 1 + (−1)0

0 · 2 + (−1)1
(−1)2

 =


0
1
2
−1
−2

.
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Mid-lecture Problem

What happens if the kernel is smaller than the input vector (this is
actually the typical case)?

Assume a =

[
−1

2
1
2

]
,b =



1
1
1
−1
−1
−1

. Compute a ∗ b.

What is the purpose of the kernel a?
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Convolution of Matrices

We can extend convolution to functions of two variables f (x , y)
and g(x , y).

Definition: Convolution for Functions of two Variables

If f and g are discrete functions of two variables, then f ∗ g is the
convolution of f and g and is defined as:

(f ∗ g)(x , y) =
+∞∑

u=−∞

+∞∑
v=−∞

f (u, v)g(x − u, y − v)
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Convolution of Matrices

We can regard functions of two variables as matrices with
Axy = f (x , y), and obtain a matrix definition of convolution.

Definition: Convolution of Matrices

If the functions f and g are represented as the n×m matrix A and
the k × l matrix B, then f ∗ g is an (n + k − 1)× (m + l − 1)
matrix C :

cxy =
∑
u

∑
v

auvbx−u+1,y−v+1

where u and v range over all legal subscripts for auv and
bx−u+1,y−v+1.

Note: the treatment of subscripts can vary from implementation to
implementation, and affects the size of C (this is parameterizable in
Matlab, see documentation of conv2 function).
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Convolution of Matrices

Example

Let A =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 and B =


b11 b12 b13 b14 b15

b21 b22 b23 b24 b25

b31 b32 b33 b34 b35

b41 b42 b43 b44 b45

.

Then for C = A ∗ B, the entry c33 = a11b33 + a12b32 + a13b31 +
a21b23 + a22b22 + a23b21 + a31b13 + a32b12 + a33b11.

Here, B could represent an image, and A could represent a kernel
performing an image operation, for instance.
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Example: Image Processing

Convolving and image with a kernel (typically a 3× 3 matrix) is a
powerful tool for image processing.

B = K ∗ B =

K =

1/9 1/9 1/9
1/9 1/9 1/9
1/9 1/9 1/9

 implements a mean filter which smooths an

image by replacing each pixel value with the mean of its neighbors.
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Example: Image Processing

B = K ∗ B =

The kernel K =

1 0 −1
2 0 −2
1 0 −1

 implements the Sobel edge detector.

It detects gradients in the pixel values (sudden changes in brightness),
which correspond to edges. The example is for vertical edges.
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Definition

We can also define convolution for continuous functions. In this
case, we replace the sums by integrals in the definition.

Definition: Convolution

If f and g are continuous functions, then f ∗ g is the convolution
of f and g and is defined as:

(f ∗ g)(x) =

∫ +∞

−∞
f (u)g(x − u)du

Convolutions of continuous functions are widely used in signal
processing for filtering continuous signals, e.g., speech.
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Example

Assume the following step functions:

g(x) =

{
3 if 0 ≤ x ≤ 4
0 otherwise

f (x) =

{
1
2 if − 1 ≤ x ≤ 1
0 otherwise

If we integrate g(x), we get: G (x) =

 0 if x ≤ 0
3x if 0 ≤ x ≤ 4
12 if x > 4

.

Then the convolution f ∗ g is:

(f ∗ g)(x) =
∫ +∞
−∞ f (u)g(x − u)du = 1

2

∫ 1

−1
g(x − u)du =

− 1
2

∫ x−1

x+1
g(u)du = − 1

2 (G (x − 1)− G (x + 1)) =
3
2 (x + 1) if − 1 ≤ x < 1
3 if 1 ≤ x ≤ 3
− 3

2 (x − 1) + 6 if 3 < x ≤ 5
0 otherwise
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Function g(x) (blue) and convolution f ∗ g(x) (green):
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Example: Signal Processing

Assume we have a function I (x) that represents the intensity of a
signal over time. This can be a very spiky function.

We can make this function less spiky by convolving it with a
Gaussian kernel. This is a kernel given by the Gaussian function:

G (x) =
1√
2π

e−
1
2
x2

The convolution G ∗ I is a smoothed version of the original
intensity function.

We will learn more about the Gaussian function (aka normal
distribution) in the second half of this course.
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Example: Signal Processing

Gaussian function G (x):
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Example: Signal Processing

Original intensity function I (x):
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Example: Signal Processing

Smoothed function obtained by convolution with a Gaussian kernel:
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Summary

The convolution (f ∗ g)(x) =
∑

f (u)g(x − u) represents the
overlap between a discrete function g and a kernel f ;

convolutions in one dimension can be represented as vectors,
convolutions in two dimensions as matrices;

in image processing, two dimensional convolution can be used
to filter an image or for edge detection;

for continuous functions, convolution is defined as
(f ∗ g)(x) =

∫
f (u)g(x − u)du;

this can be used in signal processing, e.g., to smooth a signal.
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