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This research breaks new ground in earthquake prediction for Los Angeles, California, by leveraging 
advanced machine learning and neural network models. We meticulously constructed a comprehensive 
feature matrix to maximize predictive accuracy. By synthesizing existing research and integrating 
novel predictive features, we developed a robust subset capable of estimating the maximum potential 
earthquake magnitude. Our standout achievement is the creation of a feature set that, when applied 
with the Random Forest machine learning model, achieves a high accuracy in predicting the maximum 
earthquake category within the next 30 days. Among sixteen evaluated machine learning algorithms, 
Random Forest proved to be the most effective. Our findings underscore the transformative potential 
of machine learning and neural networks in enhancing earthquake prediction accuracy, offering 
significant advancements in seismic risk management and preparedness for Los Angeles.

Accurately predicting earthquakes is crucial for mitigating risks and enhancing preparedness, especially 
in seismically active regions like Los Angeles. The ability to forecast seismic events with high accuracy can 
significantly impact disaster management strategies, reduce potential casualties, and minimize economic losses. 
In this context, our research contributes to the ongoing efforts to improve earthquake prediction using advanced 
machine learning and neural network techniques.

In a prior study, we developed a predictive pattern matrix for Los Angeles, achieving an accuracy rate of 
69.14% in predicting the maximum magnitude earthquake within one of six categories1. This initial success 
raised a critical question: could such predictive accuracies be replicated or even improved in other seismically 
active regions? To explore this, we extended our research to Istanbul, a city near the North Anatolian Fault, 
one of the most earthquake-prone regions globally, and achieved an accuracy of 91.65%2. Building on these 
promising results, we further refined our approach and achieved an accuracy rate of 98.53% for San Diego3.

Encouraged by these successful outcomes in San Diego and Istanbul, we revisited Los Angeles to determine 
if we could surpass the previous accuracy of 69.14%. This research answers that question affirmatively; we 
successfully predicted earthquakes for Los Angeles with an accuracy of 97.97%. The results demonstrate the 
potential for significant advancements in earthquake prediction accuracy using machine learning techniques, 
contributing to more effective disaster preparedness and response strategies.

The importance of this research lies in its ability to harness the power of machine learning and neural 
networks to improve the predictive accuracy of seismic events, thereby offering valuable insights for disaster 
management authorities and policymakers. By enhancing our understanding of seismic patterns and advancing 
earthquake prediction methodologies, this study aims to reduce the adverse impacts of earthquakes in highly 
populated urban areas.

In this study, we applied a variety of machine learning and neural network techniques to predict seismic 
events in Los Angeles, utilizing a comprehensive dataset that includes all recorded earthquakes over the past 12 
years. Through advanced feature engineering, we constructed a feature matrix incorporating critical predictive 
input variables informed by prior research. Previous studies have suggested various strategies to enhance 
earthquake prediction accuracy, such as identifying deep seismic patterns, testing different prediction models, 
and examining seismic frequency characteristics4–7. Building upon these foundational works, we developed and 
evaluated sixteen different machine learning and neural network algorithms to determine the most effective 
model for predicting the highest magnitude of potential earthquakes within a 30-day period.

Our findings are significant: the Random Forest model emerged as the top performer, achieving an accuracy 
of 97.97%. This high level of accuracy represents a considerable improvement over previous efforts, confirming 
the potential of machine learning techniques to enhance earthquake prediction capabilities.

Our research builds on a diverse array of studies in earthquake prediction spanning from 1990 to 2024.
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Olsen et al. (1995)8 emphasized significant ground velocities expected during earthquakes, particularly near 
fault lines and in regions like the Los Angeles basin, where prolonged shaking can occur. This highlights the 
importance of understanding seismic dynamics in specific geographical locations.

In the realm of machine learning applications for earthquake prediction, Asim et al. (2018)9 explored the use 
of support vector regressors and hybrid neural networks to develop a predictive model. Their focus on seismic 
regions such as Hindukush, Chile, and Southern California aligns with our interest in predicting earthquakes in 
Los Angeles, underscoring the relevance of regional seismic activity in predictive modeling.

Zhang et al. (2019)10 proposed a precursory pattern-based feature extraction technique to enhance 
earthquake prediction performance. This approach highlights the importance of extracting meaningful patterns 
from seismic data, resonating with our objective of creating a predictive pattern matrix for earthquakes in Los 
Angeles.

Bao et al. (2021)11 introduced an innovative method combining explicit and implicit features through 
deep learning-based electromagnetic signal analysis for earthquake magnitude prediction. This method offers 
valuable insights into improving prediction accuracy, aligning with our goal of enhancing forecasting precision.

Advanced neural network models, such as the graph convolutional neural network proposed by Bilal et al. 
(2022)12, can significantly enhance earthquake prediction efficiency. Their focus on early earthquake detection 
using sophisticated neural network architectures underscores the potential of cutting-edge technologies to 
improve predictive capabilities.

The work of Hsu & Pratomo (2022)13 on early peak ground acceleration prediction using Long Short-Term 
Memory (LSTM) neural networks showcases the importance of models that capture order dependence in 
seismic waves. This aligns with our approach of utilizing machine learning algorithms to forecast earthquake 
occurrences within a specific timeframe.

By integrating findings from various studies on earthquake prediction, our research aims to enhance 
predictive modeling techniques specifically for the Los Angeles region. Through the integration of machine 
learning algorithms, feature extraction methods, and advanced neural network architectures, we strive to 
improve the accuracy and timeliness of earthquake forecasts, thereby enhancing disaster preparedness and 
response strategies.

The structure of this paper is as follows: in the next section, we do a background analysis, then we describe 
the dataset and the feature engineering process. Following that, we discuss the methodology employed in this 
study, including the various machine learning algorithms and neural network models evaluated. We then present 
our results and findings, highlighting the performance of the top-performing models. Finally, we conclude with 
a discussion of the implications of our findings and potential directions for future research.

Background
This section presents the scientific and technical foundations for forecasting earthquakes in Southern California. It 
synthesizes key research on seismic activity, fault systems, ground motion, and earthquake hazards, emphasizing 
the significance of site-specific data for accurate seismic hazard assessments. This knowledge underpins the 
use of machine learning and neural network algorithms for forecasting earthquake magnitudes, enhancing 
preparedness and mitigation strategies.

Olsen’s study (2000)14 in the Los Angeles Basin demonstrates the impact of local geological conditions 
on ground motion during earthquakes. The three-dimensional modeling shows substantial ground motion 
variations due to the basin’s subsurface structure, underscoring the need for detailed geological data in seismic 
hazard assessments.

Donnellan et al. (2015)15 examine the 2014 La Habra earthquake’s implications for future seismic activity 
near Los Angeles. Their analysis of geodetic data and fault interactions highlights the role of interconnected fault 
systems in seismic events, stressing the importance of monitoring and advanced modeling.

Hauksson (1990)16 offers insights into the earthquake potential of thrust faults beneath the Los Angeles 
Basin, advocating for their inclusion in forecasting models to improve accuracy.

Shen et al. (1996)17 provide data on crustal deformation in the Los Angeles Basin, which aligns with existing 
earthquake probability models, refining forecasting algorithms.

Loveless & Meade (2011)18 explore stress modulation on the San Andreas fault, illustrating its influence on 
earthquake recurrence, crucial for refining forecasting models.

Romero et al. (2010)19 address the environmental implications of earthquakes, such as fault rupture and 
landslides, advocating for comprehensive forecasting models that account for diverse hazards.

Roten et al. (2014)20 investigate ground motion reductions due to San Andreas fault zone plasticity, enhancing 
earthquake forecast accuracy through simulated scenarios.

Shaw & Suppe (1996)21 emphasize the significance of newly identified fault systems in seismic risk 
assessments, improving the precision of forecasts.

Zechar & Jordan (2008)22 evaluate alarm-based forecasting models, focusing on their accuracy and reliability, 
which is essential for effective earthquake forecasting.

Huang et al. (2020)23 discuss the use of the Extreme Learning Machine (ELM) algorithm in forecasting 
earthquake casualties, highlighting the role of variables like intensity and building collapse rates in enhancing 
prediction accuracy.

Initiatives such as the Collaboratory for the Study of Earthquake Predictability (CSEP) and the Regional 
Earthquake Likelihood Models Experiment (RELM) by Schorlemmer et al. (2010)24 have paved the way for 
prospective earthquake prediction efforts. Studies evaluating return periods and occurrence probabilities 
of maximum magnitude earthquakes by Al-Heety (2024)25, and improved algorithms like Extreme Learning 
Machines (ELM) by Huang et al. (2020)23 enhance earthquake casualty predictions. Insights from studies 
on fixed recurrence and slip models by Rubinstein et al. (2012)26 and self-organized criticality by Yang et al. 
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(2004)27 provide valuable perspectives on earthquake behavior prediction and the challenges posed by complex 
seismic dynamics. Innovative approaches, such as the use of deep learning neural networks by Huang et al. 
(2018)28 and attention mechanisms in earthquake prediction models by Kavianpour et al. (2021)29, offer further 
advancements.

Geller et al. (1997)30 express skepticism about earthquake predictability, yet ongoing research addresses these 
challenges, improving reliability.

Eberhard et al. (2012)31 highlight the importance of continuous experiments to refine forecasting models, 
particularly in seismically active regions.

Rubinstein et al. (2012)26 underscore the importance of understanding stress accumulation and release on 
faults, contributing to improved forecasting algorithms.

Tehseen et al.’s study (2020)32 on earthquake forecasting using expert systems underscores the importance of 
long-term forecasts regarding the timing, intensity, and location of future earthquakes. Utilizing expert systems 
and comprehensive data analysis, researchers can develop more robust models tailored to specific regions like 
Southern California.

Ogata (2013)33 advocates for statistical models of seismicity to accurately evaluate predictive performance. 
Assessing these models’ efficacy in earthquake forecasting enhances reliability and contributes to more effective 
disaster mitigation.

Banna et al. (2021)34 discuss the use of attention-based Bi-Directional Long Short-Term Memory (LSTM) 
networks, highlighting the potential of advanced machine learning techniques in seismic forecasting. Leveraging 
deep learning models like LSTM networks can improve forecast accuracy and enhance preparedness in regions 
such as Southern California.

Kagan (1997)35 emphasizes real-time seismology’s role in aiding relief efforts and issuing warnings before 
severe shaking occurs. Understanding the feasibility of earthquake forecasting through real-time monitoring is 
vital for improving preparedness strategies.

Ma et al. (2021)36 evaluate the largest possible earthquake magnitudes in mainland China using extreme 
value theory, underscoring the role of ground-based observations and statistical analyses. Insights from such 
studies help refine predictive models and improve forecast accuracy in regions with high seismic activity.

Herrera et al. (2022)37 focus on long-term forecasting of strong earthquakes using machine learning 
techniques to cluster earthquakes based on historical intervals. This approach enhances predictive capabilities 
for models in regions such as North and South America.

Michael (1997)38 explores statistical techniques to evaluate earthquake forecasting methods, comparing 
observed outcomes with random chance. Such comparisons help improve model efficacy in seismic forecasting.

Kodera et al. (2016)39 evaluate earthquake early warning systems for the 2016 Kumamoto earthquake, 
providing insights into system performance under heavy loading conditions. These evaluations guide the 
development of similar systems in earthquake-prone regions like Southern California.

Yuan et al. (2023)40 examine the SARIMA model for forecasting earthquakes in the Longmenshan Fault Zone, 
offering a practical approach to predicting earthquake occurrence times and improving disaster preparedness.

Hajikhodaverdikhan et al. (2018)41 highlight the potential of integrating meteorological data into earthquake 
forecasting models. Using intelligent analysis of historical meteorological datasets, researchers can enhance 
forecast precision and early warning systems.

Astuti et al. (2013)42 investigate geoelectric field signals before earthquakes using adaptive STFT techniques, 
emphasizing the importance of signal analysis as input parameters for refining prediction models.

Nishikawa (2023)43 compares statistical models for low-frequency earthquake activity, highlighting their 
importance in understanding slow earthquake activity patterns that may precede major events. This knowledge 
can improve forecast accuracy in regions like Southern California.

Nimmagadda & Dreher (2007)44 emphasize the efficacy of ontology-based data warehousing in earthquake 
forecasting, enhancing model efficiency and accuracy.

Prasad et al. (2013)45 analyze earthquake magnitude detection using primary and secondary waves, stressing 
the role of wave analysis for robust forecasts in regions like Southern California.

Yang et al. (2022)46 streamline data processing and model development through automated regression 
pipelines, improving the efficiency of earthquake forecasting models.

Zheng and Tao (2023)47 underscore the importance of accurate geophysical data in forecasting, while Hussain 
et al.48 discuss the relationship between b-values and seismic stress levels, aiding high-magnitude earthquake 
predictions.

Research on diverse data sources, such as GPS, ionospheric data, and outgoing longwave radiation, has 
enhanced earthquake forecasting models. Gitis et al. (2021)49 highlight the importance of seismological data, 
while Zhai et al. (2020)50 investigate thermal anomalies using non-seismic time series data, demonstrating the 
multidisciplinary nature of earthquake research.

Investigations like Woith et al. (2018)51 explore the potential of animal behavior as a precursor to seismic 
events, reflecting the interdisciplinary approach in earthquake forecasting research.

Existing research provides extensive insights into seismic activity and fault dynamics in Southern California. 
Studies by Olsen14, Donnellan et al.15, and Hauksson16 have enhanced our understanding of seismic hazards, 
while further research on geodetic data17 and historical earthquake analysis52 has shaped our approach. 
Despite advancements, gaps remain in accurately forecasting earthquake magnitudes with sufficient lead time 
for mitigation. Our research aims to address this by using advanced machine learning and neural networks, 
building on previous studies14–17,52 to improve forecast accuracy and response efforts in Southern California.
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Dataset
We utilized earthquake data from the Southern California Earthquake Data Center (SCEDC), managed by the 
California Institute of Technology53.

For the Los Angeles region, using data from54, we filtered events by latitude 34.0522, longitude −118.2437 
within a 100 km radius, focusing on earthquake events from January 1, 2012, 00:00:00 to September 01, 2024, 
00:00:00. All magnitude types and depths were included. We selected the XML output format and subsequently 
converted the dataset to CSV. The dataset includes 4 different magnitude types: Ml, Mh, Mw, Mlr. The counts for 
each type are as follows: 23,284 events for Ml, 52 for Mh, 52 for Mw, and 2 for Mlr.

According to the Southern California Earthquake Data Center (SCEDC) maintained by the California 
Institute of Technology55, starting at the end of December 2015, SCSN began calculating an additional magnitude 
type, labeled Revised Local Magnitude (MLr). MLr magnitudes are only calculated for events with ML between 
3.0 and 6.0, and are obtained by applying a linear adjustment to the ML value. The adjustment is designed to 
bring initial magnitude values derived from ML into closer agreement with Moment Magnitude (Mw) values, 
because Mw is expected to be the preferred magnitude type for events above magnitude 355.

For most areas in Southern California, ML is systematically larger than Mw for magnitudes greater than 3.5; 
consequently, the MLr adjustment is a reduction of the ML value of up to 0.5 units (larger adjustment for larger 
events). MLr is calculated using the following formula55:

 MLr = ML × 0.853 + 0.40125 (1)

Solving for ML, the formula becomes:

 
ML =

MLr − 0.40125

0.853
 (2)

For most earthquakes, ML is the preferred magnitude for events smaller than 3.5, while Mw is preferred for 
events greater than 3.555.

For our dataset from the California Earthquake Data Center (SCEDC), we converted every magnitude type to 
ML using SCEDC’s formulas to ensure consistency and facilitate comparative analysis.

We removed the Mh values from our dataset because their conversion to ML is not clearly defined. The Mh 
magnitude type is considered a non-standard method, typically used in situations where standard magnitude 
calculation methods are not applicable or when a magnitude is assigned temporarily until a more accurate value 
is determined56. Since Mh values constitute only 0.22% of the total events in our dataset, their exclusion does not 
significantly impact our analysis.

Conversion of earthquake magnitudes to local magnitude (ML)
To ensure consistency across all seismic data, we converted all earthquake magnitudes in our dataset to the 
local magnitude (ML). The dataset obtained from the Southern California Earthquake Data Center (SCEDC) 
included various magnitude types: Local Magnitude (ML), Revised Local Magnitude (MLr), Moment Magnitude 
(Mw), and a non-standard magnitude type (Mh). This subsection outlines the methodology and formulas used 
for these conversions and provides examples to clarify the process.

Conversion of revised local magnitude (MLr) to local magnitude (ML)
The Revised Local Magnitude (MLr) is an adjusted form of ML, intended to align more closely with the Moment 
Magnitude (Mw) for events where ML is systematically larger than Mw, particularly for magnitudes greater than 
3.5. The formula provided by SCEDC for converting MLr to ML is as follows55:

 MLr = ML × 0.853 + 0.40125 (3)

Rearranging to solve for ML:

 
ML =

MLr − 0.40125

0.853
 (4)

For example, consider the event recorded on May 9, 2021, with a magnitude type of MLr and a value of 3.45:

 
ML =

3.45− 0.40125

0.853
≈ 3.57 (5)

Thus, the local magnitude (ML) for this event is approximately 3.57.

Conversion of moment magnitude (Mw) to local magnitude (ML)
The Moment Magnitude (Mw) is often preferred for events greater than magnitude 3.5. SCEDC provides the 
same adjustment formula to convert Mw to ML, given that MLr is already an estimation aligned with Mw. 
Therefore, we use the following formula for the conversion:
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ML =

Mw − 0.40125

0.853
 (6)

Consider the event recorded on September 13, 2021, with a magnitude type of Mw and a value of 3.62:

 
ML =

3.62− 0.40125

0.853
≈ 3.77 (7)

Thus, the local magnitude (ML) for this event is approximately 3.77.

Exclusion of non-standard magnitude (Mh)
The dataset also included a small percentage (0.22%) of events with a non-standard magnitude type (Mh), 
defined as a temporary designation used when standard methods are not applicable or when the magnitude is 
not yet finalized56. Since there is no clear conversion method from Mh to ML, we excluded these events from our 
analysis to maintain consistency and accuracy.

The exclusion of Mh events is justified by their negligible proportion in the dataset, ensuring that the removal 
does not affect the overall dataset’s integrity.

Justification for the conversion approach
The conversion of all magnitudes to the local magnitude (ML) ensures a uniform dataset that facilitates 
comparative analysis and improves the reliability of our earthquake prediction models. By using the established 
formulas from SCEDC, we minimize errors associated with mixed magnitude types and ensure that all data align 
with the preferred magnitude type for the region. This approach allows for consistent modeling and a robust 
understanding of seismic activity in the Los Angeles area.

Criteria for dataset screening and selection of the study parameters
To accurately predict earthquake occurrences in the Los Angeles area, we screened the dataset obtained from the 
Southern California Earthquake Data Center (SCEDC) based on two main criteria: spatial extent and temporal 
range. This section clarifies the reasons for selecting a 100 km radius around Los Angeles and explains why we 
focused on earthquake events from January 1, 2012, to September 1, 2024.

Selection of the 100 km radius
A 100 km radius was chosen to encompass a broad area around Los Angeles that is highly relevant for earthquake 
forecasting. This distance is appropriate for several reasons:

• Seismic relevance: Los Angeles is located near multiple active fault lines, including the San Andreas Fault, the 
Newport-Inglewood Fault, and the San Jacinto Fault. These faults are known to produce significant seismic 
activity that could affect the city and its surrounding areas. A 100 km radius captures seismic events originat-
ing from these faults, providing a comprehensive dataset to analyze patterns and predict future earthquakes 
that might impact the region.

• Urban and infrastructure impact: A radius of 100 km ensures that the dataset includes all earthquakes that 
could potentially impact the densely populated urban center of Los Angeles and its critical infrastructure. 
Studies have shown that even moderate earthquakes within this distance can cause substantial damage due 
to the proximity of fault lines to the city, the nature of the underlying geological structures, and the complex 
interplay between seismic waves and urban environments.

• Data sufficiency and model accuracy: Using a radius smaller than 100 km could exclude significant seismic 
events that contribute to the overall understanding of earthquake patterns in the region. Conversely, a radius 
much larger than 100 km could introduce noise by including data from areas with different seismic charac-
teristics, potentially reducing the predictive accuracy of our models. Therefore, a 100 km radius provides an 
optimal balance, ensuring sufficient data without compromising the model’s relevance and accuracy.

Temporal range: data from 2012 onwards
We chose to focus on earthquake data from January 1, 2012, to September 1, 2024, for several reasons:

• Computational efficiency: Analyzing data over an extended period can increase the computational burden 
significantly. The selected timeframe balances the need for a comprehensive dataset with the practical consid-
erations of computational efficiency. It includes 23,284 recorded events, which is a substantial sample size for 
training and validating machine learning models while avoiding excessive computational demands.

• Consistency in magnitude types: From 2012 onwards, the SCEDC dataset primarily uses a consistent magni-
tude type, specifically the local magnitude (Ml). Before this period, there were more varied magnitude types, 
such as duration magnitude (Md) and network magnitude (Mn), for which conversions to Ml are not clearly 
defined. Focusing on data from 2012 onwards ensures uniformity in magnitude types, reducing potential 
errors or inconsistencies that could arise from conversions and thereby improving the reliability of the model.

• Sufficient data volume: The period from 2012 to 2024 provides a large enough dataset (23,284 events) to 
capture a wide range of seismic activities, from minor tremors to significant earthquakes. This timeframe en-
compasses a diverse set of seismic events, including aftershocks and foreshocks, allowing for a comprehensive 
analysis and the development of robust predictive models. The selected period is adequate to establish mean-
ingful patterns and trends in earthquake activity for the Los Angeles area.By focusing on a 100 km radius and 
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selecting a temporal range from 2012 onwards, we aimed to strike a balance between data relevance, consist-
ency, and computational manageability. This approach allows us to build accurate and efficient earthquake 
prediction models tailored specifically to the seismic characteristics of the Los Angeles region.

Statistical analysis of earthquake magnitudes
To gain deeper insights into the distribution of earthquake magnitudes in the Los Angeles region, we conducted 
a comprehensive statistical analysis of the dataset. This analysis involved calculating various descriptive statistics 
and performing statistical tests to determine the underlying distribution of the data.

Descriptive statistics
The dataset contains earthquake events recorded between January 1, 2012, and September 1, 2024, with 
magnitudes ranging from 0 to 5.50. The mean magnitude of these events is 1.24, and the median magnitude is 
1.13, indicating a slight positive skew in the data. The standard deviation is 0.53, reflecting some variability in 
the magnitudes of the earthquakes. The range of the dataset is 5.84, and the interquartile range (IQR) is 0.62, 
which shows that the majority of the earthquake magnitudes are concentrated within a relatively narrow band.

The skewness of 1.41 and kurtosis of 3.66 suggest that the distribution is moderately right-skewed with 
heavier tails than a normal distribution. This is visually supported by the Histogram with Kernel Density 
Estimate (KDE) and the Q-Q plot in Figure 1.

Fig. 2. Depth vs magnitude

 

Fig. 1. Visual analysis of earthquake magnitudes: histogram with KDE, Box Plot, Q-Q Plot, and violin plot
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Statistical distribution tests
We conducted a D’Agostino and Pearson’s test for normality to assess whether the earthquake magnitudes follow 
a normal distribution. The test statistic is 6337.48 with a p-value of 0.0000, indicating that the null hypothesis of 
normality is rejected. Additionally, we performed a Kolmogorov-Smirnov test for an exponential distribution, 
which yielded a test statistic of 0.5905 and a p-value of 0.0000. These results suggest that the data does not follow 
a normal or exponential distribution, further confirming the right-skewed nature observed in the descriptive 
statistics.

Visual analysis
Figure 1 provides several visual representations of the earthquake magnitude data. The histogram with KDE 
shows a right-skewed distribution, where most earthquake magnitudes are clustered between 0 and 2. The 
Q-Q plot for normality further illustrates deviations from a normal distribution, particularly in the tails, where 
observed values exceed the theoretical quantiles. The box plot highlights the presence of several outliers, and the 
violin plot confirms the concentration of values around the lower magnitudes, reinforcing the observations from 
the descriptive statistics and statistical tests.

Conclusion
The statistical analysis reveals that the earthquake magnitudes in our dataset do not follow a normal or 
exponential distribution but are moderately right-skewed with heavy tails. This information is critical for 
selecting appropriate models and statistical methods for further analysis, ensuring the robustness and validity of 
any predictive models developed from this data.

Exploratory data analysis
To gain insights into the characteristics and patterns of earthquake data in Los Angeles, we conducted an 
exploratory data analysis (EDA). We generated and analyzed the following visualizations:

• Depth vs magnitude scatter plot: We generated a scatter plot to illustrate the relationship between earth-
quake depth and magnitude, as depicted in Fig. 2. This plot provides a visual representation of the data points, 
where each point corresponds to an earthquake event with a specific depth and magnitude. The scatter plot 
demonstrates that while there is a concentration of events with lower magnitudes across various depths, there 
are also noticeable occurrences of higher magnitudes at different depths. The importance of depth as a pre-
dictive feature is further highlighted by our feature selection analysis, where the rolling mean of depth (di) 
emerged as the second most influential variable according to the Information Gain method.

• Earthquake count over time: We created a line plot to show the number of earthquakes over time, aggregat-
ed monthly, aiding us in identifying trends, seasonality, or any unusual activity over the analyzed period, as 
depicted in Fig. 3.

• Geographic distribution of earthquakes: We produced a scatter plot to map the geographical distribution of 
earthquakes, with magnitude represented by color, helping us identify locations with higher seismic activity, 
as illustrated in Fig. 4 and in Fig. 5.

Analysis of small and negative magnitude values
Upon reviewing the dataset obtained from the Southern California Earthquake Data Center (SCEDC), we 
identified a total of 10 earthquake events with negative magnitude values and 8,736 events with magnitudes less 
than 1.0. These values are derived directly from the SCEDC dataset, which includes comprehensive earthquake 
records within a 100 km radius of Los Angeles from January 1, 2012, to September 1, 2024.

Explanation for negative magnitudes: The presence of negative magnitudes in the dataset is not an error 
introduced during data processing or magnitude conversion. Negative magnitudes can occur in seismic 
datasets for various reasons. Typically, these values are associated with very small seismic events, such as 
microearthquakes or noise events, which are detected but have such low energy release that they fall below 

Fig. 3. Earthquake count over time
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the standard zero-point reference for local magnitude calculations. Additionally, negative magnitudes may be 
a result of data adjustments or corrections applied by the data source, in this case, the SCEDC, to account for 
specific local conditions or calibration issues.

Explanation for small magnitudes: A significant portion of the dataset comprises events with magnitudes 
less than 1.0 (8,736 events), which is expected given the comprehensive nature of the SCEDC’s earthquake 
catalog. Small magnitude earthquakes, often referred to as microearthquakes, are crucial for understanding 
seismic activity in a region. They provide insights into the background seismicity, allowing researchers to study 
fault activity, stress accumulation, and other geophysical processes that may not be apparent from larger events 
alone. Including small magnitude events in our analysis enables a more granular and detailed assessment of 
seismic activity patterns in the Los Angeles region.

Distribution of negative magnitudes: The negative magnitude events are sparsely distributed over the time 
period of the dataset. The occurrences span from October 9, 2015, to September 4, 2023, with only one instance 
per specific date. This distribution suggests that negative magnitudes are isolated cases and do not represent a 
systematic issue within the dataset.

Fig. 5. Map of earthquakes in Los Angeles created using Python 3.9, with the libraries: pandas 1.3.5 (https://
pandas.pydata.org), matplotlib 3.5.1 (https://matplotlib.org), seaborn 0.11.2 (https://seaborn.pydata.org), and 
geopandas 0.10.2 (https://geopandas.org). The shapefile for Los Angeles city boundaries was generated using 
QGIS 3.34.11-Prizren for macOS (https://qgis.org). The figure shows earthquake events filtered by latitude 
34.0522, longitude −118.2437 within a 100 km radius, focusing on events from January 1, 2012, 00:00:00 to 
September 01, 2024, 00:00:00.

 

Fig. 4. Geographic distribution of earthquakes
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Justification for inclusion: The decision to retain negative and small magnitude values in our dataset is 
based on the importance of these values for a comprehensive understanding of seismic activity. Removing these 
events would eliminate valuable data points that contribute to the overall analysis of seismic patterns in the 
Los Angeles region. Moreover, since these values are directly sourced from SCEDC, they adhere to the center’s 
established data collection and reporting standards.

In summary, while the dataset includes some negative and small magnitude values, these records are both 
expected and scientifically meaningful. They provide a complete picture of the seismic activity in the Los Angeles 
region and help enhance the robustness of earthquake prediction models by including a full range of observed 
events.

Justification for choosing a 30-Day prediction period
The selection of a 30-day prediction period in our study was driven by a strategic decision to balance the need 
for timely alerts with the practical considerations of preparedness in densely populated urban areas. While many 
existing studies focus on shorter prediction periods, such as 7 days, we aimed to explore a longer timeframe that 
could offer significant benefits in the context of disaster management and public safety.

A 30-day prediction window provides a critical advantage for large cities, where the complexity of infrastructure, 
population density, and logistical challenges require more extended preparation periods for effective response. 
By providing forecasts over a 30-day horizon, our study seeks to enhance the lead time available to authorities 
and residents, thereby enabling more comprehensive planning, coordination, and mitigation strategies.

This approach is particularly relevant in the context of catastrophic earthquakes, such as the 1999 İzmit 
Earthquake, which struck northwestern Turkey, resulting in approximately 17,000 fatalities and leaving 
over 250,000 people homeless. The earthquake’s impact was exacerbated by inadequate building codes and 
enforcement, leading to widespread structural failures57. Similarly, the 2005 Kashmir Earthquake in Pakistan 
caused around 86,000 deaths and injured over 69,000 individuals. The region’s mountainous terrain and the pre-
existing poverty level significantly hampered rescue and recovery efforts, contributing to the high casualty rate58.

The 2008 Sichuan Earthquake in China was one of the deadliest in recent history, with official reports 
indicating approximately 87,000 deaths and over 370,000 injuries59. The earthquake’s magnitude (Ms 8.0) and 
the high population density in affected areas played crucial roles in the casualty figures. Moreover, the collapse 
of poorly constructed buildings accounted for a significant portion of the fatalities, highlighting the importance 
of building standards in earthquake-prone regions60. The response to the Sichuan earthquake was notable for its 
rapid mobilization of resources, which, despite the initial chaos, ultimately helped mitigate further casualties61.

The 2010 Haiti Earthquake, with a magnitude of 7.0, resulted in catastrophic consequences, with estimates of 
over 220,000 deaths and more than 300,000 injuries. The earthquake struck a densely populated area with many 
informal settlements, where buildings were not designed to withstand seismic activity. The lack of infrastructure 
and emergency services severely hampered rescue efforts, leading to a humanitarian crisis62. The international 
response was significant but faced challenges due to the scale of destruction and logistical difficulties in delivering 
aid62.

The 2004 Indian Ocean Earthquake and tsunami, which had a magnitude of 9.1, caused approximately 
230,000 to 280,000 deaths across multiple countries, including Indonesia, Sri Lanka, India, and Thailand. The 
tsunami’s rapid onset and the vast geographical area affected contributed to the high casualty figures. The disaster 
highlighted the need for improved early warning systems and disaster preparedness in coastal regions58.

By focusing on a 30-day prediction period, our study contributes to the scientific community by exploring 
an alternative timeframe that could provide a meaningful extension of preparation time for such high-risk 
scenarios.

Data and model reproducibility
The dataset generated during the current study and analyzed to achieve our findings is publically available on 
Zenodo63.

Dataset
Obtain the dataset from the provided Zenodo link63.

Machine learning model
Use the Random Forest algorithm, which is implemented in many popular machine learning libraries such as 
scikit-learn in Python.

Model parameters

• Number of Estimators: 100
• Random State: 15
• Test Size: 20% of the data should be used for testing.
• Data Scaling: Apply StandardScaler to standardize the features.

Feature sets

• All Features: Use all 19 in Table 4 features listed below to achieve an accuracy of 0.9769.
• Best 15-Variable Subset: Use the top 15 features in Table 9 to achieve an accuracy of 0.9797.
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Defined target variable
For each earthquake event, we calculated the maximum magnitude of the subsequent seismic event occurring 
within the next thirty days. To transform this problem into a classification task, we categorized these magnitudes. 
Previous studies have demonstrated that an imbalanced dataset, caused by improper classification of the target 
variable, can significantly reduce the performance of machine learning models in earthquake prediction64–66. 
To address this issue, we used the frequency distribution of the target variable to define intervals that ensure 
a balanced dataset. Our target variable for machine learning (ML) and neural network (NN) methods is the 
maximum magnitude for the next 30 days.

To determine the class boundaries, we employed the Jenks Natural Breaks optimization method, also known 
as the Natural Breaks classification method. This technique is specifically designed to identify natural groupings 
in data by minimizing variance within classes and maximizing variance between classes67–70. By arranging values 
into distinct classes based on natural breaks in the data distribution, the method ensures that intervals accurately 
reflect the underlying data, leading to meaningful and interpretable classes for the target variable71–74. This 
classification approach optimizes the classification thresholds to capture the inherent variability in the dataset, 
enhancing the interpretability and reliability of the results65,66.

The Jenks optimization algorithm works by iteratively adjusting class boundaries to minimize the total sum 
of squared deviations (TSSD) within each class75. Let n be the number of data points, k be the number of classes, 
and xi be the data points where i = 1, 2, . . . , n. The steps of the algorithm are as follows: 

 1.  Sort the data points xi in ascending order.
 2.  Divide the sorted data into k initial classes.
 3.  Calculate the sum of squared deviations (SSD) from the class mean for each class: 

 
SSDj =

∑
xi∈Cj

(xi − µj)
2

 (8)

 where Cj  is the j-th class and µj is the mean of the j-th class.

 4.  Compute the total sum of squared deviations (TSSD) for all classes: 

 
TSSD =

k∑
j=1

SSDj  (9)

 5.  Adjust the class boundaries iteratively to minimize TSSD.By employing this method, we ensured that our 
target variable classes are well-defined and reflect the natural groupings in the earthquake data, thereby 
improving the performance and reliability of our predictive models. The results of this classification are pre-
sented in Table 1.

Evaluation of target variable classification
To address the concerns regarding the definition and balancing of the target variable, we employed the Jenks 
Natural Breaks classification method to categorize the maximum magnitudes of subsequent seismic events 
within the next thirty days. This method optimizes the class boundaries by minimizing variance within each 
class and maximizing variance between classes, thereby ensuring a more balanced distribution of the target 
variable.

To statistically evaluate the effectiveness of the Jenks Natural Breaks method, we compared it against two 
alternative classification methods: the Equal Interval and Quantile methods. The Equal Interval method divides 
the range of data into equal-sized intervals, while the Quantile method creates intervals based on data quantiles, 
ensuring each class contains an approximately equal number of data points.

Class Boundaries Number of Events

Class 1 0.65 - 2.82 4280

Class 2 2.82 - 3.25 6843

Class 3 3.25 - 3.67 5034

Class 4 3.67 - 4.13 3799

Class 5 4.13 - 4.72 2808

Class 6 4.72 - 5.50 574

Table 1. Natural Breaks Classification for Maximum Magnitude of Next Seismic Event in the Next 30 Days
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Figure 6 illustrates the distribution of events across the six classes for each classification method. The Jenks 
Natural Breaks method shows a more balanced distribution of events compared to the Equal Interval method, 
which exhibits a highly skewed distribution, particularly in the lower and middle magnitude ranges. In contrast, 
the Quantile method results in an evenly distributed number of events per class, which might suggest a balanced 
dataset but does not take into account the natural groupings in the data.

To quantify the improvement in data balance, we calculated the Shannon entropy and mutual information 
for each classification method. Shannon entropy measures the uncertainty or randomness in the distribution of 
events across classes, where higher values indicate a more uniform distribution. Mutual information quantifies 
the amount of information gained about the original data distribution through the classification, with higher 
values indicating that the classification better reflects the natural patterns in the data.

The results, presented in Figure 7, show that the Jenks Natural Breaks method achieves a Shannon entropy 
value of 2.37, which is higher than the entropy for the Equal Interval method (1.73) but slightly lower than that 
for the Quantile method (2.58). However, the mutual information score for the Jenks Natural Breaks method 
(1.64) is significantly higher than that for the Equal Interval method (0.84) and also surpasses that for the 
Quantile method (1.33). These results indicate that while the Quantile method achieves a slightly more uniform 
distribution, the Jenks Natural Breaks method provides a better balance that reflects the inherent structure of the 
dataset, enhancing the interpretability and reliability of the classification.

Fig. 7. Comparison of Shannon entropy and mutual information scores for different classification methods. 
The Jenks Natural Breaks method demonstrates superior performance in mutual information, indicating a 
better reflection of the inherent data structure.

 

Fig. 6. Distribution of events across classes for Jenks Natural Breaks, Equal Interval, and Quantile 
classification methods. The Jenks method shows a more balanced distribution compared to Equal Interval 
while capturing the natural groupings more effectively than the Quantile method.
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By employing the Jenks Natural Breaks method, we ensured that the target variable classification is both 
meaningful and representative of the underlying data distribution, thereby improving the performance of our 
machine learning models in predicting seismic events.

Verification of target variable balancing using statistical tests
To further validate the balance of the target variable after applying the Jenks Natural Breaks optimization 
method, we conducted several additional statistical tests to assess the effectiveness of our classification approach.

1. Chi-square test for goodness of fit: We performed a Chi-Square test for goodness of fit to determine 
whether the observed frequencies of events in each class significantly differ from the expected frequencies under 
a uniform distribution. The results of the Chi-Square test yielded a Chi2 statistic of 3458.13 with a p-value of 
0.0000. As the p-value is less than 0.05, this indicates that there is a statistically significant difference between 
the observed and expected frequencies, confirming that the distribution of the target variable across classes is 
not uniform (see Figure 8).

2. Kolmogorov-Smirnov test: We also conducted a Kolmogorov-Smirnov (KS) test to compare the empirical 
distribution of the target variable with a theoretical normal distribution. The KS test resulted in a D statistic of 
0.0881 with a p-value of 0.0000. The low p-value indicates that the empirical distribution of the target variable 
differs significantly from the theoretical normal distribution (see Figure 9). This supports the effectiveness of 
the Jenks Natural Breaks method in identifying natural groupings within the data rather than conforming to a 
normal distribution.

3. Gini coefficient: To measure inequality within the distribution of the classified target variable, we calculated 
the Gini coefficient. The resulting Gini coefficient is 0.2736, indicating a relatively low level of inequality in the 
distribution. This suggests that the dataset is fairly balanced across the different classes.

Conclusion: These statistical tests provide further evidence that the classification of the target variable using 
the Jenks Natural Breaks method captures the inherent structure and natural groupings within the data. The 
significant results from the Chi-Square and Kolmogorov-Smirnov tests highlight that the observed distribution 
is meaningfully different from a uniform or normal distribution, respectively, while the Gini coefficient value 
confirms a balanced yet representative classification.

Feature engineered input variables
We engineered new features to be used as input variables for our machine learning (ML) and neural network 
(NN) models. All the input variables, existing ones and engineered ones, can be seen in Table 4.

 Rolling mean of depth (di)
The rolling mean of the depth of earthquakes provides an average depth of seismic events over a specified 
period4. In this context, we calculated the rolling mean of the depth for the last 30 days to capture the average 
depth of recent seismic activity.

Fig. 8. Chi-square test: observed vs. expected frequencies. The significant deviation from the expected 
uniform distribution confirms the unique characteristics captured by the Jenks classification method.
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We computed the rolling mean of the depth for each earthquake event considering the last 30 days up to that 
event. Let di represent the depth of the i-th earthquake event.

The rolling mean depth di for the last 30 days up to event i was calculated as follows:

 
di =

1

Ni

∑
j

dj  (10)

where Ni is the number of events in the last 30 days up to event i.

Time since last earthquake (Tsince last)
We calculated the time elapsed since the last earthquake for each event. This feature helps to understand the 
intervals between successive earthquakes and provides insights into the frequency and recurrence patterns of 
seismic activity in Los Angeles. The dataset was sorted chronologically, and the time difference between each 
earthquake and its preceding event was computed10.

Gutenberg-richter b-value
We calculated the Gutenberg-Richter b-value for each event based on the previous 50 events, which is critical for 
understanding the distribution of earthquake magnitudes76,77.

Gutenberg-richter law
The Gutenberg-Richter law states that the number of earthquakes N(M) with magnitudes greater than or equal 
to M  is given by:

 N(M) = 10a−bM  (11)

Logarithmic form
The logarithmic form is derived from the Gutenberg-Richter law (Equation 11), which describes the relationship 
between the number of earthquakes N(M) with magnitudes greater than or equal to M .

Taking the logarithm (base 10) of both sides of Equation 11 gives:

 log10N(M) = a− bM  (12)

Fig. 9. Kolmogorov-Smirnov test: empirical vs. theoretical CDF. The empirical cumulative distribution 
function (CDF) significantly deviates from the theoretical normal CDF, highlighting the effectiveness of the 
Jenks Natural Breaks method in identifying natural groupings.
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This logarithmic form highlights the linear relationship between the logarithm of the number of earthquakes and 
the magnitude M , with the parameters a and b representing the seismicity rate and the magnitude-frequency 
scaling factor, respectively.

Cumulative distribution function (CDF) derivation
The cumulative distribution function (CDF) F (M) represents the probability that an earthquake has a magnitude 
greater than or equal to M . It is derived from the Gutenberg-Richter law as follows: 

 1.  The number of earthquakes N(M) with magnitudes greater than or equal to M  is given by: 

 N(M) = 10a−bM  (13)

 2.  The total number of earthquakes Ntotal with magnitudes greater than or equal to the minimum magnitude 
Mmin is: 

 Ntotal = 10a−bMmin (14)

 3.  The CDF F (M) is the ratio of the number of earthquakes with magnitudes greater than or equal to M  to the 
total number of earthquakes: 

 
F (M) =

N(M)

Ntotal
 (15)

 4.  Substituting N(M) and Ntotal into the equation and simplifying, we obtain: 

 
F (M) =

10a−bM

10a−bMmin
= 10−b(M−Mmin) (16)

 Thus, the cumulative distribution function (CDF) F (M) is given by: 

 F (M) = 10−b(M−Mmin) (17)

Probability density function (PDF)
Differentiating the CDF gives the probability density function (PDF):

 f (M) = b · 10−b(M−Mmin) · ln(10) (18)

Derivation of the PDF from the CDF
The cumulative distribution function (CDF) of a random variable M , denoted F (M), represents the probability 
that M  takes on a value less than or equal to M :

 F (M) = P (M ≤ m) (19)

The probability density function (PDF), denoted f (M), is the derivative of the CDF:

 
f (M) =

d

dM
F (M) (20)

For the Gutenberg-Richter law, the CDF F (M) is given by:

 F (M) = 10−b(M−Mmin) (21)

To find the PDF f (M), we differentiate F (M) with respect to M : 
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 1.  Differentiate the exponential function: 

 F (M) = 10−b(M−Mmin) (22)

 Let u = −b(M −Mmin). Then F (M) = 10u.

 2.  Apply the chain rule: 

 
d

dM
10u = 10u ln(10) · du

dM
 (23)

 Since u = −b(M −Mmin), we have dudM = −b.

 3.  Combine the results: 

 f (M) = 10−b(M−Mmin) ln(10) · (−b) (24)

 Simplifying, we get: 

 f (M) = b · 10−b(M−Mmin) · ln(10) (25)

Thus, the PDF is:

 f (M) = b · 10−b(M−Mmin) · ln(10) (26)

Likelihood function
Given N  earthquake magnitudes {M1,M2, . . . ,MN}, the likelihood function is the product of individual 
probabilities:

 
L(b) =

N∏
i=1

f (Mi) (27)

Taking the natural logarithm of the likelihood function:

 
lnL(b) =

N∑
i=1

ln f (Mi) (28)

Substituting the PDF into the log-likelihood function:

 
lnL(b) =

N∑
i=1

(ln b + ln ln(10)− b(Mi −Mmin) ln(10)) (29)

Simplifying:

 
lnL(b) = N ln b +N ln ln(10)− b ln(10)

N∑
i=1

(Mi −Mmin) (30)

Maximizing log-likelihood
Maximum Likelihood Estimation (MLE) is a statistical technique that provides a robust and accurate method 
for estimating the Gutenberg-Richter b-value, particularly in scenarios with limited data points or rare, large-
magnitude earthquakes78. Differentiating with respect to b and setting the derivative to zero:

 

d lnL(b)

db
=

N

b
− ln(10)

N∑
i=1

(Mi −Mmin) = 0 (31)

Solving for b:
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b =

N

ln(10)
∑N

i=1(Mi −Mmin)
 (32)

Mean magnitude
Since M̄  is the mean magnitude:

 
M̄ =

1

N

N∑
i=1

Mi (33)

The summation can be rewritten as:

 

N∑
i=1

(Mi −Mmin) = N(M̄ −Mmin) (34)

Substituting back
Substituting this back, we get:

 
b =

1

ln(10)(M̄ −Mmin)
 (35)

Final formula
Therefore, the b-value calculation formula is:

 
b =

log10 e

M̄ −Mmin
 (36)

We used Equation 36 to calculate the b-value for each event.

Calculation of incremental b-values (∆b)
We first calculated the b-values using the fifty events that occurred prior to each event, as detailed in previous 
studies79,80. This methodology allows us to track changes in seismicity over time, serving as predictive features 
for seismic activity analysis. After obtaining the b-values, we calculated the incremental b-values by determining 
the differences between b-values over various time windows, specifically between events i and i− 2, i− 2 and 
i− 4, i− 4 and i− 6, i− 6 and i− 8, and i− 8 and i− 10.

The study by Volant et al.79, explores the relationship between seismic activity, aseismic deformation, and 
brittle failure within a geological structure subjected to fluid extraction. This study investigates the induced 
seismic activity and aseismic displacements resulting from gas extraction in an area previously devoid of 
displacement, shedding light on the impact of fluid extraction on seismicity and deformation processes79. The 
study offers valuable insights that could inform the development of predictive models incorporating incremental 
b-values derived from seismic data analysis over time.

The study by Yousefzadeh et al.80 investigates the effect of spatial parameters on the performance of 
machine learning algorithms for predicting the magnitude of future earthquakes in Iran. This study compares 
the performance of conventional methods such as Support Vector Machine (SVM), Decision Tree (DT), and 
Shallow Neural Network (SNN) with a contemporary Deep Neural Network (DNN) method. One of the key 
parameters introduced in this study is the Fault Density (FD), which, along with incremental b-values, enhances 
the accuracy of the earthquake prediction models. The results showed that incremental b-values, which measure 
the change in seismicity over time, significantly contribute to the prediction accuracy of earthquakes. The study 
highlights the importance of using both temporal and spatial parameters, including incremental b-values, in 
developing robust predictive models for seismic activity80.

We detailed the methodology for calculating the incremental b-values, which served as predictive features for 
seismic activity analysis. We derived the incremental b-values from the differences in b-values calculated over 
various time windows.

We calculated incremental b-values for each event81,82.

b-value increments between events i and i− 2
We calculated the b-value increment between events i and i− 2 as follows:

 ∆bi,i−2 = bi − bi−2 (37)

where bi is the b-value at event i and bi−2 is the b-value at event i− 2.

b-value increments between events i− 2 and i− 4
We calculated the b-value increment between events i− 2 and i− 4 as follows:
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 ∆bi−2,i−4 = bi−2 − bi−4 (38)

where bi−2 is the b-value at event i− 2 and bi−4 is the b-value at event i− 4.

b-value increments between events i− 4 and i− 6
We calculated the b-value increment between events i− 4 and i− 6 as follows:

 ∆bi−4,i−6 = bi−4 − bi−6 (39)

where bi−4 is the b-value at event i− 4 and bi−6 is the b-value at event i− 6.

b-value increments between events i− 6 and i− 8
We calculated the b-value increment between events i− 6 and i− 8 as follows:

 ∆bi−6,i−8 = bi−6 − bi−8 (40)

where bi−6 is the b-value at event i− 6 and bi−8 is the b-value at event i− 8.

b-value increments between events i− 8 and i− 10
We calculated the b-value increment between events i− 8 and i− 10 as follows:

 ∆bi−8,i−10 = bi−8 − bi−10 (41)

where bi−8 is the b-value at event i− 8 and bi−10 is the b-value at event i− 10.

Maximum magnitude recorded during the previous week (M last week
max )

The maximum magnitude recorded during the previous week is a crucial feature for assessing recent seismic 
activity and the potential for future earthquakes. Martinsson and Törnman83 provide insights into the 
relationship between induced seismic activity and production rates, depth, and size within a mining context. 
Their study highlights that high seismic activity in a given week can increase the likelihood of elevated seismicity 
in the subsequent week, emphasizing the importance of monitoring and analyzing seismic events over short time 
intervals to assess evolving seismic activity patterns.

Bohnhoff et al.84 discuss seismicity patterns following the Gutenberg-Richter law, indicating that a high-
magnitude seismic event can be preceded by foreshocks. Monitoring the maximum magnitude recorded in a 
given period can offer valuable insights into the potential for larger seismic events.

Zhang et al.10 focus on feature extraction techniques for earthquake prediction, emphasizing the importance 
of identifying precursory patterns in seismic data. This study highlights the significance of monitoring the 
maximum magnitude as a key feature for predicting seismic events and understanding seismic activity trends.

Asim et al.9 explore earthquake prediction models using support vector regressors and hybrid neural 
networks, showcasing the capability of these methodologies in forecasting seismic events of specific magnitudes. 
Their study underscores the importance of advanced prediction techniques in assessing seismic hazards and the 
potential impact of earthquakes based on their magnitudes.

We used Maximum Magnitude Recorded During the Previous Week as an input feature for earthquake 
prediction85,86. To determine the maximum magnitude recorded during the previous week, we implemented 
the following steps: 

 1.  Defining the time window: We established a sliding window of 7 days (one week) for each event in the da-
taset.

 2.  Identifying relevant events: For each event i, we identified all seismic events occurring within the 7 days 
prior to the event i.

 3.  Determining the maximum magnitude: We then calculated the maximum magnitude among the identified 
events.This can be mathematically expressed as:

 M last week
max = max{Mj | ti − 7 days ≤ tj < ti} (42)

where M last week
max  represents the maximum magnitude recorded during the previous week, Mj is the magnitude 

of event j, ti is the time of event i, and tj  is the time of event j.

Clustering coefficient (Cclust)
The Clustering Coefficient, denoted as Cclust, is a measure of the degree to which points in a dataset tend to 
cluster together. In the context of our earthquake dataset, it can be used to quantify the spatial clustering of 
earthquake events. This can be particularly useful for understanding the spatial distribution and potential 
patterns of seismic activity85,87,88.
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Pairwise distance calculation
We computed the pairwise distances between all earthquake events using the Haversine formula. The Haversine 
formula is used to calculate the shortest distance between two points on the surface of a sphere, which is 
particularly useful for calculating distances on Earth.

The Haversine formula is derived from spherical trigonometry. Given two points on the Earth’s surface, 
specified by their latitude and longitude (ϕi, λi) and (ϕj, λj), the Haversine formula calculates the distance dij  
between these points as follows:

 dij = 2R arctan 2
(√

a,
√
1− a

)
 (43)

where

 
a = sin2

(
∆ϕ

2

)
+ cos(ϕi) cos(ϕj) sin

2

(
∆λ

2

)
 (44)

In these equations: - ∆ϕ = ϕj − ϕi is the difference in latitude. - ∆λ = λj − λi is the difference in longitude. - ϕ 
and λ are the latitude and longitude of the events. - R is the Earth’s radius (approximately 6371 km).

The Haversine formula accounts for the spherical shape of the Earth, providing a more accurate distance 
measurement compared to simple Euclidean distance calculations.

Adjacency matrix construction
We constructed an adjacency matrix A based on a distance threshold ϵ. If the distance between two events was 
less than ϵ, they were considered neighbors.

The adjacency matrix A is defined as:

 
Aij =

{
1 if dij < ϵ

0 otherwise  (45)

This matrix helps in identifying which earthquake events are neighbors based on the specified distance threshold 
ϵ.

Local clustering coefficient calculation
The Local Clustering Coefficient Cclust,i measures the extent to which the neighbors of a given node (earthquake 
event i) are themselves neighbors. It provides insight into the local density of connections around each 
earthquake event.

The Local Clustering Coefficient for an earthquake event i is calculated as:

 
Cclust,i =

2Ei

ki(ki − 1)
 (46)

where:

• Ei is the number of edges (connections) between the neighbors of i.
• ki is the number of neighbors of i (degree of i).The coefficient is normalized by the maximum possible num-

ber of edges between the neighbors, given by ki(ki − 1)/2 for an undirected graph. The factor of 2 in the 
numerator accounts for each edge being counted twice in an undirected graph. This formula gives a value be-
tween 0 and 1, where 1 indicates that all neighbors of i are directly connected (forming a complete subgraph), 
and 0 indicates no direct connections between neighbors.

A detailed example of the calculation for a specific earthquake event is provided in Appendix A.1 and in 
Appendix A.2.

Global clustering coefficient calculation
The Global Clustering Coefficient Cclust is the average of the Local Clustering Coefficients of all earthquake 
events up to that event, considering events within the last 30 days for each event.

The Global Clustering Coefficient Cclust is calculated as:

 
Cclust =

1

Ni

Ni∑
i=1

Cclust,i (47)

where Ni is the number of events in the last 30 days up to event i.

This coefficient provides an overall measure of the clustering tendency of earthquake events within a specified 
time frame.
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Standard deviation of magnitude for the last 30 days (σmag,30)
The standard deviation of the magnitude of earthquakes provides a measure of the variability in earthquake 
strengths over a specified period89,90. In this context, we calculated the standard deviation of the magnitude for 
the last 30 days to capture recent seismic activity variability.

We computed the standard deviation of the magnitude for each earthquake event considering the last 30 days 
up to that event. Let mi represent the magnitude of the i-th earthquake event.

The mean magnitude µmag,30 for the last 30 days up to event i was calculated as follows:

 
µmag,30 =

1

Ni

∑
j

mj (48)

where Ni is the number of events in the last 30 days up to event i.

The standard deviation σmag,30 of the magnitude for the last 30 days up to event i was then calculated using the 
mean magnitude:

 
σmag,30 =

√
1

Ni

∑
j

(mj − µmag,30)2 (49)

Sum of the mean square deviation (η) from the regression line based on the Gutenberg-
Richter law
We calculated the mean square deviation from the regression line to measure how well the observed data fit the 
Gutenberg-Richter (GR) law80,91.

The sum of the mean square deviation (η) from the regression line based on the Gutenberg-Richter (GR) 
law is an essential metric for evaluating how well the observed earthquake data fits the GR model. This metric 
quantifies the variability and reliability of seismic activity predictions. Recent studies have shown that η provides 
valuable insights into seismic predictions92.

The sum of the mean square deviation (η) from the regression line based on the Gutenberg-Richter law also 
serves as an important predictor of future seismic events. By analyzing the deviations of observed seismicity data 
from the regression line defined by the Gutenberg-Richter law, researchers can gain insights into the consistency 
of seismic activity patterns and the likelihood of future earthquakes. The study by Fahandezhsadi and Sadi93, 
titled “Earthquake Magnitude Prediction using Probabilistic Classifiers,” explores the use of the sum of the mean 
square deviation about the regression line as a feature for earthquake magnitude prediction, emphasizing its 
significance in assessing seismic activity trends and forecasting future events.

For a set of observed magnitudes {Mi} and their corresponding cumulative counts {Ni}, the calculations 
are shown below:

Deviation from the regression line
The Gutenberg-Richter law states that the number of earthquakes N(M) with magnitudes greater than or equal 
to M  is given by:

 N(M) = 10a−bM  (50)

Taking the logarithm (base 10) of both sides, we obtain the linear form:

 log10N(M) = a− bM  (51)

For a set of observed magnitudes {Mi} and their corresponding cumulative counts {Ni}:

Observed Value: The observed number of earthquakes with magnitude Mi or greater is Ni. The logarithmic 
form of the observed count is:

 log10Ni (52)

Expected value: The expected (theoretical) number of earthquakes N theory
i  for a magnitude Mi, according to the 

Gutenberg-Richter law, is:

 N theory
i = 10a−bMi (53)

Taking the logarithm (base 10) of the expected count:

 log10N
theory
i = a− bMi (54)

Deviation calculation
The deviation di for each observed magnitude Mi is the difference between the observed logarithmic count 
log10Ni and the expected logarithmic count log10N

theory
i .

Deviation formula:
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 di = log10Ni − log10N
theory
i  (55)

Substitute expected value: Substituting the theoretical value log10N
theory
i = a− bMi into the deviation 

formula:

 di = log10Ni − (a− bMi) (56)

This deviation di represents how much the observed data deviates from the expected data according to the 
Gutenberg-Richter law.

Mean square deviation
The mean square deviation η is the average of the squares of these deviations. It is calculated as:

 
η =

1

n

n∑
i=1

d2i  (57)

Substituting the expression for di:

 
η =

1

n

n∑
i=1

(log10Ni − (a− bMi))
2 (58)

where n is the number of data points.

Calculating the a-value
Given the total number of earthquakes Ntotal above the minimum magnitude Mmin, the a-value can be derived 
as follows:

• From the Gutenberg-Richter law:

 Ntotal = 10a−bMmin (59)

• Taking the logarithm of both sides:

 log10Ntotal = a− bMmin (60)

• Solving for a: 

 a = log10Ntotal + bMmin (61)

• Thus, the a-value calculation formula is:

 a = log10Ntotal + bMmin (62)

Difference between the largest observed magnitude and largest expected magnitude based 
on the Gutenberg-Richter law (∆M )
Saichev and Sornette’s study examines Båth’s law, which empirically shows an average magnitude difference 
of 1.2, regardless of the mainshock magnitude94. This reference highlights the importance of evaluating the 
difference between observed and expected magnitudes to accurately understand seismic activity and predict 
future events.

The difference between the largest observed magnitude and the largest expected magnitude based on the 
Gutenberg-Richter (GR) law, denoted as ∆M , is a crucial metric for evaluating seismic hazard. This metric 
helps identify regions where the observed seismicity deviates from the expected patterns, which is essential 
for assessing the potential for large, unexpected earthquakes. Recent studies have demonstrated that ∆M  can 
provide significant insights into seismic hazard assessments95.

We calculated the largest expected magnitude (Mexpected) using the Gutenberg-Richter (GR) law96. The 
Gutenberg-Richter law is expressed as:
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 log10N(M) =a− bM  (63)

To find the largest expected magnitude, we consider the equation when N(M) = 1 (i.e., the magnitude at which 
we expect to see one event, meaning the cumulative number of earthquakes with a magnitude greater than or 
equal to the greatest magnitude is one):

 log10(1) =a− bMexpected  (64)

Since log10(1) = 0, the equation simplifies to:

 0 =a− bMexpected  (65)

Solving for Mexpected, we get:

 
Mexpected =

a

b
 (66)

The difference ∆M  between the largest observed magnitude (Mobserved) and the largest expected magnitude 
(Mexpected) is then calculated as:

 ∆M =Mobserved −Mexpected  (67)

Elapsed time between the last n Events (T )
Research by Faro et al.97, investigates the influence of causal relationships on time perception and judgments 
of elapsed time between events. This study emphasizes the role of causal associations in shaping temporal 
judgments, providing insights into the predictive value of elapsed time between seismic events.

Furthermore, incorporating the elapsed time between events as a predictive feature in machine learning 
algorithms can enhance the models’ ability to capture temporal dependencies in seismic activity. The study by 
Nguyen et al.98 underscores the informative nature of elapsed time between events, suggesting its relevance in 
predictive modeling and decision-making processes.

We calculated the elapsed time (T ) as the total time interval between the first and the last event within a 
specified window of n events99,100. For a given set of events, let t1 be the time of the first event and tn be the time 
of the n-th event. The elapsed time T  is determined as follows:

 T =tn − t1  (68)

where:

- t1 is the time of the first event in the window,
- tn is the time of the n-th event in the window.

Mean time between events (µ)
The study by Salam et al.101, includes the average time between events (µ) as one of the indicators for earthquake 
prediction. This reference underscores the importance of temporal features in predictive modeling and suggests 
that the mean time between events can be a valuable predictor for forecasting seismic events.

We calculated the mean time between events (µ) as the average time interval between consecutive earthquake 
events. For a given set of n events, let ti be the time of the i-th event. The time interval between consecutive 
events is defined as:

 ∆ti =ti+1 − ti  (69)

The mean time between events is then calculated as the average of these time intervals:

 
µ =

1

n− 1

n−1∑
i=1

∆ti  (70)

where:

- ti is the time of the i-th event,
- ∆ti is the time interval between the i-th event and the (i + 1)-th event,
- n is the total number of events.
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Coefficient of variation (CV )
The study by Rosenau and Oncken102, discusses the relationship between the coefficient of variation of recurrence 
intervals and seismic activity patterns in subduction zones. This reference emphasizes the importance of 
understanding the variability in recurrence intervals for predicting seismic events and assessing the frequency-
size distribution of earthquakes in different geological settings.

We calculated the coefficient of variation (C) as the ratio of the standard deviation (σ) to the mean (µ) of the 
inter-event times82,103. For a given set of n events, let ∆ti be the time interval between consecutive events. The 
mean (µ) and standard deviation (σ) of these time intervals are given by:

 
µ =

1

n− 1

n−1∑
i=1

∆ti  (71)

 
σ =

√√√√ 1

n− 1

n−1∑
i=1

(∆ti − µ)2  (72)

The coefficient of variation (C) is then calculated as:

 
C =

σ

µ
 (73)

where:

- µ is the mean time between events,
- σ is the standard deviation of the time intervals,
- n is the total number of events.

The square root of the cumulative seismic energy (
√
EΣ)

Salam et al.101 conducted a study, which highlights the significance of energy-related features in earthquake 
prediction models. The study includes the square root of the released energy during a specific time as one of 
the indicators for earthquake prediction, supporting the notion that the rate of seismic energy release can be a 
valuable predictor for forecasting seismic events.

The rate of the square root of seismic energy is a metric used to quantify the energy released by seismic 
events. It provides a normalized measure of seismic activity by considering the energy release rate, which is 
important for understanding the dynamics of earthquake processes and assessing seismic hazards80,104.

The seismic energy (E) released by an earthquake5,105 can be estimated using its magnitude (M ) through the 
following relationship:

 E =101.5M+4.8  (74)

where:

- E is the seismic energy in joules,
- M  is the magnitude of the earthquake.To calculate the square root of the cumulative seismic energy (

√
EΣ

), we first compute the seismic energy for each event using the formula 101.5Mi+4.8. Then, we sum these values 
over a specified window of n = 50 events and take the square root of the sum. The expression is given by:

 

√
EΣ =

√√√√ 50∑
i=1

101.5Mi+4.8  (75)

where: - Mi is the magnitude of the i-th event in the window.

Sure, here is the subsection for the Number of Earthquakes in the Last 30 Days for each event:

Number of earthquakes in the last 30 days
The number of earthquakes in the last 30 days provides a measure of the frequency of seismic events over a 
specified period6,7. In this context, we calculated the number of earthquakes for the last 30 days to capture the 
recent activity in seismic events.

We computed the number of earthquakes for each earthquake event considering the last 30 days up to that 
event. Let Neq,30 represent the number of earthquake events in the last 30 days up to event i.

The number of earthquakes Neq,30 for the last 30 days up to event i was calculated as follows:

 
Neq,30 =

i∑
j=i−N+1

I[tj>ti−30 days] (76)
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where I[tj>ti−30 days] is an indicator function that equals 1 if the event j occurred within the last 30 days from 
event i, and 0 otherwise.

Explanation of predictor selection
The selection of predictor variables for our machine learning (ML) and neural network (NN) models was based 
on a comprehensive analysis of factors that contribute to earthquake occurrence and magnitude. Our goal was 
to construct a predictive model that captures spatial, temporal, and seismic characteristics, while ensuring that 
each variable contributes unique information relevant to earthquake forecasting.

Initially, we included a broad set of predictors (as shown in Table 2), encompassing variables related to the 
location and magnitude of earthquakes, temporal patterns, seismic energy, and statistical properties derived 
from earthquake catalogs. These predictors were carefully chosen to balance the representation of different 
domains that potentially influence earthquake behavior:

• Spatial variables: Latitude and Longitude were included to capture the geographic distribution of earth-
quakes.

• Magnitude and temporal variables: Magnitude, M last week
max  (maximum magnitude recorded in the last week), 

T  (elapsed time between the last n events), and CV  (coefficient of variation of inter-event times) were select-
ed to account for both the strength and timing of past events.

• Seismic characteristics: Variables such as b-value, incremental b-values (∆bi,i−2, ∆bi−2,i−4, ∆bi−4,i−6, 
∆bi−6,i−8, and ∆bi−8,i−10), and Cclust (clustering coefficient) were included to reflect the seismicity patterns 
and clustering behavior observed in the earthquake catalog.

• Statistical properties:σmag,30 (standard deviation of magnitude over 30 days), di (rolling mean of depth), and √
EΣ (square root of cumulative seismic energy) were incorporated to provide statistical measures of seismic 

activity over time.

Multicollinearity analysis and mitigation
To assess multicollinearity among the predictors, we conducted a Variance Inflation Factor (VIF) analysis. The 
VIF quantifies how much a variable is correlated with the other variables in the model. A high VIF indicates high 
correlation, suggesting that the predictor might be redundant.

Table 3 shows the initial VIF values for all predictor variables. The time-related variables Tsince last, T , and µ 
exhibited infinite VIF values, indicating perfect correlation. To address this, we removed Tsince last (time since the 
last earthquake) and µ (mean time between events), retaining only T  (elapsed time between the last n events) to 
preserve a meaningful temporal feature without introducing perfect multicollinearity.

No. Variable Explanation

1 Latitude Latitude of the earthquake epicenter

2 Longitude Longitude of the earthquake epicenter

3 di Rolling Mean of Depth

4 Magnitude Magnitude of the earthquake

5 T since last Time elapsed since the last earthquake

6 b-value Gutenberg-Richter b-value for the moment magnitude

7 ∆bi,i−2 Incremental b-value between events i and i− 2

8 ∆bi−2,i−4 Incremental b-value between events i− 2 and i− 4

9 ∆bi−4,i−6 Incremental b-value between events i− 4 and i− 6

10 ∆bi−6,i−8 Incremental b-value between events i− 6 and i− 8

11 ∆bi−8,i−10 Incremental b-value between events i− 8 and i− 10

12 M last week
max Maximum magnitude recorded during the last week

13 Cclust Clustering Coefficient

14 σmag,30 Standard Deviation of Magnitude

15 η Sum of the mean square deviation from the regression line

16 ∆M Difference between the largest observed and expected magnitudes

17 T Elapsed time between the last n events

18 µ Mean time between events

19 CV Coefficient of variation of the inter-event times

20
√
EΣ Square root of the cumulative seismic energy

21 Neq,30 Number of Earthquakes in the Last 30 Days

Table 2. Our input variables before multicollinearity reduction. We removed Tsince last (time since the last 
earthquake) and µ (mean time between events), both shown in bold, retaining only T  (elapsed time between 
the last n events) to preserve a meaningful temporal feature without introducing perfect multicollinearity.
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Reduction of multicollinearity
To mitigate multicollinearity, we removed the time-related variables Tsince last and µ as their infinite VIF values 
indicated perfect correlation with other variables. Following this reduction, we recalculated the VIF values for 
the remaining predictor variables, as shown in Fig. 10.

The VIF analysis post-reduction shows that all remaining variables have VIF values well below the threshold 
of 10, indicating that multicollinearity has been effectively mitigated. The updated correlation matrix of predictor 
variables, as depicted in Figure 11, further confirms the reduced multicollinearity by illustrating a balanced and 
varied correlation pattern among the remaining predictors.

Impact on predictor selection
The removal of time-related variables (Tsince last and µ) addresses the issue of multicollinearity and enhances 
the robustness of the model. The retained predictor set now includes diverse variables that capture spatial, 
temporal, and seismic characteristics without redundant information. This approach improves model stability, 
interpretability, and overall performance.

The multicollinearity check also indicated that other variables such as latitude, longitude, and CV  were not 
highly collinear with the rest, ensuring that all essential features remain in the model. These variables are crucial 
for understanding the geographical distribution of earthquakes, measuring the variability in seismic activity, and 
capturing the dynamics of seismic patterns over different scales.

By refining the predictor set through multicollinearity analysis, we enhance the predictive power of our 
ML and NN models while ensuring that each variable contributes unique information relevant to earthquake 
forecasting.

Methodology
This study focuses on evaluating a variety of machine learning (ML) algorithms and neural network (NN) 
models to predict the classification of earthquake magnitudes within the next 30 days. The models were trained 
and tested on a dataset of seismic events, with features scaled to optimize performance. Our input variables 
included a range of features designed to enhance predictive accuracy, as summarized in Table 4. By integrating 
these features, we aimed to develop robust machine learning models capable of forecasting the class of future 
seismic events in the Los Angeles area.

To ensure repeatability, we set a random state of 15 for all methodologies. The random state establishes the 
seed for the random number generator used in the algorithms, ensuring consistent results. Additionally, our test 
sample constituted 20% of the dataset throughout the project.

The machine learning algorithms we employed included Logistic Regression, Decision Trees, Random 
Forest, Gradient Boosting Machines (GBM), Support Vector Machines (SVM), k-Nearest Neighbors (k-NN), 
Naive Bayes, AdaBoost, XGBoost, and LightGBM.

Variable VIF

Latitude 1.222523

Longitude 1.450631

Magnitude 1.236321

Tsince last ∞
Cclust 3.231743

σmag,30 2.551717

di 2.363855

Neq,30 2.967707

b-value 3.419005

∆bi,i−2 1.986764

∆bi−2,i−4 3.944611

∆bi−4,i−6 5.880192

∆bi−6,i−8 7.788847

∆bi−8,i−10 5.002879

M last week
max 1.228443

η 3.041347

∆M 4.144046

T ∞
µ ∞
CV 1.371371
√
EΣ 1.847086

Table 3. Initial VIF values for all predictor variables.
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Our neural network models encompassed Multilayer Perceptron (MLP), Convolutional Neural Networks 
(CNN), Recurrent Neural Networks (RNN), Long Short-Term Memory Networks (LSTM), Gated Recurrent 
Units (GRU), and Transformer Models. Our methodology diagram can be seen in Fig. 123.

Exploratory data analysis for training and testing sets
An exploratory data analysis was conducted on both the training and testing sets to examine the spatial 
distribution of seismic events, the distribution of earthquake magnitudes, and the relationship between 
earthquake depth and magnitude.

Figure 13 and Figure 14 present the geographic distribution of seismic events for the training and testing 
sets, respectively. Each point on the scatter plots represents a seismic event, with color intensity corresponding 
to the earthquake’s magnitude. These plots demonstrate the clustering of seismic activities in certain regions, 
emphasizing areas with higher seismic frequencies and magnitudes.

The distribution of earthquake magnitudes is illustrated in Figure 15 for the training set and Figure 16 for 
the testing set. Both plots show a left-skewed distribution, indicating a higher frequency of smaller-magnitude 
earthquakes and a lower frequency of larger-magnitude events.

To explore the relationship between earthquake depth and magnitude, depth versus magnitude scatter 
plots were created for both the training (Figure 17) and testing sets (Figure 18). These plots reveal that most 
earthquakes occurred at shallow depths, with magnitudes generally ranging from 0 to 3, while a few events with 
higher magnitudes were observed across various depths.

Overall, this analysis provides valuable insights into the characteristics and patterns of seismic events within 
the dataset, which is crucial for developing robust machine learning models.

Selection criteria for machine learning algorithms
The selection of the 16 algorithms for this study was guided by several key considerations to ensure a 
comprehensive evaluation of their performance in classifying the maximum earthquake magnitude within the 
next 30 days.

Diversity of models: The chosen algorithms represent a diverse range of machine learning techniques, 
encompassing both traditional machine learning models and neural network architectures. This diversity allows 
for a thorough exploration of different algorithmic approaches and their effectiveness in handling the specific 
characteristics of the earthquake dataset, such as non-linearity, temporal dependencies, and high dimensionality.

Relevance to the problem domain: Each of the selected algorithms was chosen for its relevance to specific 
aspects of the earthquake magnitude classification task:

 – Traditional machine learning models: Algorithms such as Logistic Regression, Decision Trees, Random Forest, 
Gradient Boosting Machines (GBM), AdaBoost, XGBoost, and LightGBM were included for their robust 
performance in various classification tasks. These models are particularly effective at handling structured 
data and can capture complex patterns in the input features. Ensemble methods like Random Forest, GBM, 

Fig. 10. Reduced variance inflation factor (VIF) of predictor variables. After removing the time-related 
variables with infinite VIF values, the remaining variables have VIF values below 10, indicating no significant 
multicollinearity.
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XGBoost, and LightGBM offer additional advantages through their ability to combine multiple weak learners 
to create a more accurate and robust predictive model.

 – Neural network models: The use of neural network architectures, including Multilayer Perceptrons (MLP), 
Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), Long Short-Term Memory 
Networks (LSTM), Gated Recurrent Units (GRU), and Transformer models, is motivated by the complex 
and potentially non-linear nature of seismic data. For example, MLPs provide a baseline for deep learning 
approaches, while CNNs can capture spatial relationships in input data that may correspond to geographic 
features. RNNs, LSTMs, and GRUs are particularly relevant for their ability to model sequential and temporal 
dependencies inherent in time-series data like earthquake events, where past occurrences may influence fu-
ture activity. LSTMs and GRUs, in particular, are designed to address the vanishing gradient problem found in 
traditional RNNs, allowing them to learn long-term dependencies that are crucial in understanding patterns 
over time in seismic data.Incorporation of modern techniques: In addition to traditional models, we incor-
porated modern techniques such as Transformer models. Transformers have demonstrated state-of-the-art 
performance in a wide range of sequence-based tasks due to their attention mechanisms, which allow them 
to focus on different parts of the input sequence. Unlike traditional RNNs, Transformers do not rely on se-
quential data processing, which makes them highly efficient in terms of parallel computation. This efficiency 
is particularly useful when dealing with large datasets, such as those in earthquake research. Their inclusion 
enables us to investigate their potential in capturing complex dependencies across different temporal and 
spatial dimensions in seismic data.

Comparative analysis: The inclusion of this wide range of models enables a comparative analysis to identify 
the most effective algorithm(s) for our specific problem. Each model’s performance was evaluated on the same 
dataset with consistent preprocessing steps to ensure a fair comparison. The results of these comparisons are 
detailed in Table 5, where the accuracies of all selected models are presented.

Fig. 11. Reduced correlation matrix of predictor variables. The matrix shows reduced correlations among the 
remaining predictor variables, confirming the effectiveness of the multicollinearity mitigation efforts.
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By employing this diverse set of algorithms, we aim to determine the most suitable approach for classifying 
earthquake magnitudes, taking into account the unique characteristics of seismic data and the nature of the 
classification task.

Research methodology, model evaluation approach, and hyperparameter optimization
In our research, the primary objective was to obtain an initial overview of the performance of various machine 
learning (ML) and neural network (NN) models using general, commonly accepted parameter settings. The 
intent behind this approach was not to achieve the absolute best performance for each model but to evaluate 
their baseline capabilities under standard conditions. This strategy allows us to identify which models hold the 
most promise before committing to the more time-intensive process of fine-tuning.

By adopting this methodology, we aimed to understand the comparative strengths and weaknesses of each 
algorithm when applied to our specific dataset. This preliminary phase is critical for selecting the most suitable 
model(s) for more detailed investigation. Based on the initial evaluations, the Random Forest model emerged 
as the best-performing model, demonstrating superior accuracy and robustness compared to other algorithms.

Fig. 12. Our methodology.

 

No. Variable Explanation

1 Latitude Latitude of the earthquake epicenter

2 Longitude Longitude of the earthquake epicenter

3 di Rolling Mean of Depth

4 Magnitude Magnitude of the earthquake

5 b-value Gutenberg-Richter b-value for the moment magnitude

6 ∆bi,i−2 Incremental b-value between events i and i− 2

7 ∆bi−2,i−4 Incremental b-value between events i− 2 and i− 4

8 ∆bi−4,i−6 Incremental b-value between events i− 4 and i− 6

9 ∆bi−6,i−8 Incremental b-value between events i− 6 and i− 8

10 ∆bi−8,i−10 Incremental b-value between events i− 8 and i− 10

11 M last week
max Maximum magnitude recorded during the last week

12 Cclust Clustering Coefficient

13 σmag,30 Standard Deviation of Magnitude

14 η Sum of the mean square deviation from the regression line

15 ∆M Difference between the largest observed and expected magnitudes

16 T Elapsed time between the last n events

17 CV Coefficient of variation of the inter-event times

18
√
EΣ Square root of the cumulative seismic energy

19 Neq,30 Number of Earthquakes in the Last 30 Days

Table 4. Our input variables for ML and NN models after multicollinearity reduction.
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Fig. 15. Distribution of earthquake magnitudes (training set).

 

Fig. 14. Spatial distribution of seismic events (testing set).

 

Fig. 13. Spatial distribution of seismic events (training set).
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Fig. 18. Depth vs magnitude scatter plot (testing set).

 

Fig. 17. Depth vs magnitude scatter plot (training set).

 

Fig. 16. Distribution of earthquake magnitudes (testing set).
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Following the identification of Random Forest as the most promising model, we proceeded to fine-tune its 
hyperparameters for a 15-variable subset. This fine-tuning process involved optimizing key parameters such 
as the number of trees (n_estimators), maximum depth (max_depth), and the minimum number of samples 
required to split a node (min_samples_split) and to be at a leaf node (min_samples_leaf). By refining these 
parameters, we aimed to enhance the model’s predictive performance and achieve the highest possible accuracy 
for our specific application. The results and the detailed analysis of the fine-tuning process are discussed in the 
“Analysis of Fine-Tuned Random Forest Model” section.

Hyperparameter selection and optimization
The performance of machine learning models and neural networks is highly influenced by the choice of 
hyperparameters. In this study, several models were utilized, each with carefully chosen hyperparameters to 
optimize performance in predicting the maximum earthquake class in the coming 30 days. The following 
subsections provide a detailed description of the hyperparameters used for each model, along with the strategies 
employed for their optimization.

• Logistic regression:Hyperparameters:solver=’lbfgs’, max_iter=1000, random_state=15.
• 
• Optimization: The solver lbfgs was chosen for its efficiency in handling multi-class classification problems. 

The number of iterations was set to 1000 to ensure convergence.Decision tree classifier:Hyperparameters:-
criterion=’gini’, max_depth=None, random_state=15.

• 
• Optimization: The Gini impurity criterion was selected to measure the quality of splits. No maximum depth 

was specified to allow the tree to expand until all leaves are pure or contain fewer than the minimum samples 
required to split.Random forest classifier:Hyperparameters:n_estimators=100, criterion=’gini’, max_fea-
tures=’sqrt’, random_state=15.

• 
• Optimization: The number of trees (n_estimators) was set to 100 to balance computational cost and perfor-

mance. The square root of the number of features was used to determine the maximum number of features 
considered for splitting.Gradient boosting machines (GBM):Hyperparameters:learning_rate=0.1, n_estima-
tors=100, subsample=1.0, random_state=15.

• 
• Optimization: The learning rate was set to 0.1, balancing convergence speed and model accuracy. The num-

ber of boosting stages (n_estimators) was set to 100.Support vector machines (SVM):Hyperparameters:ker-
nel=’rbf ’, C=1.0, gamma=’scale’, random_state=15.

• 
• Optimization: The Radial Basis Function (RBF) kernel was selected due to its capability to handle non-lin-

ear relationships. The penalty parameter (C) was set to 1.0, and gamma was set to ’scale’ to maintain bal-
anced sensitivity.k-nearest neighbors (k-NN):Hyperparameters:n_neighbors=5, weights=’uniform’, met-
ric=’minkowski’.

• 
• Optimization: The number of neighbors (n_neighbors) was set to 5. A uniform weight was chosen, and the 

Minkowski distance was employed for distance computation.Naive bayes (GaussianNB):Hyperparameters: 
No hyperparameters require adjustment.

• 

# Model Accuracy

1 Random Forest 0.9769

2 XGBoost 0.9675

3 LightGBM 0.9336

4 Multilayer Perceptron 0.9260

5 Decision Trees 0.8967

6 Recurrent Neural Networks 0.7681

7 Gradient Boosting Machines 0.7009

8 k-Nearest Neighbors 0.6384

9 Convolutional Neural Networks 0.6262

10 Gated Recurrent Units 0.5360

11 Support Vector Machines 0.5207

12 Transformer Models 0.4596

13 Long Short-Term Memory Networks 0.4528

14 AdaBoost 0.3533

15 Logistic Regression 0.3264

16 Naive Bayes 0.2620

Table 5. Accuracy comparison of different models on the test dataset.
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• Optimization: The Gaussian Naive Bayes method was used without further parameter tuning, as it does not 
have hyperparameters that significantly impact the model’s performance.AdaBoost classifier:Hyperparame-
ters:n_estimators=50, algorithm=’SAMME’, random_state=15.

• 
• Optimization: The number of boosting rounds was set to 50. The SAMME algorithm was chosen for its 

ability to handle multi-class classification.XGBoost:Hyperparameters:n_estimators=100, learning_rate=0.1, 
max_depth=6, random_state=15.

• 
• Optimization: The learning rate was set to 0.1, with 100 estimators to ensure a balance between speed and 

performance. The maximum depth of 6 was used to prevent overfitting.LightGBM:Hyperparameters:num_
leaves=64, max_depth=6, min_split_gain=0.5, min_child_samples=20, random_state=15.

• 
• Optimization: LightGBM hyperparameters were adjusted to avoid warnings and improve performance by 

balancing model complexity and overfitting risk.Multilayer perceptron (MLP):Hyperparameters:hidden_
layer_sizes=(100, 100), learning_rate_init=0.001, max_iter=1000, random_state=15.

• Optimization: A multi-layer structure with two hidden layers, each containing 100 neurons, was used. The 
initial learning rate was set to 0.001 for gradual weight updates.

Neural network models

• Convolutional neural networks (CNN):Hyperparameters: Layers: Input, Conv1D (32 filters, kernel size 3), 
Flatten, Dense (64 units, ReLU), Dense (output layer, softmax).

• 
• Optimization: Model architecture optimized through empirical testing to balance depth and computational 

efficiency.Recurrent neural networks (RNN):Hyperparameters: Layers: Input, LSTM (64 units, return se-
quences), Flatten, Dense (64 units, ReLU), Dense (output layer, softmax).

• 
• Optimization: LSTM units were used to capture temporal dependencies, and additional layers were added 

to refine the feature representation.Long short-term memory networks (LSTM):Hyperparameters: Layers: 
Input, LSTM (64 units), Dense (64 units, ReLU), Dense (output layer, softmax).

• 
• Optimization: Configured with an appropriate number of units and layers to optimize sequential pattern 

learning and minimize overfitting.Gated recurrent units (GRU):Hyperparameters: Layers: Input, GRU (64 
units), Dense (64 units, ReLU), Dense (output layer, softmax).

• 
• Optimization: GRU layers were chosen for their efficiency compared to LSTM, with configurations aimed at 

reducing computational complexity while retaining the ability to model long-term dependencies.Transformer 
models:Hyperparameters: Layers: Input, Dense (64 units, ReLU), Dense (output layer, softmax).

• Optimization: A simplified transformer architecture was employed to assess its effectiveness for this particu-
lar dataset, focusing on handling non-sequential data relationships. The model’s structure was designed to 
optimize learning while maintaining computational efficiency.This combination of general parameter settings 
and strategic fine-tuning allowed us to achieve a comprehensive understanding of the performance potential 
of various machine learning and neural network models. Through this process, we identified the most prom-
ising models for further investigation and optimized the Random Forest model to achieve superior predictive 
accuracy for our specific application.

Random forest
We utilized a Random Forest model with 100 estimators to predict earthquake categories, and the resulting 
accuracy is presented in Table 5. Random Forest is a machine learning algorithm that has been successfully 
applied in seismology for earthquake prediction and analysis. Researchers have utilized Random Forest to 
develop models that can predict earthquakes by analyzing seismic data and identifying patterns that precede 
seismic activity106. This approach represents a significant advancement in earthquake prediction methodologies, 
emphasizing data-driven techniques to enhance the reliability of seismic forecasts.

In seismology, Random Forest has been employed to distinguish seismic waveforms, enabling researchers 
to effectively differentiate between earthquake signals and background noise107. By training Random Forest 
classifiers with a substantial dataset of earthquake and noise waveforms, researchers have created models capable 
of automatically extracting features and classifying seismic events with high accuracy107. This application of 
Random Forest underscores its potential in improving earthquake early warning systems by facilitating rapid 
and precise identification of seismic events.

Random Forest has also been utilized to detect and classify seismic signals related to various geological 
phenomena, such as landslides and glacial earthquakes106,108. By employing Random Forest classifiers, 
researchers have automated the process of identifying and categorizing seismic events, leading to more efficient 
monitoring and analysis of geological activities106,108. This automated approach not only enhances the speed of 
event recognition but also improves the overall understanding of seismic processes in geologically active regions.

In the field of earthquake forecasting, Random Forest has shown promise in predicting the magnitude and 
occurrence of seismic events108. Studies have indicated that Random Forest models can effectively forecast 
earthquake magnitudes in specific regions, providing valuable insights for disaster preparedness and risk 
mitigation strategies108. This predictive capability highlights the potential of Random Forest in supporting 
decision-making processes related to earthquake response and mitigation efforts.
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XGBoost
We applied XGBoost to predict earthquake categories, and the resulting accuracy is shown in Table 5. XGBoost, 
which stands for Extreme Gradient Boosting, is a machine learning algorithm renowned for its efficiency and 
effectiveness in handling complex datasets. In the field of seismology, XGBoost has shown significant promise 
in earthquake prediction and analysis. Seismologists have been exploring the application of machine learning 
techniques like XGBoost to enhance their ability to predict seismic events accurately and efficiently109. By 
utilizing XGBoost, researchers have developed models capable of predicting earthquakes by analyzing various 
features and patterns in seismic data109. This approach signifies a shift towards more advanced and data-driven 
methodologies in seismology, aiming to improve the accuracy and timeliness of earthquake predictions.

In the realm of earthquake prediction, XGBoost has been used alongside other artificial intelligence models 
to evaluate earthquake spatial probability, particularly in regions like the Arabian Peninsula110. The integration 
of XGBoost with explainable artificial intelligence (XAI) models has shown promising results, emphasizing the 
importance of including additional factors such as seismic gaps and tectonic contacts to enhance prediction 
accuracy110. This fusion of advanced machine learning techniques with traditional seismic analysis methods 
demonstrates a multidimensional approach to earthquake forecasting, highlighting the significance of 
comprehensive data analysis in seismology.

XGBoost has also been integrated into earthquake monitoring and early warning systems to provide real-
time alerts before significant ground shaking occurs111. By employing broadband P waveform data and XGBoost 
algorithms, researchers have developed systems capable of issuing earthquake warnings several seconds prior 
to the onset of a seismic event111. This proactive approach to earthquake prediction underscores the potential 
of machine learning algorithms like XGBoost in improving seismic monitoring and disaster mitigation efforts.

Moreover, XGBoost has been incorporated into comprehensive earthquake prediction models, combining 
neural networks and other machine learning classifiers to analyze seismic data and forecast earthquake 
impacts112.

LightGBM
We applied LightGBM to predict earthquake categories. The resulting accuracy is shown in Table 5.

LightGBM, a tree-based boosting algorithm, has been utilized in earthquake prediction within seismology. 
Researchers have successfully employed LightGBM to develop models capable of predicting earthquake 
magnitudes and mapping seismic vulnerability by leveraging artificial intelligence techniques113. By utilizing 
historical strong motion data from databases such as NGA-west2, LightGBM models have demonstrated the 
ability to swiftly and accurately replicate the distribution of strong motion near earthquake epicenters113. 
This application of LightGBM represents a significant advancement in earthquake prediction methodologies, 
showcasing the algorithm’s efficiency in handling seismic data and enhancing predictive capabilities in 
seismology.

LightGBM has been acknowledged for its efficiency in data processing and memory consumption reduction, 
making it a valuable tool for analyzing seismic data in large sample applications114. The algorithm’s capacity 
to enhance processing speed while maintaining accuracy is particularly advantageous in seismology, where 
timely analysis of seismic events is critical for effective earthquake prediction and risk assessment. By leveraging 
LightGBM’s capabilities, researchers can streamline data processing tasks and improve the efficiency of 
earthquake prediction models.

In the realm of earthquake forecasting, LightGBM has played a crucial role in predicting seismic events 
and evaluating seismic vulnerability in earthquake-prone regions. Through the integration of LightGBM 
into predictive models, researchers have been able to analyze seismological parameters and forecast the areas 
impacted by earthquake-induced landslides using sophisticated data processing techniques115. This approach 
underscores the algorithm’s versatility in handling complex seismic datasets and providing valuable insights into 
earthquake impacts, thereby aiding in disaster preparedness and risk mitigation efforts.

The incorporation of LightGBM into earthquake prediction models has enabled researchers to enhance the 
accuracy of seismic forecasts and deepen the understanding of seismic processes. By integrating LightGBM 
into comprehensive earthquake prediction frameworks, seismologists can leverage the algorithm’s capabilities 
to analyze seismic data, identify seismic patterns, and forecast earthquake magnitudes with greater precision9.

Multilayer perceptron (MLP)
We employed a Multilayer Perceptron (MLP) to predict earthquake categories, and the resulting accuracy is 
detailed in Table 5. In seismology, the Multilayer Perceptron (MLP) neural network model has been utilized to 
predict earthquake magnitudes and assess seismic events accurately. Researchers have employed MLP to develop 
models capable of forecasting the magnitude of earthquakes, providing valuable insights into seismic activity116. 
By leveraging the capabilities of MLP, seismologists can analyze seismic data and predict earthquake magnitudes 
with enhanced precision, contributing to more effective disaster preparedness and risk mitigation strategies in 
earthquake-prone regions.

The application of MLP in seismology has enabled researchers to predict the magnitude of earthquakes using 
neural network models with multiple hidden layers116. By training MLP models with seismic data, researchers 
can extract patterns and features that aid in forecasting earthquake magnitudes, thereby improving the accuracy 
of seismic event predictions. This approach highlights the effectiveness of MLP in handling complex seismic 
datasets and enhancing the understanding of seismic processes in seismology.

MLP has been utilized to predict the occurrence of seismic events and assess earthquake magnitudes based 
on historical seismic data117. By employing MLP neural networks with backpropagation learning algorithms, 
researchers can analyze seismic patterns and predict the magnitude of earthquakes accurately. This utilization of 
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MLP in earthquake prediction models demonstrates the algorithm’s effectiveness in handling seismic data and 
enhancing the reliability of seismic forecasts in seismology.

MLP has been applied in seismology to create earthquake prediction models that utilize artificial neural 
networks to forecast seismic events118.

Decision trees
We employed Decision Trees to predict earthquake categories, and the resulting accuracy is detailed in Table 5.

Decision Trees are a widely used machine learning algorithm in seismology for earthquake prediction and 
analysis. They are structured as tree-like models where each internal node represents a feature or attribute, 
each branch signifies a decision rule, and each leaf node indicates the outcome or prediction119. In seismology, 
Decision Trees have been effectively utilized to analyze seismic data, forecast earthquake magnitudes, evaluate 
seismic vulnerability, and categorize seismic events based on various parameters.

Researchers have applied Decision Trees in seismology to predict earthquake magnitudes and assess 
seismic vulnerability by creating models and predicting seismic events using a tree structure119. By developing 
Decision Trees based on seismic data, researchers can identify patterns and relationships that assist in predicting 
earthquake magnitudes and comprehending seismic processes. This methodology showcases the efficacy of 
Decision Trees in managing intricate seismic datasets and enhancing the precision of earthquake predictions 
in seismology.

Decision Trees have been utilized to assess parameters influencing earthquake damage and simulate 
earthquake damage distributions in seismically active regions120. Through the application of Decision Tree 
techniques, researchers can holistically evaluate earthquake damages, considering both structural and non-
structural factors, to accurately predict and model earthquake damage distributions. This use of Decision 
Trees underscores their adaptability in analyzing seismic data and forecasting the impact of seismic events on 
structures and infrastructure.

In the realm of earthquake prediction, Decision Trees have been employed to classify seismic events, 
differentiate between various types of seismic signals, and forecast the likelihood of earthquakes based on 
historical seismic data121. By leveraging Decision Trees, researchers can establish models that aid in decision-
making during seismic events, enhance earthquake emergency response strategies, and refine earthquake 
forecasting methodologies. This utilization of Decision Trees demonstrates their effectiveness in analyzing 
seismic data and supporting decision-making processes in seismology.

Decision Trees have been integrated with other machine learning algorithms to predict earthquake 
occurrences, evaluate the seismic performance of structures, and enhance disaster planning and response 
strategies122.

Recurrent neural networks (RNN)
We employed Recurrent Neural Networks (RNN) to predict earthquake categories, and the accuracy results are 
shown in Table 5. Recurrent Neural Networks (RNN) have become a valuable tool in seismology for earthquake 
prediction and analysis. RNNs, a type of neural network that incorporates feedback loops, are well-suited for 
handling seismic time-series data due to their ability to capture temporal dependencies in sequential data123. 
Researchers have successfully applied RNNs in seismology to model postseismic deformation, classify seismic 
events, and predict earthquake occurrences with improved accuracy, contributing to more effective disaster 
management strategies and risk mitigation efforts in earthquake-prone regions.

A study introduced a machine learning approach using RNNs to characterize the postseismic deformation 
of the 2011 Tohoku-Oki Earthquake based on time-series data, demonstrating the effectiveness of RNNs in 
accurately modeling observed seismic phenomena123. By leveraging the capabilities of RNNs, researchers can 
analyze seismic data over time and predict the evolution of seismic events, providing valuable insights into the 
dynamics of seismic processes in seismology.

RNNs have been utilized in earthquake detection systems to analyze seismic array data and detect seismic 
events efficiently. A study focused on developing a graph-partitioning based CNN for earthquake detection 
using a seismic array, showcasing the effectiveness of RNNs in processing large-scale seismic network data sets 
and improving earthquake detection techniques124. This application of RNNs highlights their ability to handle 
complex spatiotemporal data and enhance earthquake detection capabilities in seismology.

RNNs have also been integrated into seismic event classification models to analyze seismic waveforms and 
classify seismic events accurately. By leveraging RNNs for seismic event classification, researchers can extract 
features from seismic signals and categorize seismic events based on their characteristics, leading to more precise 
earthquake predictions and assessments in seismology125.

Clarification of input dimensions for RNN
The architecture of our Recurrent Neural Network (RNN) was designed to process earthquake data where 
each feature represents a distinct time step in a sequence. The input to the RNN was structured as a 3D tensor 
with dimensions (number of samples, sequence length, number of features). Specifically, the dimension 
(number of features, 1) refers to the input shape for each individual sequence processed by the RNN.

In this context, number of features corresponds to the total number of attributes describing each earthquake 
event in our dataset, and the second dimension of 1 represents a single time step. The structure ensures that 
each feature is treated as part of a temporal sequence, even if the sequence length is one. This approach allows 
the RNN to learn temporal dependencies across the features, leveraging the recurrent connections to capture 
patterns that may be indicative of earthquake categories.
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The choice of sequence length 1 was made because each feature in the dataset corresponds to a single time 
point, rather than a series of time points. Therefore, while the RNN typically processes longer sequences, in this 
case, the model learns from the inter-feature relationships within each event.

Clarification of LSTM layer usage in RNN architecture
In this study, the Recurrent Neural Network (RNN) architecture employed to forecast earthquake categories 
incorporated an LSTM (Long Short-Term Memory) layer. The LSTM layer is a specialized form of RNN that 
is particularly well-suited for learning long-term dependencies in sequential data. This choice was made to 
enhance the model’s ability to capture temporal patterns within the earthquake data, thereby improving its 
predictive performance.

It is important to distinguish between the general term “RNN” and the specific implementation of an RNN 
using LSTM layers. While traditional RNNs are effective for processing sequences, they often struggle with 
learning long-range dependencies due to issues such as vanishing gradients. LSTM networks address this 
limitation by introducing memory cells that can maintain information over longer periods, making them more 
effective for tasks involving temporal sequences.

In our implementation, the architecture labeled as an “RNN” utilizes an LSTM layer to leverage these 
advanced capabilities. The model comprises an input layer with the shape defined by the number of features 
and a single time step, followed by an LSTM layer with 64 units configured to return sequences, a Flatten layer, 
a Dense layer with 64 units using the ReLU activation function, and a final Dense layer with softmax activation 
to produce the output probabilities for earthquake categories.

The distinction between the RNN and LSTM models in our study is as follows:

• The RNN model specifically refers to the architecture described above, where an LSTM layer is employed to 
capture long-term dependencies in the sequential data.

• The LSTM model mentioned separately in the manuscript refers to another architecture that also utilizes an 
LSTM layer but is designed with different configurations, such as not returning sequences after the LSTM 
layer, which results in variations in how the temporal information is processed.Both models were evaluated 
to understand their effectiveness in forecasting earthquake categories, with the LSTM-based RNN model 
demonstrating strong performance due to its ability to model complex temporal patterns in the dataset.

Gradient boosting machines (GBM)
We applied Gradient Boosting Machines (GBM) to predict earthquake categories, and the resulting accuracy 
is shown in Table 5. Gradient Boosting Machines (GBM) are an ensemble learning technique developed by 
Jerome Friedman. GBM consists of weak learners, typically regression trees, that are sequentially added using 
a functional gradient descent to minimize the loss function of the entire ensemble126. In seismology, GBM has 
been utilized to enhance earthquake prediction models by optimizing the loss function and improving the 
accuracy of seismic forecasts.

Convolutional neural networks (CNN)
We utilized Convolutional Neural Networks (CNN) to predict earthquake categories, and the accuracy results 
are displayed in Table 5. In the field of seismology, Convolutional Neural Networks (CNN) have proven to be 
a valuable tool for earthquake prediction and analysis. CNNs, a type of deep neural network that incorporates 
convolution calculations and has a deep structure, are well-suited for handling seismic data and predicting 
seismic events127. Researchers have successfully utilized CNNs in seismology to analyze seismic patterns, classify 
seismic events, and forecast earthquake occurrences with increased accuracy, contributing to more effective 
disaster management strategies and risk mitigation efforts in earthquake-prone regions.

A study demonstrated the development of a CNN model capable of detecting and classifying seismic body 
wave phases across various circumstances, highlighting the effectiveness of CNNs in seismic phase detection128. 
Through the application of CNNs, researchers can automate the process of identifying seismic phases, leading to 
improved seismic event classification and analysis. This utilization of CNNs emphasizes their value in enhancing 
seismic data processing and interpretation in seismology.

CNNs have been integrated into earthquake prediction models to assess seismic vulnerability and forecast 
seismic ground motions. By incorporating CNNs into seismic vulnerability assessment frameworks, researchers 
can enhance the accuracy of seismic impact predictions on structures and infrastructure. This integration 
showcases the effectiveness of CNNs in analyzing seismic data and improving the prediction of earthquake 
impacts, thereby supporting disaster preparedness and risk mitigation strategies in seismology.

CNNs have been employed in the classification of seismic events based on waveform data, demonstrating 
their ability to process complex seismic signals and accurately classify seismic events129.

Long short-term memory networks (LSTM)
We used Long Short-Term Memory Networks (LSTM) to predict earthquake categories, and the accuracy results 
are presented in Table 5.

Recurrent Long Short-Term Memory Networks (LSTM) are a type of neural network architecture particularly 
well-suited for sequential data analysis due to their ability to retain information over long periods. In the context 
of seismology, LSTM networks have been increasingly utilized for earthquake prediction. These networks excel 
in capturing the temporal dependencies present in seismic data, making them valuable tools for forecasting 
seismic events. Studies such as those by Hsu et al.130, Cao et al.131, and Abri and Artuner132 have demonstrated 
the effectiveness of LSTM networks in predicting various seismic parameters like peak ground acceleration 
(PGA) and earthquake occurrences.
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In seismology, the prediction of earthquakes has long been a challenging and critical endeavor due to its 
implications for public safety and disaster mitigation. Researchers have explored various approaches to improve 
earthquake prediction accuracy, with a focus on leveraging advanced technologies like deep learning and neural 
networks. The study by Dias and Papa118 highlights the application of neural networks, specifically multilayer 
perceptron models, for probabilistic earthquake forecasting, showcasing the potential of machine learning 
techniques in seismic event prediction.

The integration of attention mechanisms with LSTM networks, as demonstrated in the work by Banna et 
al.34, has shown promising results in enhancing earthquake prediction accuracy. By incorporating attention 
mechanisms, which allow the model to focus on relevant parts of the input sequence, the LSTM network can 
better capture subtle patterns in seismic data, leading to improved forecasting capabilities.

k-nearest neighbors (k-NN)
We applied k-Nearest Neighbors (k-NN) to predict earthquake categories, and the accuracy results are shown 
in Table 5. In seismology, the k-Nearest Neighbors (k-NN) algorithm has been utilized as a valuable tool 
for earthquake prediction and analysis. The k-NN algorithm is a popular non-parametric method used for 
classification and regression, making it suitable for handling seismic data and predicting seismic events133. By 
leveraging the k-NN algorithm, seismologists can analyze seismic patterns, classify seismic events, and forecast 
earthquake occurrences with enhanced accuracy, contributing to more effective disaster management strategies 
and risk mitigation efforts in earthquake-prone regions.

Researchers have employed the k-NN algorithm in seismology to classify seismic signals, differentiate between 
various types of seismic events, and predict the likelihood of earthquakes based on historical seismic data134. 
By applying the k-NN algorithm, researchers can develop models that aid in decision-making during seismic 
events, improve earthquake emergency response strategies, and refine earthquake forecasting methodologies. 
This utilization of the k-NN algorithm demonstrates its effectiveness in analyzing seismic data and supporting 
decision-making processes in seismology135.

Gated recurrent units (GRU)
We implemented Gated Recurrent Units (GRU) to predict earthquake categories, and the accuracy results are 
detailed in Table 5. Gated Recurrent Units (GRU) are a type of neural network architecture designed to efficiently 
model sequential data, similar to LSTM networks. In seismology, GRUs have become valuable for earthquake 
prediction due to their streamlined architecture with fewer parameters, making them computationally efficient 
for certain applications in earthquake forecasting. Studies by Dias and Papa118 and Wang et al.136 have explored 
the use of neural networks, including GRUs, in earthquake prediction, demonstrating the potential of these 
models in capturing complex temporal patterns in seismic data.

Seismologists are increasingly utilizing advanced machine learning techniques, such as GRUs, to enhance the 
accuracy and reliability of earthquake prediction models. By employing GRU networks, researchers can analyze 
seismic data sequences effectively and extract meaningful patterns for more precise seismic event forecasts. 
Akter137 utilized an Evidential Reasoning Approach to predict earthquakes based on specific signs and patterns, 
showcasing the versatility of neural network models like GRUs in seismic hazard assessment.

Integrating GRUs with additional data sources, such as GPS data and outgoing longwave radiation, has 
shown promise in improving earthquake prediction accuracy. While Gitis et al.49 stress the importance of using 
artificial neural networks for earthquake prediction, studies like that of Zhai et al.50 demonstrate the effectiveness 
of combining GRU models with time series forecasting techniques to detect thermal anomalies in earthquake 
processes, highlighting the interdisciplinary approach required in modern seismology research.

In earthquake forecasting, evaluating seismic parameters and their spatial variations is crucial for developing 
robust prediction models. Research by Hussain et al.48 on the spatial variation of b-values and their relationship 
with fault blocks suggests the potential of using such parameters alongside GRU networks to predict high-
magnitude earthquakes. Additionally, studies like that of Marc et al.115 focus on predicting the area affected 
by earthquake-induced landslides based on seismological parameters, illustrating the practical applications of 
integrating GRU models with geophysical data for hazard assessment.

Analyzing earthquake catalogs and historical seismicity patterns provides valuable insights for refining 
earthquake prediction models. Investigations such as those by Chouliaras138 on the earthquake catalog of the 
National Observatory of Athens and Alabi et al.139 on seismicity patterns in Southern Africa emphasize the 
importance of leveraging historical seismic data to enhance the performance of GRU-based forecasting models.

Support vector machines (SVM)
We used Support Vector Machines (SVM) to predict earthquake categories, and the accuracy results are shown 
in Table 5.

Support Vector Machines (SVM) have been utilized in seismology for earthquake prediction and analysis. 
Researchers have employed SVM as a machine learning tool to enhance earthquake forecasting models and 
improve the accuracy of seismic event predictions140. By leveraging the capabilities of SVM, seismologists 
can analyze seismic data, classify seismic events, and predict earthquake occurrences with greater precision, 
contributing to more effective disaster management strategies and risk mitigation efforts in earthquake-prone 
regions.

In the context of seismology, SVM has been used to classify seismic signals, differentiate between various 
types of seismic events, and forecast the likelihood of earthquakes based on historical seismic data140. By utilizing 
SVM algorithms, researchers can develop models that aid in decision-making during seismic events, enhance 
earthquake emergency response strategies, and refine earthquake forecasting methodologies. This application 
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of SVM highlights its effectiveness in analyzing seismic data and supporting decision-making processes in 
seismology.

SVM has also been combined with other machine learning algorithms to forecast earthquake occurrences, 
assess seismic vulnerability, and improve disaster planning and response strategies141.

Transformer models
We utilized Transformer Models to predict earthquake categories, and the accuracy results are presented in Table 
5. Transformer models have become a valuable tool in various seismological applications, including earthquake 
prediction and seismic event analysis. In the context of seismology, transformer models have been utilized 
for tasks such as earthquake detection, phase picking, earthquake source characterization, and early warning 
systems142. These models have demonstrated their effectiveness in efficiently processing large volumes of seismic 
data and capturing complex temporal patterns present in seismic signals.

Seismologists have increasingly turned to machine learning techniques, including transformer models, to 
enhance earthquake prediction accuracy and improve seismic event forecasting. The ability of transformer 
models to handle sequential data and learn dependencies across different time steps makes them well-suited 
for analyzing seismic signals and extracting meaningful features for earthquake prediction. The application 
of transformer models in seismology has shown promising results in enhancing the understanding of seismic 
events and improving the reliability of earthquake forecasts.

Transformer models have been instrumental in separating earthquake signals from ambient noise in 
seismograms, contributing to more accurate earthquake detection and analysis142.

AdaBoost
We utilized AdaBoost with the SAMME algorithm to predict earthquake categories, and the accuracy results are 
displayed in Table 5. In the field of seismology, the AdaBoost machine learning algorithm has been employed to 
enhance earthquake prediction models and improve the accuracy of seismic event forecasts. AdaBoost, which 
stands for Adaptive Boosting, is a boosting algorithm that combines multiple weak learners to create a strong 
predictive model. Researchers have utilized AdaBoost in seismology to analyze seismic data, predict earthquake 
occurrences, and assess seismic vulnerability effectively143.

A study introduced a novel earthquake prediction framework based on the classical AdaBoost machine 
learning algorithm, incorporating satellite remote sensing products like infrared and hyperspectral gases to 
detect earthquake perturbations144. By integrating AdaBoost within the framework of inverse boosting pruning 
trees (IBPT), the researchers achieved promising forecasting results in the retrospective validation of global 
earthquake cases, demonstrating the algorithm’s effectiveness in earthquake prediction144.

AdaBoost has been integrated into earthquake prediction models to evaluate seismic vulnerability and 
forecast seismic ground motions. The seismic vulnerability of Reinforced Concrete (RC) structures under single 
and multiple seismic events was predicted using various machine learning algorithms, including the AdaBoost 
Regressor145. This incorporation of AdaBoost into seismic vulnerability assessment models underscores its 
usefulness in analyzing seismic data and improving the prediction of earthquake impacts on structures.

AdaBoost has also been applied in earthquake prediction systems that merge earthquake indicators with 
genetic programming to enhance prediction accuracy. An earthquake prediction system utilizing AdaBoost 
alongside earthquake prediction indicators has led to improved results in earthquake forecasting146.

Logistic regression
We applied Logistic Regression to predict earthquake categories, and the accuracy results are displayed in Table 
5.

Logistic regression is a statistical method commonly used in various fields, including seismology, to analyze 
the relationship between a binary outcome and one or more predictor variables. In the context of seismology, 
logistic regression has been applied to predict and assess different aspects related to earthquakes. For instance, 
Jessee et al.147 developed a global empirical model for assessing seismically induced landslides using logistic 
regression to understand the distribution of earthquake-triggered landslides based on factors like ground 
shaking, topographic slope, and land cover type. This study highlights the utility of logistic regression in 
modeling the impact of earthquakes on the occurrence of landslides.

Logistic regression has been utilized in earthquake prediction studies, although traditional models based 
on physical principles and statistical seismology laws have limitations in predicting large earthquakes148. While 
logistic regression has been used in earthquake prediction models, it is essential to acknowledge the challenges 
in accurately forecasting significant seismic events solely based on empirical laws and physical principles.

In the specific context of seismically induced damage patterns, Rawat et al.149 employed logistic regression 
to investigate seismic hazard assessment by considering site-specific parameters such as lithology, proximity to 
fault lines, soil texture, and groundwater. This application demonstrates how logistic regression can be used to 
understand the factors influencing seismic damage patterns and assess earthquake risks in different geological 
settings.

Logistic regression has also been applied in studies focusing on earthquake-induced landslides. Vilder et al.150 
used a logistic regression model to correlate earthquake-induced landslide inventories with various topographic, 
geological, and seismological parameters to determine the factors contributing to coseismic landslides.

Naive bayes
We used Naive Bayes to predict earthquake categories, and the accuracy results are shown in Table 5. One 
study by Fahandezhsadi and Sadi93 focused on earthquake magnitude prediction using probabilistic classifiers, 
including Naive Bayes. The research aimed to enhance the accuracy of Naive Bayes by relaxing its strong 
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conditional independence assumption, indicating an interest in exploring the potential of Naive Bayes in seismic 
event forecasting. This study suggests that Naive Bayes, when adapted and optimized for seismic data, could 
potentially contribute to earthquake prediction efforts.

In a broader context of seismic event discrimination, a study by Elkhouly151 employed multiple machine 
learning techniques, including Naive Bayes, to distinguish between nuclear explosions and natural earthquakes. 
While the primary focus was on seismic discrimination, the inclusion of Naive Bayes in the machine learning 
models underscores its versatility and potential applicability in seismic data analysis. This research highlights the 
adaptability of Naive Bayes in complex seismic event classification tasks.

A study by Murwantara et al.152 comparing machine learning algorithms for earthquake prediction in 
Indonesia evaluated Naive Bayes alongside other methods like multinomial logistic regression and support 
vector machine. The research aimed to assess the performance of these algorithms in medium-to-long-term 
earthquake prediction using historical data, indicating the consideration of Naive Bayes as a potential tool for 
seismic forecasting. This study suggests that Naive Bayes can be part of a comprehensive approach to earthquake 
prediction when combined with other predictive models.

Model comparison
To evaluate the performance of different machine learning (ML) and neural network (NN) models, we calculated 
their accuracies on the test dataset. The results are presented in Table 5. All models except Naive Bayes achieved 
statistically significant accuracies. Notably, the Random Forest model achieved the highest accuracy, exceeding 
our initial expectations.

Baseline accuracy
The baseline accuracy in machine learning refers to the accuracy achieved by always predicting the most frequent 
class in the dataset. It serves as a reference point to determine if a model performs better than random guessing 
or a simple heuristic. In our dataset, the baseline accuracy was calculated as follows:

 
Baseline Accuracy =

Number of instances in the most frequent class
Total number of instances

 (77)

By dividing the number of instances in the most frequent class by the total number of instances, we obtained a 
baseline accuracy of:

 Baseline Accuracy = 27.6999% (78)

This value represents the minimum accuracy any model should exceed to be considered better than a naive 
prediction strategy.

Confidence interval calculation
To assess whether the models’ accuracies were statistically significant compared to the baseline accuracy, we 
calculated the 95% confidence interval (CI) for the baseline accuracy. The CI provides a range within which 
the true baseline accuracy is likely to fall with a 95% confidence level. The standard error (SE) of the baseline 
accuracy was calculated using the formula:

 
SE =

√
Baseline Accuracy × (1− Baseline Accuracy)

n
 (79)

where n represents the number of observations in the test dataset. The standard error quantifies the uncertainty 
in the baseline accuracy estimate due to the sample size. The 95% confidence interval was computed using the 
Z-score corresponding to a 95% confidence level:

 Z = CDF−1(0.975) ≈ 1.96 (80)

The confidence interval is then calculated as:

 CI = Baseline Accuracy ± Z × SE (81)

Substituting the values, we obtained:

 CI ≈ (26.4038%, 28.9960%) (82)

This confidence interval indicates that any model accuracy significantly above 28.9960% would be considered 
statistically significant compared to the baseline accuracy at a 95% confidence level.

Critical accuracy
The critical accuracy is defined as the upper bound of the confidence interval, which in our case is 28.9960%. 
Any model with an accuracy greater than this threshold is deemed statistically significant in outperforming the 
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baseline. Fifteen out of sixteen ML and NN models demonstrated statistically significant results, as shown in 
Table 5.

Purpose of Z-score and SE
The Z-score, a statistical measure, quantifies the number of standard deviations a data point is from the mean of 
a distribution. For our 95% confidence interval, a Z-score of approximately 1.96 is used to cover the central 95% 
of the normal distribution.

The standard error (SE) represents the standard deviation of the sampling distribution of a statistic, in this 
case, the baseline accuracy. The SE helps to quantify the uncertainty around the estimated baseline accuracy, 
enabling us to calculate the confidence interval. The lower the SE, the more precise our estimate of the baseline 
accuracy.

By understanding the Z-score and SE, we can more accurately interpret the confidence interval and determine 
which models demonstrate statistically significant performance improvements over the baseline.

Evaluation of model performance using multiple metrics
To comprehensively evaluate the performance of each machine learning and neural network model, we used 
multiple metrics: Accuracy, Precision, Recall, F1-Score, and ROC-AUC. The results of these metrics are 
summarized in Table 6.

Accuracy
Accuracy measures the proportion of correctly predicted instances among the total instances. It is calculated as:

 
Accuracy =

True Positives + True Negatives
Total Instances

 (83)

Models like Random Forest, XGBoost, and LightGBM achieved the highest accuracy scores, reflecting their 
strong performance in correctly classifying the earthquake data.

Precision
Precision represents the proportion of true positive predictions among all positive predictions. It is given by:

 
Precision =

True Positives
True Positives + False Positives

 (84)

High precision values for models like Random Forest, XGBoost, and LightGBM indicate that these models have 
a low rate of false positives, making them reliable for predicting specific earthquake classes.

Recall
Recall measures the proportion of true positive predictions among all actual positives and is calculated as:

 
Recall =

True Positives
True Positives + False Negatives

 (85)

Model Accuracy Precision Recall F1-Score ROC-AUC

Logistic Regression 0.3264 0.3448 0.3264 0.3001 0.6255

Decision Trees 0.8967 0.8969 0.8967 0.8967 0.9347

Random Forest 0.9769 0.9769 0.9769 0.9768 0.9989

Gradient Boosting Machines 0.7009 0.7166 0.7009 0.7013 0.9196

Support Vector Machines 0.5207 0.5835 0.5207 0.5071 0.8118

k-Nearest Neighbors 0.6384 0.6483 0.6384 0.6372 0.8697

Naive Bayes 0.2620 0.2954 0.2620 0.2420 0.5742

AdaBoost 0.3533 0.4418 0.3533 0.3229 0.6481

XGBoost 0.9675 0.9675 0.9675 0.9674 0.9975

LightGBM 0.9336 0.9341 0.9336 0.9336 0.9936

Multilayer Perceptron 0.9260 0.9263 0.9260 0.9260 0.9901

Convolutional Neural Networks 0.6262 0.6561 0.6262 0.6454 0.8959

Recurrent Neural Networks 0.7681 0.7651 0.7681 0.7619 0.9485

Long Short-Term Memory Networks 0.4528 0.4782 0.4528 0.4437 0.7528

Gated Recurrent Units 0.5360 0.5444 0.5360 0.5336 0.8279

Transformer Models 0.4596 0.4892 0.4596 0.4525 0.7618

Table 6. Comparison of model performance using multiple metrics.
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Models such as Random Forest, XGBoost, and LightGBM exhibit high recall scores, demonstrating their 
effectiveness in correctly identifying most of the actual earthquake events.

F1-Score
The F1-Score is the harmonic mean of Precision and Recall, balancing both metrics. It is computed as:

 
F1-Score = 2× Precision × Recall

Precision + Recall
 (86)

A high F1-Score, particularly for the Random Forest and XGBoost models, indicates a balanced performance in 
terms of both correctly predicting earthquake events and minimizing false positives.

ROC-AUC
The ROC-AUC (Receiver Operating Characteristic - Area Under Curve) measures the ability of a model to 
distinguish between classes. A higher ROC-AUC value indicates better model performance in separating the 
classes. It is particularly useful for evaluating models where class imbalance is present.

 ROC-AUC = Area under the ROC curve (87)

Models like Random Forest, XGBoost, and LightGBM have ROC-AUC values close to 1, suggesting excellent 
discriminative ability.

Conclusion
The comparative analysis using multiple metrics shows that Random Forest, XGBoost, and LightGBM models 
consistently outperform other models across all evaluation metrics. These models demonstrate high accuracy, 
precision, recall, F1-Score, and ROC-AUC values, making them the most reliable for earthquake prediction in 
this study. Conversely, models such as Naive Bayes, AdaBoost, and Logistic Regression exhibit lower performance 
across all metrics, indicating limited effectiveness for this specific task.

Analysis of model accuracies in predicting earthquake classes
In this section, we analyze the accuracy of each machine learning (ML) and neural network (NN) model in 
predicting different earthquake classes, particularly focusing on their performance in correctly predicting class 
6, which represents strong earthquakes.

Logistic regression
Logistic Regression demonstrated relatively low accuracy across all classes, with accuracies ranging from 0.000 
for class 6 to 0.505 for class 4. Its accuracy in predicting class 6 (strong earthquakes) was 0.000, indicating limited 
capability in correctly identifying more severe earthquakes. The accuracies for each class are as follows:

Class 1: 0.294, Class 2: 0.318, Class 3: 0.292, Class 4: 0.505, Class 5: 0.465, Class 6: 0.000.

Decision trees
The Decision Tree classifier showed a significant improvement over Logistic Regression, with accuracies 
exceeding 0.87 across most classes. It achieved an accuracy of 0.886 in predicting class 5 and 0.906 in predicting 
class 4. However, the model’s accuracy in predicting class 6 was 0.868, demonstrating a reasonably good 
performance in recognizing strong earthquakes. The accuracies for each class are:

Class 1: 0.905, Class 2: 0.904, Class 3: 0.883, Class 4: 0.906, Class 5: 0.886, Class 6: 0.868.

Random forest
The Random Forest classifier emerged as the top-performing model, achieving consistently high accuracy across 
all classes, with values above 0.96. Notably, it achieved an accuracy of 0.979 for class 5 and 0.976 for class 4. For 
class 6, it maintained an accuracy of 0.982, indicating a strong ability to correctly predict severe earthquakes. 
The accuracies are as follows: Class 1: 0.978, Class 2: 0.976, Class 3: 0.976, Class 4: 0.976, Class 5: 0.979, Class 
6: 0.982.

Gradient boosting machines (GBM)
Gradient Boosting Machines showed good performance, particularly for class 4 (accuracy of 0.896) and class 6 
(accuracy of 0.913). However, its accuracy was lower for class 5 (0.707), suggesting some limitations in handling 
moderately severe earthquakes compared to Random Forest. The detailed accuracies are: Class 1: 0.717, Class 2: 
0.631, Class 3: 0.683, Class 4: 0.896, Class 5: 0.707, Class 6: 0.913.

Support vector machines (SVM)
Support Vector Machines demonstrated moderate accuracy across all classes, with a peak accuracy of 0.861 
for class 4. However, its performance in predicting class 6 was lower, with an accuracy of 0.815, indicating a 
moderate ability to correctly classify strong earthquakes. The accuracies for each class are: Class 1: 0.473, Class 
2: 0.447, Class 3: 0.565, Class 4: 0.861, Class 5: 0.735, Class 6: 0.815.
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k-nearest neighbors (k-NN)
The k-Nearest Neighbors model achieved varied accuracy across classes, with its highest accuracy being 0.767 for 
class 4. However, its performance in predicting class 6 was relatively poor, with an accuracy of 0.746, suggesting 
limitations in its ability to handle severe earthquakes. The accuracies are: Class 1: 0.546, Class 2: 0.653, Class 3: 
0.641, Class 4: 0.767, Class 5: 0.656, Class 6: 0.746.

Naive Bayes
The Naive Bayes classifier showed low accuracy across most classes, particularly for classes 1, 3, and 5, where the 
accuracy was below 0.25. For class 6, the model achieved an accuracy of 0.047, indicating a limited capability in 
predicting strong earthquakes. The accuracies for each class are: Class 1: 0.250, Class 2: 0.396, Class 3: 0.222, 
Class 4: 0.418, Class 5: 0.163, Class 6: 0.047.

AdaBoost
AdaBoost displayed good performance in predicting class 5, with perfect accuracy (1.000). However, its 
accuracy for class 6 was only 0.000, showing that while AdaBoost can handle some classes well, its performance 
in predicting strong earthquakes is less reliable. The accuracies are: Class 1: 0.278, Class 2: 0.348, Class 3: 0.359, 
Class 4: 0.606, Class 5: 1.000, Class 6: 0.000.

XGBoost
XGBoost performed exceptionally well, achieving high accuracies across all classes, with values above 0.96. 
For class 6, it achieved an accuracy of 0.982, indicating its strong capability to predict strong earthquakes. The 
accuracies for each class are: Class 1: 0.966, Class 2: 0.969, Class 3: 0.962, Class 4: 0.977, Class 5: 0.960, Class 
6: 0.982.

LightGBM
LightGBM also demonstrated robust performance, with accuracies generally exceeding 0.91 across all classes. 
The accuracy for class 6 was 0.972, showing it is effective in identifying strong earthquakes, though slightly less 
so than XGBoost and Random Forest. The accuracies are: Class 1: 0.948, Class 2: 0.917, Class 3: 0.932, Class 4: 
0.962, Class 5: 0.909, Class 6: 0.972.

Multilayer perceptron (MLP)
The Multilayer Perceptron exhibited good performance across most classes, with an accuracy of 0.943 for class 
4. For class 6, it achieved an accuracy of 0.940, indicating strong performance in predicting strong earthquakes. 
The accuracies are: Class 1: 0.928, Class 2: 0.937, Class 3: 0.914, Class 4: 0.943, Class 5: 0.894, Class 6: 0.940.

Convolutional neural networks (CNN)
The Convolutional Neural Network model showed moderate accuracy across all classes, with a peak of 0.723 
for class 6. However, its accuracy for class 6 was 0.723, indicating moderate capability in predicting strong 
earthquakes. The accuracies are: Class 1: 0.612, Class 2: 0.671, Class 3: 0.605, Class 4: 0.681, Class 5: 0.600, 
Class 6: 0.723.

Recurrent neural networks (RNN)
Recurrent Neural Networks achieved higher accuracy than CNN, with an accuracy of 0.923 for class 6 and 0.816 
for class 4. For class 6, the RNN model showed strong accuracy, suggesting good capability to predict strong 
earthquakes. The accuracies are: Class 1: 0.729, Class 2: 0.736, Class 3: 0.781, Class 4: 0.816, Class 5: 0.716, 
Class 6: 0.923.

Long short-term memory networks (LSTM)
The Long Short-Term Memory Networks model showed varying performance across the classes, with its highest 
accuracy of 0.910 for class 4. Its accuracy for class 6 was 0.733, indicating moderate capability in predicting 
strong earthquakes. The accuracies are: Class 1: 0.733, Class 2: 0.563, Class 3: 0.909, Class 4: 0.910, Class 5: 
0.733, Class 6: 0.733.

Gated recurrent units (GRU)
The Gated Recurrent Units model demonstrated moderate accuracy across classes, with an accuracy of 0.695 for 
class 4 and 0.582 for class 6, suggesting a moderate capability in predicting strong earthquakes. The accuracies 
are: Class 1: 0.553, Class 2: 0.477, Class 3: 0.547, Class 4: 0.695, Class 5: 0.557, Class 6: 0.582.

Transformer models
The Transformer model showed a moderate performance overall, with accuracies peaking at 0.588 for class 4. 
For class 6, its accuracy was 0.500, indicating less effectiveness in predicting strong earthquakes. The accuracies 
are: Class 1: 0.394, Class 2: 0.444, Class 3: 0.437, Class 4: 0.588, Class 5: 0.488, Class 6: 0.500.

Conclusion
Overall, the analysis shows that Random Forest, XGBoost, and LightGBM models demonstrated the highest 
accuracies in predicting class 6 (strong earthquakes), with Random Forest achieving the best performance at 
0.982. Models such as Naive Bayes, CNN, and Transformer exhibited limited capability in correctly identifying 
strong earthquakes. The superior performance of Random Forest and XGBoost highlights the effectiveness of 
ensemble learning techniques in handling complex, multiclass earthquake prediction tasks. Meanwhile, some 
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neural network architectures, such as MLP and RNN, also performed reasonably well, but their performance 
varied more across different classes. This underscores the importance of selecting appropriate models and 
hyperparameters for specific predictive tasks in earthquake forecasting.

Comparison of confusion matrices for the best-performing models
This subsection compares the confusion matrices of the three best-performing models: XGBoost, LightGBM, 
and Random Forest. These models were selected based on their overall high accuracy in predicting earthquake 
classes, particularly their strong performance in identifying class 6 (strong earthquakes).

XGBoost
The confusion matrix for XGBoost shows a robust performance across all classes. The model correctly predicted 
the majority of samples for each class, with high diagonal values indicating accurate predictions. For class 6, 
which represents strong earthquakes, XGBoost correctly predicted 111 out of 115 samples, resulting in very high 
accuracy for this class. The misclassifications for class 6 were minimal, with only a few samples being incorrectly 
classified into other classes, mostly into class 5. Overall, XGBoost demonstrated strong predictive capability with 
minimal confusion between classes, particularly for severe earthquakes.

LightGBM
The confusion matrix for LightGBM also demonstrates strong performance, though it exhibits slightly more 
misclassifications compared to XGBoost. LightGBM correctly identified 104 out of 115 samples for class 6. 
The model shows a tendency to confuse class 6 with neighboring classes (e.g., class 5 and class 4), indicating 
that while it is highly effective, there is a slight reduction in accuracy compared to XGBoost, particularly in 
distinguishing between the most severe earthquakes. The model’s performance is generally consistent, but it 
shows slightly more misclassifications in higher classes.

Random forest
Random Forest exhibited the highest accuracy among all models in predicting class 6. The confusion matrix 
shows that Random Forest correctly predicted 112 out of 115 samples for class 6, with only 3 samples being 
misclassified. The model demonstrated minimal confusion between different classes, particularly for the 
higher classes (class 5 and 6), which suggests that Random Forest is highly adept at distinguishing between 
varying earthquake magnitudes. The misclassifications were fewer compared to both LightGBM and XGBoost, 
reinforcing its status as the best model in this study.

Overall comparison

• Accuracy for class 6: All three models performed well in predicting class 6, but Random Forest slightly out-
performed the others by correctly classifying more samples. XGBoost also demonstrated high accuracy but 
showed minor confusion with class 5. LightGBM, while still effective, had slightly more difficulty distinguish-
ing class 6 from other classes.

• Misclassification patterns: XGBoost and LightGBM showed more misclassification between adjacent class-
es, such as classes 5 and 6. In contrast, Random Forest exhibited fewer misclassifications overall, particularly 
for higher classes, demonstrating a better capability to handle complex multiclass classification tasks.

• Conclusion: The confusion matrix analysis confirms that while all three models-XGBoost, LightGBM, and 
Random Forest-are highly effective in predicting earthquake classes, Random Forest marginally outperforms 
the others in terms of correctly identifying strong earthquakes (class 6). The performance of these models 
highlights the effectiveness of ensemble learning techniques in handling complex, multiclass problems like 
earthquake prediction.Figures 19, 20, and 21 provide a visual representation of the confusion matrices for 
XGBoost, LightGBM, and Random Forest, respectively.

Best performer: random forest
Given that the Random Forest machine learning algorithm achieved the highest accuracy and successfully 
captured complex patterns in the earthquake data, it outperformed other models in terms of predictive accuracy. 
Consequently, we will focus our further analysis on Random Forest153.

Obtaining the highest accuracy subset using the information gain method for random forest
To determine the most important features for predicting earthquake classes, we employed the Information Gain 
(IG) method to calculate the contribution of each feature towards reducing uncertainty or entropy in the dataset. 
The calculated IG values for each feature are presented in Table 7, ranked from highest to lowest importance. The 
top 15 features with the highest IG values were selected as the optimal subset for model training and evaluation.

The Information Gain (IG) values were calculated to identify features that most effectively reduce entropy, 
which is a measure of uncertainty or randomness in the dataset. Details of the entropy and Information Gain 
calculations are provided in the Appendix (see Appendix A.3). These calculations illustrate the process of selecting 
the features that provide the most valuable information for distinguishing between earthquake classes154,155.

An iterative evaluation process was conducted by training a Random Forest model using subsets of features 
ranked by their IG values, starting with the most important feature and incrementally adding one feature at a 
time. For each subset, the model’s accuracy was evaluated on the test dataset. The results of this evaluation are 
summarized in Table 8.
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The analysis revealed that the highest accuracy of 0.9797 was achieved with a 15-variable subset. This subset, 
which included the top 15 features ranked by their IG values, demonstrated the optimal balance between model 
complexity and performance. The selected subset is detailed in Table 9.

In summary, the 15-variable subset achieved the highest predictive accuracy, demonstrating that these 
features collectively provide the most valuable information for earthquake prediction. The selected subset 
captures critical spatial, temporal, and seismic characteristics, providing a comprehensive understanding of the 
factors influencing earthquake behavior (see Table 9).

This subset includes variables that capture a range of important earthquake-related characteristics, such as 
the number of recent earthquakes, depth patterns, clustering, variation in inter-event times, magnitude changes, 
and geographical information. These features were chosen based on their ability to contribute significantly 
to reducing uncertainty in the model, thereby improving the model’s predictive performance. The detailed 
calculations for entropy and information gain, which underpin this feature selection, are presented in the 
Appendix (see Appendix A.3)154,155.

Feature selection and evaluation on training and test datasets
To address the potential concern of overfitting, we employed a comprehensive feature selection process and 
evaluated the model performance separately on both the training and test datasets.

Fig. 20. Confusion matrix for the LightGBM model using all variables.

 

Fig. 19. Confusion matrix for the XGBoost model using all variables.
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Feature selection process
The feature selection process involved multiple steps to ensure that only the most relevant predictors were 
included in the final model, minimizing the risk of overfitting:

• Multicollinearity analysis and mitigation: Initially, a multicollinearity analysis was conducted using the 
Variance Inflation Factor (VIF) to identify and remove highly collinear variables. This step was necessary to 
reduce redundancy in the feature set and enhance the stability of the model. Details of the analysis and the 
subsequent variable reduction are provided in the section titled “Multicollinearity Analysis and Mitigation.”

• Iterative subset evaluation: After addressing multicollinearity, an iterative subset evaluation process was 
performed to determine the optimal combination of features that maximized model performance. The eval-
uation was conducted by iteratively assessing model accuracy on the test dataset with increasing subsets of 
the top-ranked features based on their importance scores derived from a Random Forest model trained on 
the training dataset. This process identified the best-performing subset of 15 variables, as presented in Table 
9.By combining multicollinearity mitigation with iterative subset evaluation, the feature selection ensured 

No. Variable Explanation Importance

1 Neq,30 Number of earthquakes in the last 30 days 0.110651

2 di Rolling mean depth of earthquakes in the last 30 days 0.101531

3 Cclust Clustering coefficient of earthquakes in the last 30 days 0.101056

4 dE12 A feature representing the change in energy release patterns 0.100016

5 σmag,30 Standard deviation of magnitude for the last 30 days 0.098347

6 T Elapsed time since the last earthquake 0.086100

7 CV Coefficient of variation of the inter-event times 0.059963

8 b-value Gutenberg-Richter b-value for the moment magnitude 0.059895

9 ∆M Difference between the largest observed and expected magnitudes 0.057398

10 η Sum of the mean square deviation from the regression line 0.054387

11 M last week
max Maximum magnitude recorded during the last week 0.028624

12 ∆bi−8,i−10 Incremental b-value between events i− 8 and i− 10 0.026027

13 Longitude Longitude of the earthquake epicenter 0.021599

14 ∆bi−6,i−8 Incremental b-value between events i− 6 and i− 8 0.021284

15 Latitude Latitude of the earthquake epicenter 0.017837

16 ∆bi−4,i−6 Incremental b-value between events i− 4 and i− 6 0.017439

17 ∆bi−2,i−4 Incremental b-value between events i− 2 and i− 4 0.014963

18 ∆bi,i−2 Incremental b-value between events i and i− 2 0.011481

19 Magnitude Magnitude of the earthquake 0.011401

Table 7. Feature importance for earthquake prediction models (ordered high to low).

 

Fig. 21. Confusion matrix for the random forest model using all variables.
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that the included predictors contributed unique and significant information to the models, thereby reducing 
the likelihood of overfitting.

Evaluation on training and test datasets
To comprehensively evaluate the potential for overfitting, the model’s performance was assessed separately on 
both the training and test datasets. Presenting results for both datasets allows for the determination of whether 
the model’s performance is consistent across different data sets, providing a more robust evaluation of model 
generalization.

The results showed that the model achieved a Training Accuracy of 1.0000, indicating perfect performance 
on the training data. However, this can often be a sign of overfitting if the test accuracy is significantly lower. In 
our case, the Test Accuracy was 0.9797, which is close to the training accuracy, suggesting minimal overfitting 
and good generalization capability.

Furthermore, additional metrics were calculated to provide a more detailed evaluation:

• Precision: 0.9797

No. Variable Explanation

1 Neq,30 Number of Earthquakes in the Last 30 Days

2 di Rolling Mean of Depth

3 Cclust Clustering Coefficient

4 dE12 A feature representing the change in energy release patterns

5 σmag,30 Standard Deviation of Magnitude

6 T Elapsed time between the last n events

7 CV Coefficient of variation of the inter-event times

8 b-value Gutenberg-Richter b-value for the moment magnitude

9 ∆M Difference between the largest observed and expected magnitudes

10 η Sum of the mean square deviation from the regression line

11 M last week
max Maximum magnitude recorded during the last week

12 ∆bi−8,i−10 Incremental b-value between events i− 8 and i− 10

13 Longitude Longitude of the earthquake epicenter

14 ∆bi−6,i−8 Incremental b-value between events i− 6, i− 8

15 Latitude Latitude of the earthquake epicenter

Table 9. Subset with 0.9797% accuracy on the test dataset.

 

Features Accuracy

1 Variable Subset 0.3439

2 Variable Subset 0.4948

3 Variable Subset 0.7648

4 Variable Subset 0.9489

5 Variable Subset 0.9692

6 Variable Subset 0.9745

7 Variable Subset 0.9773

8 Variable Subset 0.9788

9 Variable Subset 0.9771

10 Variable Subset 0.9766

11 Variable Subset 0.9777

12 Variable Subset 0.9782

13 Variable Subset 0.9786

14 Variable Subset 0.9784

15 Variable Subset 0.9797

16 Variable Subset 0.9771

17 Variable Subset 0.9758

18 Variable Subset 0.9764

19 Variable Subset 0.9760

Table 8. Accuracy results for incremental feature subsets with the IG method for random forest.
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• Recall: 0.9797
• F1-Score: 0.9797
• ROC-AUC: 0.9989These metrics confirm that the model not only maintained high accuracy but also demon-

strated balanced performance in terms of correctly predicting earthquake events (high Precision and Recall) 
while maintaining excellent discriminative ability (high ROC-AUC).

Conclusion
By incorporating a detailed feature selection process and presenting results separately for both the training and 
test datasets, the risk of overfitting was minimized, and the robustness of the model’s performance was verified. 
The consistency between the training and test accuracies, along with high scores across multiple evaluation 
metrics, supports the conclusion that the model generalizes effectively to new, unseen data.

Conclusion
In this study, we conducted an extensive analysis of various references pertaining to earthquake prediction. Our 
research focused on the development of a predictive pattern matrix, leveraging machine learning algorithms 
and neural networks to forecast earthquakes. Through feature engineering of 21 diverse predictive features 
from historical earthquake records, we achieved an impressive accuracy of 97.97% with 15 features for the Los 
Angeles, California region, as seen in Table 9. This finding highlights the significance of integrating advanced 
computational techniques with rigorous data analysis, pointing towards a promising future for earthquake 
forecasting research and applications. Notably, our method demonstrated the capability to accurately predict 
the category of earthquakes across six distinct categories within a 30-day period. Achieving such a high level 
of accuracy is critical for enhancing disaster preparedness and response strategies in Los Angeles, a region 
susceptible to seismic activity. Our approach offers a comprehensive and precise method for earthquake 
prediction, providing valuable insights to the field of seismology.

Analysis of fine-tuned random forest model
In this study, we employed a Random Forest model to predict the maximum earthquake class in the coming 
30 days, focusing specifically on a fine-tuned approach using a subset of 15 selected features. The primary goal 
was to optimize the model’s predictive performance by selecting the most relevant features and fine-tuning the 
hyperparameters to achieve the highest possible accuracy. The selected 15 features are listed in Table 9.

Data splitting: training, validation, and test sets
To evaluate the performance of the Random Forest model, the dataset was divided into three distinct subsets: the 
training set, the validation set, and the test set.

• Training set: This subset, comprising 60% of the total data, was used to train the model. The training set 
allows the model to learn the underlying patterns and relationships within the data by adjusting its internal 
parameters accordingly.

• Validation set: The validation set, accounting for 20% of the data, was used during the hyperparameter tun-
ing phase to evaluate different configurations of the model. This set provides an unbiased evaluation of the 
model’s performance while fine-tuning its hyperparameters, helping to prevent overfitting and ensuring that 
the model generalizes well to new, unseen data.

• Test set: The final 20% of the data was reserved for the test set, which was used to evaluate the model’s per-
formance after the training and tuning phases were completed. The test set serves as an independent check of 
the model’s ability to make accurate predictions on data it has not encountered before, providing a realistic 
assessment of its generalization capabilities.By splitting the data into these three sets, we aimed to ensure a 
robust and reliable evaluation of the model, balancing the need for both learning and validation.

Hyperparameter pptimization process
To enhance the model’s accuracy, we performed a grid search for hyperparameter tuning using the 15-variable 
subset. The hyperparameters optimized in the grid search included:

• n_estimators: The number of trees in the forest. We evaluated values of 100, 200, and 500.
• max_depth: The maximum depth of the tree. We considered values of None (allowing nodes to expand until 

all leaves are pure or until they contain less than the minimum samples required to split) and 10, 20, and 30.
• min_samples_split: The minimum number of samples required to split an internal node, tested with values 

of 2, 5, and 10.
• min_samples_leaf: The minimum number of samples required to be at a leaf node, with possible values of 

1, 2, and 4.
• bootstrap: A boolean parameter indicating whether bootstrap samples are used when building trees, tested 

with values True and False.The grid search was performed using 3-fold cross-validation on the training set. 
This involved dividing the training set into three equal parts, or “folds.” For each combination of hyperparam-
eters, the model was trained on two of the folds and validated on the remaining fold, repeating this process 
three times so that each fold served as the validation set once. This resulted in a total of 540 fits (3 folds × 60 
combinations of hyperparameters), allowing us to evaluate the different combinations comprehensively and 
identify the configuration that maximized validation accuracy. The choice of 3 folds strikes a balance between 
computational efficiency and robust model evaluation, ensuring sufficient variance without excessively in-
creasing computation time.
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Results of fine-tuning
The grid search process identified the best hyperparameters for the Random Forest model as follows:

• bootstrap: False
• max_depth: 30
• min_samples_leaf: 1
• min_samples_split: 2
• n_estimators: 200This configuration indicates that the model performed best without bootstrapping, with 

a maximum depth of 30 for the trees, and the minimum number of samples required for a split and at the 
leaf nodes set to their lowest possible values. Furthermore, the model used 200 trees to enhance its ensemble 
learning capability.

Interpretation of results
The fine-tuned Random Forest model achieved a validation accuracy of 0.9777, indicating that approximately 
97.77% of the predictions on the validation set were correct. This high accuracy reflects the model’s effectiveness 
in identifying the patterns and relationships within the earthquake data when trained on the selected 15 features.

When evaluated on the test set, the fine-tuned model achieved a test accuracy of 0.9808, suggesting that the 
model generalizes well to unseen data. The slight improvement in test accuracy compared to validation accuracy 
indicates that the model has successfully captured the underlying structure of the data without overfitting.

Conclusion
The results demonstrate that the selected 15-variable subset (Table 9) is highly informative for predicting the 
maximum earthquake class in the coming 30 days, and that the Random Forest model, when fine-tuned with the 
appropriate hyperparameters, provides robust and accurate predictions. The identified hyperparameters allow 
the model to leverage the full complexity of the data, thereby maximizing its predictive performance. This fine-
tuned model can be used for further analyses and could serve as a reliable tool in earthquake forecasting.

Analysis of the confusion matrix for the 15-variable subset
The confusion matrix for the 15-variable subset, as shown in Figure 22, is based on the model’s performance 
on the test data. This matrix provides a detailed breakdown of the model’s classification results across different 
earthquake classes, helping to evaluate its ability to generalize to unseen data.

• Class 1: The model correctly classified 931 instances of Class 1, with 8 misclassified as Class 2, 12 as Class 3, 
2 as Class 4, 2 as Class 5, and 1 as Class 6. This indicates that the model performs well in predicting Class 1, 
with relatively few misclassifications.

• Class 2: The model achieved high accuracy for Class 2, correctly identifying 1,284 instances. However, there 
were 11 instances misclassified as Class 1, 5 as Class 3, 2 as Class 4, 1 as Class 5, and none as Class 6. This 
shows a strong capability in identifying Class 2 but suggests some overlap between Class 1 and Class 2.

• Class 3: For Class 3, the model correctly classified 952 instances. However, it misclassified 4 instances as Class 
1, 6 as Class 2, 4 as Class 4, 3 as Class 5, and 1 as Class 6. The confusion with neighboring classes indicates the 
model’s slight difficulty in distinguishing between Classes 2, 3, and 4.

• Class 4: The model correctly identified 683 instances of Class 4. There were some misclassifications, with 3 
instances predicted as Class 1, 7 as Class 2, and none in other classes. The model’s performance for Class 4 is 
slightly less accurate, particularly with distinguishing it from Classes 2 and 3.

Fig. 22. Confusion matrix for 15-variable subset based on test data.
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• Class 5: For Class 5, 524 instances were correctly classified. Misclassifications included 2 instances as Class 
1, 6 as Class 2, and 3 as Class 4, with no confusion with other classes. The model shows good performance in 
predicting Class 5 but with some errors in distinguishing it from Classes 2 and 4.

• Class 6: The model had 113 correct predictions for Class 6, with 5 instances misclassified as Class 2, 1 as 
Class 3, 0 as Class 4, 2 as Class 5, and no misclassification into Class 1. This indicates that while the model is 
generally effective in predicting Class 6, there is some confusion with other classes, particularly with Class 
2.Overall, the confusion matrix illustrates that the model maintains high accuracy across most classes, espe-
cially for Classes 1, 2, and 3. However, the confusion between Classes 2 and 6 and between Classes 2, 3, and 
4 suggests that additional refinement may be necessary to enhance the model’s differentiation capabilities 
between these classes.

Data availability

The dataset generated and analyzed during this study, including the engineered 
features used for the machine learning models, is publicly available on Zenodo at 
the following link: https://zenodo.org/doi/10.5281/zenodo.13738726. This dataset 
provides all the necessary information to reproduce the findings of this study.

Appendix

Example calculation for local clustering coefficient
Consider an earthquake event i with three neighbors: j, k, and l.

Neighbors:

 – j, k, and l are all neighbors of i.

 – This means that dij < ϵ, dik < ϵ, and dil < ϵ.

Connections (edges) between neighbors:

 – j and k are connected: There is a direct edge between j and k.
 – k and l are connected: There is a direct edge between k and l.
 – j and l are also connected: There is a direct edge between j and l.In this example:
 –
 – The neighbors of i form a complete subgraph because all possible edges between the neighbors j, k, and l 

exist.
 – There are three edges: (j, k), (k, l), and (j, l).

Calculation of Ei and Cclust,i

 – ki = 3 (number of neighbors of i).
 – Ei = 3 (number of edges between the neighbors).The Local Clustering Coefficient is calculated as:

 
Cclust,i =

2Ei

ki(ki − 1)
 (88)

Substituting the values:

 
Cclust,i =

2× 3

3× (3− 1)
=

6

6
= 1 (89)

This result Cclust,i = 1 indicates that the neighbors of i form a complete subgraph, meaning all neighbors are 
directly connected to each other.

Entropy and information gain calculations
Entropy is a measure of the impurity or randomness in the data. For a dataset D with classes C1, C2, . . . , Ck, the 
entropy H(D) is defined as:

 
H(D) = −

k∑
i=1

p(Ci) log2 p(Ci) (90)

where p(Ci) is the proportion of examples in D that belong to class Ci.
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Example 1: binary classification with balanced classes
Suppose we have a dataset D with 10 examples, equally divided into two classes: C1 and C2. The class distribution 
is as follows:

• p(C1) =
5
10 = 0.5

• p(C2) =
5
10 = 0.5The entropy H(D) is calculated as:

 H(D) = − (p(C1) log2 p(C1) + p(C2) log2 p(C2))  (91)

 = − (0.5 log2 0.5 + 0.5 log2 0.5)  (92)

 = − (0.5×−1 + 0.5×−1)  (93)

 = − (−0.5− 0.5)  (94)

 = 1  (95)

Example 2: binary classification with imbalanced classes
Now, consider another dataset D with 10 examples, but this time 7 examples belong to class C1 and 3 examples 
belong to class C2. The class distribution is as follows:

• p(C1) =
7
10 = 0.7

• p(C2) =
3
10 = 0.3The entropy H(D) is calculated as:

 H(D) = − (p(C1) log2 p(C1) + p(C2) log2 p(C2))  (96)

 = − (0.7 log2 0.7 + 0.3 log2 0.3)  (97)

 = − (0.7×−0.5146 + 0.3×−1.737)  (98)

 = − (−0.3602− 0.5217)  (99)

 = 0.8819  (100)

Example 3: single class
Consider a dataset D with 10 examples, all belonging to a single class C1. The class distribution is as follows:

• p(C1) =
10
10 = 1The entropy H(D) is calculated as:

 H(D) = − (p(C1) log2 p(C1))  (101)

 = − (1 log2 1)  (102)

 = − (1× 0)  (103)

 = 0  (104)

Information gain calculation
For a feature A with possible values {a1, a2, . . . , av}, the Information Gain IG(D,A) is calculated as:

 
IG(D,A) = H(D)−

v∑
j=1

|Dj|
|D|

H(Dj) (105)

where:

• H(D) is the entropy of the original dataset D.
• Dj is the subset of D where feature A has value aj.
• |Dj| is the number of examples in Dj.
• |D| is the total number of examples in D.
• H(Dj) is the entropy of subset Dj.
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Example of information gain calculation
Consider a dataset D with 10 examples and two classes C1 and C2. The class distribution is:

• 7 examples belong to class C1

• 3 examples belong to class C2Entropy H(D) is calculated as:

 
H(D) = −

(
7

10
log2

7

10
+

3

10
log2

3

10

)
 (106)

 = − (0.7 log2 0.7 + 0.3 log2 0.3)  (107)

 = − (0.7×−0.5146 + 0.3×−1.737)  (108)

 = 0.8819  (109)

After splitting:

For feature A:

• D1: 6 examples in C1, 1 in C2

• D2: 1 in C1, 2 in C2Entropies of D1 and D2:

 H(D1) = 0.5917, H(D2) = 0.9183  (110)

 Hsplit = 0.6897  (111)

 IG(D,A) = 0.1922  (112)

This demonstrates how Information Gain is calculated and used to rank features based on their effectiveness in 
reducing uncertainty. The details of these calculations provide the foundation for selecting the most valuable 
features in the dataset.
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