
Building LLMs: Key Insights from Stanford’s
CS229 Lecture

Kshitij · Follow

5 min read · Oct 18, 2024

A recent Stanford University lecture (CS229) on building LLMs sheds light on the
core concepts and challenges behind these advanced models. Here’s a summary
of my key takeaways from the lecture, focusing on the practical aspects of training
and optimizing LLMs.

The 5 Major Components of Building LLMs
1. Architecture

2. Training Algorithm/Loss

3. Data

4. Evaluation

Explore our developer-friendly HTML to PDF API Printed using PDFCrowd HTML to PDF



5. System

While architecture and training algorithms are mostly used in academia, the
focus of this lecture was on the last three components — data, evaluation, and
system — which are critical when deploying LLMs in the real world.

Understanding Language Modeling
Language models predict the probability of sequences of words, essentially
determining how likely a given sentence is to be naturally uttered by humans or
found online. For example, sentences like “The mouse ate the cheese” would have
a much higher probability than a sentence like “The cheese ate the mouse.”

Autoregressive Models

Autoregressive language models predict each word in a sequence by considering
the previous ones, using formulas to break down the probabilities step by step.
This process includes tokenization (breaking the input into tokens), passing it
through a model, predicting the next word, sampling and then de-tokenizing the
output for interpretation.

Cross-Entropy Loss and Tokenization
One of the core concepts in LLM training is cross-entropy loss, which measures
how well the model’s predictions align with the actual data. Lower cross-entropy
means better performance.

Tokenization

One important aspect of LLMs is how they break down text into tokens. The
lecture explains that tokenization is more general than simply splitting words; it
involves creating smaller sequences, sometimes even down to characters. Tokens
represent common sub-sequences, which leads to more efficient model training
and inference.

Byte-Pair Encoding (BPE) is a popular tokenization technique used in LLMs. The
steps involved in BPE are:

1. Take a large corpus of text.

2. Start with one token per character.

3. Merge the most common pairs of tokens into a single token.

Explore our developer-friendly HTML to PDF API Printed using PDFCrowd HTML to PDF



4. Repeat the merging process until the desired vocabulary size is reached

LLM Evaluation: Perplexity and Benchmarks
Evaluating LLMs is critical to understanding their performance. Perplexity
measures how confident a model is in predicting the next word. If a model has
low perplexity, it means it is more certain about its predictions. For example, if
the model is certain about the next token, its perplexity would be 1. If it hesitates
between multiple options, the perplexity increases.

In addition to perplexity, frameworks like HELM (Holistic Evaluation of Language
Models) and the Hugging Face Open LLM Leaderboard aggregate performance
across various NLP tasks, offering a comprehensive view of how models stack up
against one another.

Data for Training LLMs
Training large language models requires massive amounts of data, and much of
this data is sourced from the web. When talking about extracting internet data,
Google has a collection of around 250 billion pages, and web crawlers like
Common Crawl are used to crawl these pages, resulting in a dataset that exceeds 1
petabyte in size. This raw data then undergoes some filtering processes to ensure
high-quality input for the models.

Scaling Laws and Optimizing Model Training
The lecture also touched on scaling laws, which describe how increasing compute
power, data size, and model parameters can reduce training loss. This means that
with more resources, we can expect better performance. However, these
decisions need to be carefully calibrated. For instance, with 10,000 GPUs available
for a month, what’s the best model to train?

Let’s answer this question with an example: training Transformers and LSTMs at
different scales, researchers can fit the scaling law to predict which model would
perform best with increased compute. From the below graph, we can see that the
Transformers outperform LSTMs as compute scales up.

Explore our developer-friendly HTML to PDF API Printed using PDFCrowd HTML to PDF



Image taken from the lecture slide

Training State-of-the-Art (SOTA) Models
The lecture discussed the challenges of training state-of-the-art (SOTA) models
like LLaMA3 400B. Training such a model requires enormous compute resources
and is incredibly costly. The lecturer provides specific benchmarks and cost
figures to illustrate just how expensive it is to train these large-scale models.

Post-Training and Fine-Tuning
In the lecture, the concept of post-training is introduced, which involves fine-
tuning a pre-trained large language model (LLM) to tailor it to specific tasks or
user needs. This is particularly relevant for AI assistance, where models need to
generate more accurate and context-specific responses.

Supervised Fine-Tuning (SFT)

The idea of SFT is to take a pre-trained LLM and fine-tune it with data that
contains the desired answers for specific tasks. To collect this fine-tuning data,
humans are often asked to provide answers, which was a crucial part of the
development from GPT-3 to ChatGPT. However, human data collection is both
slow and expensive, which presents a challenge when scaling up these models.

ALPACA 7B: Scaling Data Collection with LLMs

Explore our developer-friendly HTML to PDF API Printed using PDFCrowd HTML to PDF



The lecturer presents ALPACA as an innovative solution to this problem of slow
and expensive human data collection. The key idea behind ALPACA was to use
LLMs themselves to generate large-scale, human-like data for supervised fine-
tuning, reducing the reliance on manual human input.

Here’s how it worked:

1. Initial Data Collection: They started by collecting 175 question-answer pairs
provided by humans.

2. LLM-Generated Data: Using TextDavinci003, they generated 52,000 similar
question-answer pairs.

3. Fine-Tuning: The LLAMA 7-billion model was then fine-tuned using these
52,000 LLM-generated question-answer pairs, resulting in the ALPACA 7-
billion model.

Reinforcement Learning from Human Feedback (RLHF)

Another fine-tuning method is Reinforcement Learning from Human Feedback
(RLHF), which overcomes some limitations of Supervised Fine-Tuning (SFT).
While SFT involves cloning human behavior, RLHF focuses on optimizing model
outputs based on human preferences.
RLHF uses a process where a model generates two possible answers, and human
labelers choose which one they prefer. The model is then fine-tuned using
reinforcement learning algorithms.

Conclusion
Building large language models is a complex process that requires a balance of
compute, data, and evaluation metrics. As LLMs continue to evolve, these insights
from Stanford’s lecture provide a glimpse into the future of AI and language
modeling.

References
1. https://www.youtube.com/watch?v=9vM4p9NN0Ts

Llm Training Stanford Evaluation

Explore our developer-friendly HTML to PDF API Printed using PDFCrowd HTML to PDF


