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Foreword

You may not know our names. We spend our days writing the code for the software 
you use in your daily job: We are part of the development team of Power BI, SQL 

Server Analysis Services, and…yes, we are among the authors of the DAX language and 
the VertiPaq engine.

The language you are going to learn using this book is our creation. We spent years 
working on this language, optimizing the engine, fi nding ways to improve the optimizer, 
and trying to build DAX into a simple, clean, and sound language to make your life as a 
data analyst easier and more productive.

But hey, this is intended to be the foreword of a book, so no more about us! Why are 
we writing a foreword for a book published by Marco and Alberto, the SQLBI guys? Well, 
because when you start learning DAX, it is a matter of a few clicks and searches on the 
web before you fi nd articles written by them. You start reading their papers, learning 
the language, and hopefully appreciating our hard work. Having met them many years 
ago, we have great admiration for their deep knowledge of SQL Server Analysis Services. 
When the DAX adventure started, they were among the fi rst to learn and adopt this new 
engine and language.

The articles, papers, and blog posts they publish and share on the web have become 
the source of learning for thousands of people. We write the code, but we do not spend 
much time teaching developers how to use it; Marco and Alberto are the ones who 
spread the knowledge about DAX.

Alberto and Marco’s books are among a few bestsellers on this topic, and now with 
this new guide to DAX, they have truly created a milestone publication about the lan-
guage we author and love. We write the code, they write the books, and you learn DAX, 
providing unprecedented analytical power to your business. This is what we love: work-
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Introduction to the second 
edition

When we decided it was time to update this book, we thought it would be an easy 
job: After all, not many things have changed in the DAX language, and the theo-

retical core of the book was still very good. We believed the focus would mainly be on 
updating the screenshots from Excel to Power BI, adding a few touch-ups here and there, 
and we would be done. How wrong we were!

As soon as we started updating the fi rst chapter, we quickly discovered that we 
wanted to rewrite nearly everything. We felt so not only in the fi rst chapter, but at every 
page of the book. Therefore, this is not really a second edition; it is a brand new book.

The reason is not that the language or the tools have changed so drastically. The 
reason is that over these last few years we—as authors and teachers—have evolved a lot, 
hopefully for the better. We have taught DAX to thousands of users and developers all 
around the world; we worked hard with our students, always striving for the best way to 
explain complex topics. Eventually, we found different ways of describing the language 
we love.

We increased the number of examples for this edition, showing practical uses of the 
functionalities after teaching the theoretical foundation of DAX. We tried to use a sim-
pler style, without compromising on precision. We fought with the editor to increase the 
page count, as this was needed to cover all the topics we wanted to share. Nevertheless, 
we did not change the leitmotif of the book: we assume no previous knowledge of DAX, 
even though this is not a book for the casual DAX developer. This is a book for people 
who really want to learn the language and gain a deep understanding of the power and 
complexity of DAX.

Yes, if you want to leverage the real power of DAX, you need to be prepared for a 
long journey with us, reading the book from cover to cover, and then reading it again, 
searching for the many details that—at fi rst sight—are not obvious.
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Introduction to the fi rst edition

We have created considerable amounts of content on DAX: books about Power 
Pivot and SSAS Tabular, blog posts, articles, white papers, and fi nally a book dedi-

cated to DAX patterns. So why should we write (and, hopefully, you read) yet another 
book about DAX? Is there really so much to learn about this language? Of course, we 
think the answer is a defi nite yes.

When you write a book, the fi rst thing that the editor wants to know is the number of 
pages. There are very good reasons why this is important: price, management, allocation 
of resources, and so on. In the end, nearly everything in a book goes back to the number 
of pages. As authors, this is somewhat frustrating. In fact, whenever we write a book, we 
have to carefully allocate space to the description of the product (either Power Pivot for 
Microsoft Excel or SSAS Tabular) and of to the DAX language. This has always left us with 
the bitter feeling of not having enough pages to describe all we wanted to teach about 
DAX. After all, you cannot write 1,000 pages about Power Pivot; a book of such size 
would be intimidating for anybody.

Thus, for years we wrote about SSAS Tabular and Power Pivot, and we kept the project 
of a book completely dedicated to DAX in a drawer. Then we opened the drawer and 
decided to avoid choosing what to include in the next book: We wanted to explain 
everything about DAX, with no compromises. The result of that decision is this book.

Here you will not fi nd a description of how to create a calculated column, or which 
dialog box to use to set a property. This is not a step-by-step book that teaches you how 
to use Microsoft Visual Studio, Power BI, or Power Pivot for Excel. Instead, this is a deep 
dive into the DAX language, starting from the beginning and then reaching very techni-
cal details about how to optimize your code and model.

We loved each page of this book while we were writing it. We reviewed the content 
so many times that we had it memorized. We continued adding content whenever we 
thought there was something important to include, thus increasing the page count and 
never cutting something because there were no pages left. Doing that, we learned more 
about DAX and we enjoyed every moment spent doing so.

But there is one more thing. Why should you read a book about DAX?

Come on, you thought this after the fi rst demo of Power Pivot or Power BI. You are 
not alone; we thought the same the fi rst time we tried it. DAX is so easy! It looks so 
similar to Excel! Moreover, if you have already learned other programming and/or query 
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languages, you are probably used to learning a new language by looking at examples of 
the syntax, matching patterns you fi nd to those you already know. We made this mistake, 
and we would like you to avoid doing the same.

DAX is a mighty language, used in a growing number of analytical tools. It is very 
powerful, but it includes a few concepts that are hard to understand by inductive reason-
ing. The evaluation context, for instance, is a topic that requires a deductive approach: 
You start with a theory, and then you see a few examples that demonstrate how the 
theory works. Deductive reasoning is the approach of this book. We know that a number 
of people do not like learning this way, because they prefer a more practical approach—
learning how to solve specifi c problems, and then with experience and practice, they 
understand the underlying theory with an inductive reasoning. If you are looking for that 
approach, this book is not for you. We wrote a book about DAX patterns, full of examples 
and without any explanation of why a formula works, or why a certain way of coding is 
better. That book is a good source for copying and pasting DAX formulas. The goal of 
this book here is different: to enable you to master DAX. All the examples demonstrate 
a DAX behavior; they do not solve a specifi c problem. If you fi nd formulas that you can 
reuse in your models, good for you. However, always remember that this is just a side 
effect, not the goal of the example. Finally, always read any note to make sure there are 
no possible pitfalls in the code used in the examples. For educational purposes we have 
often used code that was not the best practice.

We really hope you will enjoy spending time with us in this beautiful trip to learn DAX, 
at least in the same way we enjoyed writing it.

Who this book is for

If you are a casual user of DAX, then this book is probably not the best choice for you. 
Many books provide a simple introduction to the tools that implement DAX and to the 
DAX language itself, starting from the ground up and reaching a basic level of DAX pro-
gramming. We know this very well, because we wrote some of those books, too!

If, on the other hand, you are serious about DAX and you really want to understand 
every detail of this beautiful language, then this is your book. This might be your fi rst 
book about DAX; in that case you should not expect to benefi t from the most advanced 
topics too early. We suggest you read the book from cover to cover and then read the 
most complex parts again, once you have gained some experience; it is very likely that 
some concepts will become clearer at that point.



 Introduction to the fi rst edition xxiii

DAX is useful to different people, for different purposes: Power BI users might need 
to author DAX formulas in their models, Excel users can leverage DAX to author Power 
Pivot data models, business intelligence (BI) professionals might need to implement 
DAX code in BI solutions of any size. In this book, we tried to provide information to all 
these different kinds of people. Some of the content (specifi cally the optimization part) is 
probably more targeted to BI professionals, because the knowledge needed to optimize 
a DAX measure is very technical; but we believe that Power BI and Excel users too should 
understand the range of possible performance of DAX expressions to achieve the best 
results for their models.

Finally, we wanted to write a book to study, not only a book to read. At the beginning, 
we try to keep it easy and follow a logical path from zero to DAX. However, when the 
concepts to learn start to become more complex, we stop trying to be simple, and we 
remain realistic. DAX is simple, but it is not easy. It took years for us to master it and to 
understand every detail of the engine. Do not expect to be able to learn all this content 
in a few days, by reading casually. This book requires your attention at a very high level. 
In exchange for that, we offer an unprecedented depth of coverage of all aspects of DAX, 
giving you the option to become a real DAX expert.

Assumptions about you

We expect our reader to have basic knowledge of Power BI and some experience in the 
analysis of numbers. If you have already had prior exposure to the DAX language, then 
this is good for you—you will read the fi rst part faster—but of course knowing DAX is 
not necessary.

There are references throughout the book to MDX and SQL code; however, you do 
not really need to know these languages because they just refl ect comparisons between 
different ways of writing expressions. If you do not understand those lines of code, it is 
fi ne; it means that that specifi c topic is not for you.

In the most advanced parts of the book, we discuss parallelism, memory access, CPU 
usage, and other exquisitely geeky topics that not everybody might be familiar with. 
Any developer will feel at home there, whereas Power BI and Excel users might be a bit 
intimidated. Nevertheless, this information is required in order to discuss DAX optimiza-
tion. Indeed, the most advanced part of the book is aimed more towards BI developers 
than towards Power BI and Excel users. However, we think that everybody will benefi t 
from reading it.
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Organization of this book

The book is designed to fl ow from introductory chapters to complex ones, in a logi-
cal way. Each chapter is written with the assumption that the previous content is fully 
understood; there is nearly no repetition of concepts explained earlier. For this reason, 
we strongly suggest that you read it from cover to cover and avoid jumping to more 
advanced chapters too early.

Once you have read it for the fi rst time, it becomes useful as a reference: For example, 
if you are in doubt about the behavior of ALLSELECTED, then you can jump straight to that 
section and clarify your mind on that. Nevertheless, reading that section without having 
digested the previous content might result in some frustration or, worse, in an incom-
plete understanding of the concepts.

With that said, here is the content at a glance:

 ■ Chapter 1 is a brief introduction to DAX, with a few sections dedicated to users 
who already have some knowledge of other languages, namely SQL, Excel, or 
MDX. We do not introduce any new concept here; we just give several hints about 
the differences between DAX and other languages that might be known to the 
reader.

 ■ Chapter 2 introduces the DAX language itself. We cover basic concepts such as 
calculated columns, measures, and error-handling functions; we also list most of 
the basic functions of the language.

 ■ Chapter 3 is dedicated to basic table functions. Many functions in DAX work on 
tables and return tables as a result. In this chapter we cover the most basic table 
functions, whereas we cover advanced table functions in Chapter 12 and 13.

 ■ Chapter 4 describes evaluation contexts. Evaluation contexts are the foundation 
of the DAX language, so this chapter, along with the next one, is probably the 
most important in the entire book.

 ■ Chapter 5 only covers two functions: CALCULATE and CALCULATETABLE. These are the 
most important functions in DAX, and they strongly rely on a good understand-
ing of evaluation contexts.

 ■ Chapter 6 describes variables. We use variables in all the examples of the book, 
but Chapter 6 is where we introduce their syntax and explain how to use vari-
ables. This chapter will be useful as a reference when you see countless examples 
using variables in the following chapters.
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 ■ Chapter 7 covers iterators and CALCULATE: a marriage made in heaven. Learning 
how to use iterators, along with the power of context transition, leverages much 
of the power of DAX. In this chapter, we show several examples that are useful to 
understand how to take advantage of these tools.

 ■ Chapter 8 describes time intelligence calculations at a very in-depth level. Year-
to-date, month-to-date, values of the previous year, week-based periods, and 
custom calendars are some of the calculations covered in this chapter.

 ■ Chapter 9 is dedicated to the latest feature introduced in DAX: calculation 
groups. Calculation groups are very powerful as a modeling tool. This chapter 
describes how to create and use calculation groups, introducing the basic con-
cepts and showing a few examples.

 ■ Chapter 10 covers more advanced uses of the fi lter context, data lineage, inspec-
tion of the fi lter context, and other useful tools to compute advanced formulas.

 ■ Chapter 11 shows you how to perform calculations over hierarchies and how to 
handle parent/child structures using DAX.

 ■ Chapters 12 and 13 cover advanced table functions that are useful both to author 
queries and/or to compute advanced calculations.

 ■ Chapter 14 advances your knowledge of evaluation context one step further and 
discusses complex functions such as ALLSELECTED and KEEPFILTERS, with the aid of 
the theory of expanded tables. This is an advanced chapter that uncovers most of 
the secrets of complex DAX expressions.

 ■ Chapter 15 is about managing relationships in DAX. Indeed, thanks to DAX any 
type of relationship can be set within a data model. This chapter includes the 
description of many types of relationships that are common in an analytical 
data model.

 ■ Chapter 16 contains several examples of complex calculations solved in DAX. This 
is the fi nal chapter about the language, useful to discover solutions and new ideas.

 ■ Chapter 17 includes a detailed description of the VertiPaq engine, which is the 
most common storage engine used by models running DAX. Understanding it is 
essential to learning how to get the best performance in DAX.

 ■ Chapter 18 uses the knowledge from Chapter 17 to show possible optimizations 
that you can apply at the data model level. You learn how to reduce the cardinality 
of columns, how to choose columns to import, and how to improve performance 
by choosing the proper relationship types and by reducing memory usage in DAX.
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 ■ Chapter 19 teaches you how to read a query plan and how to measure the per-
formance of a DAX query with the aid of tools such as DAX Studio and SQL Server 
Profi ler.

 ■ Chapter 20 shows several optimization techniques, based on the content of the 
previous chapters about optimization. We show many DAX expressions, measure 
their performance, and then display and explain optimized formulas.

Conventions

The following conventions are used in this book:

 ■ Boldface type is used to indicate text that you type.

 ■ Italic type is used to indicate new terms, measures, calculated columns, tables, and 
database names.

 ■ The fi rst letters of the names of dialog boxes, dialog box elements, and com-
mands are capitalized. For example, the Save As dialog box.

 ■ The names of ribbon tabs are given in ALL CAPS.

 ■ Keyboard shortcuts are indicated by a plus sign (+) separating the key names. For 
example, Ctrl+Alt+Delete means that you press Ctrl, Alt, and Delete keys at the 
same time.

About the companion content

We have included companion content to enrich your learning experience. The compan-
ion content for this book can be downloaded from the following page:

MicrosoftPressStore.com/Defi nitiveGuideDAX/downloads

The companion content includes the following:

 ■ A SQL Server backup of the Contoso Retail DW database that you can use to build 
the examples yourself. This is a standard demo database provided by Microsoft, 
which we have enriched with several views, to make it easier to create a data 
model on top of it.

 ■ A separate Power BI Desktop model for each fi gure of the book. Every fi gure has 
its own fi le. The data model is almost always the same, but you can use these fi les 
to closely follow the steps outlined in the book.

http://MicrosoftPressStore.com/De$$$fi
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C H A P T E R  1

What is DAX?

DAX, which stands for Data Analysis eXpressions, is the programming language of Microsoft Power BI, 
Microsoft Analysis Services, and Microsoft Power Pivot for Excel. It was created in 2010, with the fi rst 
release of PowerPivot for Microsoft Excel 2010. In 2010, PowerPivot was spelled without the space. 
The space was introduced in the Power Pivot name in 2013. Since then, DAX has gained popularity, both 
within the Excel community, which uses DAX to create Power Pivot data models in Excel, and within 
the Business Intelligence (BI) community, which uses DAX to build models with Power BI and Analysis 
Services. DAX is present in many different tools, all sharing the same internal engine named Tabular. 
For this reason, we often refer to Tabular models, including all these different tools in a single word.

DAX is a simple language. That said, DAX is different from most programming languages, so 
becoming acquainted with some of its new concepts might take some time. In our experience, having 
taught DAX to thousands of people, learning the basics of DAX is straightforward: you will be able to 
start using it in a matter of hours. When it comes to understanding advanced concepts such as evalu-
ation contexts, iterations, and context transitions, everything will likely seem complex. Do not give up! 
Be patient. When your brain starts to digest these concepts, you will discover that DAX is, indeed, an 
easy language. It just takes some getting used to.

This fi rst chapter begins with a recap of what a data model is in terms of tables and relationships. 
We recommend readers of all experience levels read this section to gain familiarity with the terms used 
throughout the book when referring to tables, models, and different kinds of relationships.

In the following sections, we offer advice to readers who have experience with programming 
languages such as Microsoft Excel, SQL, and MDX. Each section is focused on a certain language, for 
readers curious to briefl y compare DAX to it. Focus on languages you know if a comparison is helpful to 
you; then read the fi nal section, “DAX for Power BI users,” and move on to the next chapter where our 
journey into the DAX language truly begins.

Understanding the data model

DAX is specifi cally designed to compute business formulas over a data model. The readers might 
already know what a data model is. If not, we start with a description of data models and relationships 
to create a foundation on which to build their DAX knowledge.

A data model is a set of tables, linked by relationships. 
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We all know what a table is: a set of rows containing data, with each row divided into columns. 
Each column has a data type and contains a single piece of information. We usually refer to a row 
in a table as a record. Tables are a convenient way to organize data. A table is a data model in itself 
although in its simplest form. Thus, when we write names and numbers in an Excel workbook, we are 
creating a data model.

If a data model contains many tables, it is likely that they are linked through relationships. A rela-
tionship is a link between two tables. When two tables are tied with a relationship, we say that they are 
related. Graphically, a relationship is represented by a line connecting the two tables. Figure 1-1 shows 
an example of a data model.

FIGURE 1-1 This data model is made up of six tables.

Following are a few important aspects of relationships:

 ■ Two tables in a relationship do not have the same role. They are called the one-side and the 
many-side of the relationship, represented respectively with a 1 and with a *. In Figure 1-1, focus 
on the relationship between Product and Product Subcategory. A single subcategory contains 
many products, whereas a single product has only one subcategory. Therefore, Product Subcat-
egory is the one-side of the relationship, having one subcategory, while Product is the many-
side having many products.

 ■ Special kinds of relationships are 1:1 and weak relationships. In 1:1 relationships, both tables 
are the one-side, whereas in weak relationships, both tables can be the many-side. These 
special kinds of relationships are uncommon; we discuss them in detail in Chapter 15, “Advanced 
relationships.”
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 ■ The columns used to create the relationship, which usually have the same name in both tables, 
are called the keys of the relationship. On the one-side of the relationship, the column needs 
to have a unique value for each row, and it cannot contain blanks. On the many-side, the same 
value can be repeated in many different rows, and it often is. When a column has a unique value 
for each row, it is called a key for the table.

 ■ Relationships can form a chain. Each product has a subcategory, and each subcategory has a 
category. Thus, each product has a category. To retrieve the category of a product, one must 
traverse a chain of two relationships. Figure 1-1 includes an example of a chain made up of three 
relationships, starting with Sales and continuing on to Product Category.

 ■ In each relationship, one or two small arrows can determine the cross fi lter direction. Figure 1-1 
shows two arrows in the relationship between Sales and Product, whereas all other relationships 
have a single arrow. The arrow indicates the direction of the automatic fi ltering of the relation-
ship (cross fi lter). Because determining the correct direction of fi lters is one of the most impor-
tant skills to learn, we discuss this topic in more detail in later chapters. We usually discourage 
the use of bidirectional fi lters, as described in Chapter 15. They are present in this model for 
educational purposes only.

Understanding the direction of a relationship
Each relationship can have a unidirectional or bidirectional cross fi lter. Filtering always happens from 
the one-side of the relationship to the many-side. If the cross fi lter is bidirectional—that is, if it has two 
arrows on it—the fi ltering also happens from the many-side to the one-side.

An example might help in understanding this behavior. If a report is based on the data model shown 
in Figure 1-1, with the years on the rows and Quantity and Count of Product Name in the values area, it 
produces the result shown in Figure 1-2.

FIGURE 1-2 This report shows the effect of fi ltering across multiple tables.

Calendar Year is a column that belongs to the Date table. Because Date is on the one-side of the 
relationship with Sales, the engine fi lters Sales based on the year. This is why the quantity shown is 
fi ltered by year.

With Products, the scenario is slightly different. The fi ltering happens because the relationship 
between the Sales and Product tables is bidirectional. When we put the count of product names in the 
report, we obtain the number of products sold in each year because the fi lter on the year propagates 
to Product through Sales. If the relationship between Sales and Product were unidirectional, the result 
would be different, as we explain in the following sections.
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If we modify the report by putting Color on the rows and adding Count of Date in the values area, 
the result is different, as shown in Figure 1-3.

FIGURE 1-3 This report shows that if bidirectional fi ltering is not active, tables are not fi ltered.

The fi lter on the rows is the Color column in the Product table. Because Product is on the one-side of 
the relationship with Sales, Quantity is fi ltered correctly. Count of Product Name is fi ltered because it is 
computing values from the table that is on the rows, that is Product. The unexpected number is Count 
of Date. Indeed, it always shows the same value for all the rows—that is, the total number of rows in the 
Date table.

The fi lter coming from the Color column does not propagate to Date because the relationship 
between Date and Sales is unidirectional. Thus, although Sales has an active fi lter on it, the fi lter cannot 
propagate to Date because the type of relationship prevents it.

If we change the relationship between Date and Sales to enable bidirectional cross-fi ltering, the 
result is as shown in Figure 1-4.

The numbers now refl ect the number of days when at least one product of the given color was sold. 
At fi rst sight, it might look as if all the relationships should be defi ned as bidirectional, so as to let the 
fi lter propagate in any direction and always return results that make sense. As you will learn later in this 
book, designing a data model this way is almost never appropriate. In fact, depending on the scenario 
you are working with, you will choose the correct propagation of relationships. If you follow our 
suggestions, you will avoid bidirectional fi ltering as much as you can.
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FIGURE 1-4 If we enable bidirectional fi ltering, the Date table is fi ltered using the Color column.

DAX for Excel users

Chances are you already know the Excel formula language that DAX somewhat resembles. After all, the 
roots of DAX are in Power Pivot for Excel, and the development team tried to keep the two languages 
similar. This similarity makes the transition to this new language easier. However, there are some 
important differences.

Cells versus tables
Excel performs calculations over cells. A cell is referenced using its coordinates. Thus, we can write 
formulas as follows:

= (A1 * 1.25) - B2

In DAX, the concept of a cell and its coordinates does not exist. DAX works on tables and columns, 
not cells. As a consequence, DAX expressions refer to tables and columns, and this means writing code 
differently. The concepts of tables and columns are not new in Excel. In fact, if we defi ne an Excel range 
as a table by using the Format as Table function, we can write formulas in Excel that reference tables 
and columns. In Figure 1-5, the SalesAmount column evaluates an expression that references columns 
in the same table instead of cells in the workbook.
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FIGURE 1-5 Excel can reference column names in tables.

Using Excel, we refer to columns in a table using the [@ColumnName] format. ColumnName is the 
name of the column to use, and the @ symbol means “take the value for the current row.” Although the 
syntax is not intuitive, normally we do not write these expressions. They appear when we click a cell, 
and Excel takes care of inserting the right code for us.

You might think of Excel as having two different ways of performing calculations. We can use stan-
dard cell references, in which case the formula for F4 would be E4*D4, or we can use column references 
inside a table. Using column references offers the advantage that we can use the same expression in all 
the cells of a column and Excel will compute the formula with a different value for each row.

Unlike Excel, DAX works only on tables. All the formulas must reference columns inside tables. 
For example, in DAX we write the previous multiplication this way:

Sales[SalesAmount] = Sales[ProductPrice] * Sales[ProductQuantity]

As you can see, each column is prefi xed with the name of its table. In Excel, we do not provide the 
table name because Excel formulas work inside a single table. However, DAX works on a data model 
containing many tables. As a consequence, we must specify the table name because two columns in 
different tables might have the same name.

Many functions in DAX work the same way as the equivalent Excel function. For example, the IF 
function reads the same way in DAX and in Excel:

Excel IF ( [@SalesAmount] > 10, 1, 0)
DAX IF ( Sales[SalesAmount] > 10, 1, 0)

One important aspect where the syntax of Excel and DAX is different is in the way to reference the 
entire column. In fact, in [@ProductQuantity], the @ means “the value in the current row.” In DAX, there 
is no need to specify that a value must be from the current row, because this is the default behavior of 



 CHAPTER 1 What is DAX? 7

the language. In Excel, we can reference the entire column—that is, all the rows in that column—by 
removing the @ symbol. You can see this in Figure 1-6.

FIGURE 1-6 In Excel, you can reference an entire column by omitting the @ symbol before the column name.

The value of the AllSales column is the same in all the rows because it is the grand total of the 
SalesAmount column. In other words, there is a syntactical difference between the value of a column in 
the current row and the value of the column as a whole.

DAX is different. In DAX, this is how you write the AllSales expression of Figure 1-6:

AllSales := SUM ( Sales[SalesAmount] )

There is no syntactical difference between retrieving the value of a column for a specifi c row and 
using the column as a whole. DAX understands that we want to sum all the values of the column 
because we use the column name inside an aggregator (in this case the SUM function), which requires a 
column name to be passed as a parameter. Thus, although Excel requires an explicit syntax to differen-
tiate between the two types of data to retrieve, DAX does the disambiguation automatically. 
This distinction might be confusing—at least in the beginning.

Excel and DAX: Two functional languages
One aspect where the two languages are similar is that both Excel and DAX are functional languages. 
A functional language is made up of expressions that are basically function calls. In Excel and DAX, the 
concepts of statements, loops, and jumps do not exist although they are common to many program-
ming languages. In DAX, everything is an expression. This aspect of the language is often a challenge 
for programmers coming from different languages, but it should be no surprise at all for Excel users.
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Iterators in DAX
A concept that might be new to you is the concept of iterators. When working in Excel, you perform 
calculations one step at a time. The previous example showed that to compute the total of sales, we 
create one column containing the price multiplied by the quantity. Then as a second step, we sum it to 
compute the total sales. This number is then useful as a denominator to compute the percentage of 
sales of each product, for example.

Using DAX, you can perform the same operation in a single step by using iterators. An iterator does 
exactly what its name suggests: it iterates over a table and performs a calculation on each row of the 
table, aggregating the result to produce the single value requested.

Using the previous example, we can now compute the sum of all sales using the SUMX iterator:

AllSales :=
SUMX (
    Sales,
    Sales[ProductQuantity] * Sales[ProductPrice]
)

This approach brings to light both an advantage and a disadvantage. The advantage is that we 
can perform many complex calculations in a single step without worrying about adding columns that 
would end up being useful only for specifi c formulas. The disadvantage is that programming with DAX 
is less visual than programming with Excel. Indeed, you do not see the column computing the price 
multiplied by the quantity; it exists only for the lifetime of the calculation.

As we will explain later, we can create a calculated column that computes the multiplication of price 
by quantity. Nevertheless, doing so is seldom a good practice because it uses memory and might slow 
down the calculations, unless you use DirectQuery and Aggregations, as we explain in Chapter 18, 
“Optimizing VertiPaq.”

DAX requires theory
Let us be clear: The fact that DAX requires one to study theory fi rst is not a difference between pro-
gramming languages. This is a difference in mindset. You are probably used to searching the web for 
complex formulas and solution patterns for the scenarios you are trying to solve. When you are using 
Excel, chances are you will fi nd a formula that almost does what you need. You can copy the formula, 
customize it to fi t your needs, and then use it without worrying too much about how it works.

This approach, which works in Excel, does not work with DAX, however. You need to study DAX 
theory and thoroughly understand how evaluation contexts work before you can write good DAX 
code. If you do not have a proper theoretical foundation, you will fi nd that DAX either computes values 
like magic or it computes strange numbers that make no sense. The problem is not DAX but the fact 
that you do not yet understood exactly how DAX works.

Luckily, the theory behind DAX is limited to a couple of important concepts, which we explain in 
Chapter 4, “Understanding evaluation contexts.” When you reach that chapter, be prepared for some 
intense learning. After you master that content, DAX will have no secrets for you, and learning DAX will 
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mainly be a matter of gaining experience. Remember: knowing is half the battle. So do not try to go 
further until you are somewhat profi cient with evaluation contexts.

DAX for SQL developers

If you are accustomed to the SQL language, you have already worked with many tables and created 
joins between columns to set relationships. From this point of view, you will likely feel at home in the 
DAX world. Indeed, computing in DAX is a matter of querying a set of tables joined by relationships 
and aggregating values.

Relationship handling
The fi rst difference between SQL and DAX is in the way relationships work in the model. In SQL, we can set 
foreign keys between tables to declare relationships, but the engine never uses these foreign keys in que-
ries unless we are explicit about them. For example, if we have a Customers table and a Sales table, where 
CustomerKey is a primary key in Customers and a foreign key in Sales, we can write the following query:

SELECT
   Customers.CustomerName,
   SUM ( Sales.SalesAmount ) AS SumOfSales
FROM
   Sales
   INNER JOIN Customers
    ON Sales.CustomerKey = Customers.CustomerKey
GROUP BY
   Customers.CustomerName

Though we declare the relationship in the model using foreign keys, we still need to be explicit and 
state the join condition in the query. Although this approach makes queries more verbose, it is useful 
because you can use different join conditions in different queries, giving you a lot of freedom in the 
way you express queries.

In DAX, relationships are part of the model, and they are all LEFT OUTER JOINs. When they are 
defi ned in the model, you no longer need to specify the join type in the query: DAX uses an automatic 
LEFT OUTER JOIN in the query whenever you use columns related to the primary table. Thus, in DAX 
you would write the previous SQL query as follows:

EVALUATE
SUMMARIZECOLUMNS (
    Customers[CustomerName],
    "SumOfSales", SUM ( Sales[SalesAmount] )
)

Because DAX knows the existing relationship between Sales and Customers, it does the join auto-
matically following the model. Finally, the SUMMARIZECOLUMNS function needs to perform a group 
by Customers[CustomerName], but we do not have a keyword for that: SUMMARIZECOLUMNS 
automatically groups data by selected columns.
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DAX is a functional language
SQL is a declarative language. You defi ne what you need by declaring the set of data you want to 
retrieve using SELECT statements, without worrying about how the engine actually retrieves the 
information. 

DAX, on the other hand, is a functional language. In DAX, every expression is a function call. 
Function parameters can, in turn, be other function calls. The evaluation of parameters might lead to 
complex query plans that DAX executes to compute the result.

For example, if we want to retrieve only customers who live in Europe, we can write this query 
in SQL:

SELECT
   Customers.CustomerName,
   SUM ( Sales.SalesAmount ) AS SumOfSales
FROM
   Sales
   INNER JOIN Customers
    ON Sales.CustomerKey = Customers.CustomerKey
WHERE
   Customers.Continent = 'Europe'
GROUP BY
   Customers.CustomerName

Using DAX, we do not declare the WHERE condition in the query. Instead, we use a specifi c function 
(FILTER) to fi lter the result:

EVALUATE
SUMMARIZECOLUMNS (
    Customers[CustomerName],
    FILTER (
        Customers,
        Customers[Continent] = "Europe"
    ),
    "SumOfSales", SUM ( Sales[SalesAmount] )
)

You can see that FILTER is a function: it returns only the customers living in Europe, producing 
the expected result. The order in which we nest the functions and the kinds of functions we use have 
a strong impact on both the result and the performance of the engine. This happens in SQL too, 
although in SQL we trust the query optimizer to fi nd the optimal query plan. In DAX, although the 
query optimizer does a great job, you, as programmer, bear more responsibility in writing good code.

DAX as a programming and querying language
In SQL, a clear distinction exists between the query language and the programming language—that 
is, the set of instructions used to create stored procedures, views, and other pieces of code in the 
database. Each SQL dialect has its own statements to let programmers enrich the data model with 
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code. However, DAX virtually makes no distinction between querying and programming. A rich set of 
 functions manipulates tables and can, in turn, return tables. The FILTER function in the previous query 
is a good example of this.

In that respect, it appears that DAX is simpler than SQL. When you learn it as a programming 
language—its original use—you will know everything needed to also use it as a query language.

Subqueries and conditions in DAX and SQL
One of the most powerful features of SQL as a query language is the option of using subqueries. DAX 
features similar concepts. In the case of DAX subqueries, however, they stem from the functional nature 
of the language.

For example, to retrieve customers and total sales specifi cally for the customers who bought more 
than US$100 worth, we can write this query in SQL:

SELECT
   CustomerName,
   SumOfSales
FROM (
   SELECT
    Customers.CustomerName,
    SUM ( Sales.SalesAmount ) AS SumOfSales
   FROM
    Sales
    INNER JOIN Customers
     ON Sales.CustomerKey = Customers.CustomerKey
   GROUP BY
    Customers.CustomerName
   ) AS SubQuery
WHERE
   SubQuery.SumOfSales > 100

We can obtain the same result in DAX by nesting function calls:

EVALUATE
FILTER (
    SUMMARIZECOLUMNS (
        Customers[CustomerName],
        "SumOfSales", SUM ( Sales[SalesAmount] )
    ),
    [SumOfSales] > 100
)

In this code, the subquery that retrieves CustomerName and SumOfSales is later fed into a FILTER 
function that retains only the rows where SumOfSales is greater than 100. Right now, this code might 
seem unreadable to you. However, as soon as you start learning DAX, you will discover that using 
subqueries is much easier than in SQL, and it fl ows naturally because DAX is a functional language.
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DAX for MDX developers

Many Business Intelligence professionals start learning DAX because it is the new language of Tabu-
lar. In the past, they used the MDX language to build and query Analysis Services Multidimensional 
models. If you are among them, be prepared to learn a completely new language: DAX and MDX do 
not share much in common. Worse, some concepts in DAX will remind you of similar existing concepts 
in MDX though they are different.

In our experience, we have found that learning DAX after learning MDX is the most challenging 
option. To learn DAX, you need to free your mind from MDX. Try to forget everything you know about 
multidimensional spaces and be prepared to learn this new language with a clear mind.

Multidimensional versus Tabular
MDX works in the multidimensional space defi ned by a model. The shape of the multidimensional 
space is based on the architecture of dimensions and hierarchies defi ned in the model, and this, in turn, 
defi nes the set of coordinates of the multidimensional space. Intersections of sets of members in differ-
ent dimensions defi ne points in the multidimensional space. You may have taken some time to realize 
that the [All] member of any attribute hierarchy is indeed a point in the multidimensional space.

DAX works in a much simpler way. There are no dimensions, no members, and no points in the 
multidimensional space. In other words, there is no multidimensional space at all. There are hierarchies, 
which we can defi ne in the model, but they are different from hierarchies in MDX. The DAX space is 
built on top of tables, columns, and relationships. Each table in a Tabular model is neither a measure 
group nor a dimension: it is just a table, and to compute values, you scan it, fi lter it, or sum values inside 
it. Everything is based on the two simple concepts of tables and relationships.

You will soon discover that from the modeling point of view, Tabular offers fewer options than 
Multidimensional does. In this case, having fewer options does not mean being less powerful because 
you can use DAX as a programming language to enrich the model. The real modeling power of Tabular 
is the tremendous speed of DAX. In fact, you probably try to avoid overusing MDX in your model 
because optimizing MDX speed is often a challenge. DAX, on the other hand, is amazingly fast. Thus, 
most of the complexity of the calculations is not in the model but in the DAX formulas instead.

DAX as a programming and querying language
DAX and MDX are both programming languages and query languages. In MDX, the difference is made 
clear by the presence of the MDX script. You use MDX in the MDX script, along with several special 
statements that can be used in the script only, such as SCOPE statements. You use MDX in queries when 
you write SELECT statements that retrieve data. In DAX, this is somewhat different. You use DAX as a 
programming language to defi ne calculated columns, calculated tables, and measures. The concept of 
calculated columns and calculated tables is new to DAX and does not exist in MDX; measures are simi-
lar to calculated members in MDX. You can also use DAX as a query language—for example, to retrieve 
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data from a Tabular model using Reporting Services. Nevertheless, DAX functions do not have a spe-
cifi c role and can be used in both queries and calculation expressions. Moreover, you can also query a 
Tabular model using MDX. Thus, the querying part of MDX works with Tabular models, whereas DAX is 
the only option when it comes to programming a Tabular model.

Hierarchies
Using MDX, you rely on hierarchies to perform most of the calculations. If you wanted to compute the 
sales in the previous year, you would have to retrieve the PrevMember of the CurrentMember on the 
Year hierarchy and use it to override the MDX fi lter. For example, you can write the formula this way to 
defi ne a previous year calculation in MDX:

CREATE MEMBER CURRENTCUBE.[Measures].[SamePeriodPreviousYearSales] AS
(
    [Measures].[Sales Amount],
    ParallelPeriod (
        [Date].[Calendar].[Calendar Year],
        1,
        [Date].[Calendar].CurrentMember
    )
);

The measure uses the ParallelPeriod function, which returns the cousin of the CurrentMember on 
the Calendar hierarchy. Thus, it is based on the hierarchies defi ned in the model. We would write the 
same calculation in DAX using fi lter contexts and standard time-intelligence functions:

SamePeriodPreviousYearSales :=
CALCULATE (
    SUM ( Sales[Sales Amount] ),
    SAMEPERIODLASTYEAR ( 'Date'[Date] )
)

We can write the same calculation in many other ways using FILTER and other DAX functions, but 
the idea remains the same: instead of using hierarchies, we fi lter tables. This difference is huge, and you 
will probably miss hierarchy calculations until you get used to DAX.

Another important difference is that in MDX you refer to [Measures].[Sales Amount], and the 
aggregation function that you need to use is already defi ned in the model. In DAX, there is no pre-
defi ned aggregation. In fact, as you might have noticed, the expression to compute is SUM(Sales[Sales 
Amount]). The predefi ned aggregation is no longer in the model. We need to defi ne it whenever we 
want to use it. We can always create a measure that computes the sum of sales, but this would be 
beyond the scope of this section and is explained later in the book.

One more important difference between DAX and MDX is that MDX makes heavy use of the SCOPE 
statement to implement business logic (again, using hierarchies), whereas DAX needs a completely 
different approach. Indeed, hierarchy handling is missing in the language altogether.
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For example, if we want to clear a measure at the Year level, in MDX we would write this statement:

SCOPE ( [Measures].[SamePeriodPreviousYearSales], [Date].[Month].[All] )
   THIS = NULL;
END SCOPE;

DAX does not have something like a SCOPE statement. To obtain the same result, we need to check 
for the presence of fi lters in the fi lter context, and the scenario is much more complex:

SamePeriodPreviousYearSales :=
IF (
    ISINSCOPE ( 'Date'[Month] ),
    CALCULATE (
        SUM ( Sales[Sales Amount] ),
        SAMEPERIODLASTYEAR ( 'Date'[Date] )
    ),
    BLANK ()
)

Intuitively, this formula returns a value only if the user is browsing the calendar hierarchy at the 
month level or below. Otherwise, it returns a BLANK. You will later learn what this formula computes in 
detail. It is much more error-prone than the equivalent MDX code. To be honest, hierarchy handling is 
one of the features that is really missing in DAX.

Leaf-level calculations
Finally, when using MDX, you probably got used to avoiding leaf-level calculations. Performing leaf-
level computation in MDX turns out to be so slow that you should always prefer to precompute values 
and leverage aggregations to return results. In DAX, leaf-level calculations work incredibly fast and 
aggregations serve a different purpose, being useful only for large datasets. This requires a shift in your 
mind when it is time to build the data models. In most cases, a data model that fi ts perfectly in SSAS 
Multidimensional is not the right fi t for Tabular and vice versa.

DAX for Power BI users

If you skipped the previous sections and directly came here, welcome! DAX is the native language of 
Power BI, and if you do not have experience in Excel, SQL, or MDX, Power BI will be the fi rst place where 
you learn DAX. If you do not have previous experience in building models with other tools, you will 
learn that Power BI is a powerful analytical and modeling tool, with DAX as the perfect companion.

You might have started using Power BI a while ago and now you want to get to the next level. If this 
is the case, be prepared for a wonderful journey with DAX.

Here is our advice to you: do not expect to be able to write complex DAX code in a matter of a 
few days. DAX requires your time and dedication, and mastering it requires some practice. Based on 
our experience, you will be excited at fi rst when you are rewarded with a few simple calculations. 
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The excitement fades away as soon as you start learning about evaluation contexts and CALCULATE, 
the most complex topics of the language. At that point, everything looks complex. Do not give up; 
most DAX developers had to move past that level. When you are there, you are so close to reaching 
a full understanding that it would be a real pity to stop. Read and practice again and again because a 
lightbulb will go off much sooner that you would expect. You will be able to fi nish the book quickly, 
reaching DAX guru status.

Evaluation contexts are at the core of the language. Mastering them takes time. We do not know 
anyone who was able to learn all about DAX in a couple of days. Besides, as with any complex topic, you 
will learn to appreciate a lot of the details over time. When you think you have learned everything, give 
the book a second read. You will discover many details that looked less important at fi rst sight but, with 
a more trained mindset, really make a difference.

Enjoy the rest of this book!
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C H A P T E R  2

Introducing DAX

In this chapter, we start talking about the DAX language. Here you learn the syntax of the language, the 
difference between a calculated column and a measure (also called calculated fi eld, in certain old Excel 
versions), and the most commonly used functions in DAX.

Because this is an introductory chapter, it does not cover many functions in depth. In later chapters, 
we explain them in more detail. For now, introducing the functions and starting to look at the DAX lan-
guage in general are enough. When we reference features of the data model in Power BI, Power Pivot, 
or Analysis Services, we use the term Tabular even when the feature is not present in all the products. 
For example, “DirectQuery in Tabular” refers to the DirectQuery mode feature available in Power BI and 
Analysis Services but not in Excel.

Understanding DAX calculations

Before working on more complex formulas, you need to learn the basics of DAX. This includes DAX 
syntax, the different data types that DAX can handle, the basic operators, and how to refer to columns 
and tables. These concepts are discussed in the next few sections.

We use DAX to compute values over columns in tables. We can aggregate, calculate, and search for 
numbers, but in the end, all the calculations involve tables and columns. Thus, the fi rst syntax to learn is 
how to reference a column in a table.

The general format is to write the table name enclosed in single quotation marks, followed by the 
column name enclosed in square brackets, as follows:

'Sales'[Quantity]

We can omit the single quotation marks if the table name does not start with a number, does not 
contain spaces, and is not a reserved word (like Date or Sum).

The table name is also optional in case we are referencing a column or a measure within the table 
where we defi ne the formula. Thus, [Quantity] is a valid column reference, if written in a calculated 
column or in a measure defi ned in the Sales table. Although this option is available, we strongly 
discourage you from omitting the table name. At this point, we do not explain why this is so impor-
tant, but the reason will become clear when you read Chapter 5, “Understanding CALCULATE and 
CALCULATETABLE.” Nevertheless, it is of paramount importance to be able to distinguish between 
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measures (discussed later) and columns when you read DAX code. The de facto standard is to always 
use the table name in column references and always avoid it in measure references. The earlier you 
start adopting this standard, the easier your life with DAX will be. Therefore, you should get used to 
this way of referencing columns and measures:

Sales[Quantity] * 2            -- This is a column reference
[Sales Amount] * 2             -- This is a measure reference

You will learn the rationale behind this standard after learning about context transition, which 
comes in Chapter 5. For now, just trust us and adhere to this standard.

  

Comments in DAX

The preceding code example shows comments in DAX for the fi rst time. DAX supports 
single-line comments and multiline comments. Single-line comments start with either -- 
or //, and the remaining part of the line is considered a comment.

= Sales[Quantity] * Sales[Net Price]   -- Single-line comment
= Sales[Quantity] * Sales[Unit Cost]   // Another example of single-line comment

A multiline comment starts with /* and ends with */. The DAX parser ignores 
everything included between these markers and considers them a comment.

= IF (
    Sales[Quantity] > 1,
    /* First example of a multiline comment
       Anything can be written here and is ignored by DAX
    */
    "Multi",
    /* A common use case of multiline comments is to comment-out a part of 
       the existing code
       The next IF statement is ignored because it falls within a multiline comment
        IF ( 
            Sales[Quantity] = 1, 
            "Single",
            "Special note"
        )
    */
    "Single"
)

It is better to avoid comments at the end of a DAX expression in a measure, calculated 
column, or calculated table defi nition. These comments might be not visible at fi rst, and they 
might not be supported by tools such as DAX Formatter, which is discussed later in this 
chapter.
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DAX data types
DAX can perform computations with different numeric types, of which there are seven. Over time, 
Microsoft introduced different names for the same data types, creating some sort of confusion. 
Table 2-1 provides the different names under which you might fi nd each DAX data type.

TABLE 2-1 Data Types

DAX Data Type
Power BI 
Data Type

Power Pivot and 
Analysis Services 
Data Type

Correspondent 
Conventional Data Type 
(e.g., SQL Server)

Tabular Object 
Model (TOM) 
Data Type

Integer Whole Number Whole Number Integer / INT int64

Decimal Decimal Number Decimal Number Floating point / DOUBLE double

Currency Fixed Decimal 
Number

Currency Currency / MONEY decimal

DateTime DateTime, Date, 
Time

Date Date / DATETIME dateTime

Boolean True/False True/False Boolean / BIT boolean

String Text Text String / NVARCHAR(MAX) string

Variant - - - variant

Binary Binary Binary Blob / VARBINARY(MAX) binary

In this book, we use the names in the fi rst column of Table 2-1 adhering to the de facto standards 
in the database and Business Intelligence community. For example, in Power BI, a column containing 
either TRUE or FALSE would be called TRUE/FALSE, whereas in SQL Server, it would be called a BIT. 
Nevertheless, the historical and most common name for this type of value is Boolean.

DAX comes with a powerful type-handling system so that we do not have to worry about data 
types. In a DAX expression, the resulting type is based on the type of the term used in the expression. 
You need to be aware of this in case the type returned from a DAX expression is not the expected type; 
you would then have to investigate the data type of the terms used in the expression itself.

For example, if one of the terms of a sum is a date, the result also is a date; likewise, if the same 
operator is used with integers, the result is an integer. This behavior is known as operator overloading, 
and an example is shown in Figure 2-1, where the OrderDatePlusOneWeek column is calculated by 
adding 7 to the value of the Order Date column.

Sales[OrderDatePlusOneWeek] = Sales[Order Date] + 7

The result is a date.
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FIGURE 2-1 Adding an integer to a date results in a date increased by the corresponding number of days.

In addition to operator overloading, DAX automatically converts strings into numbers and 
numbers into strings whenever required by the operator. For example, if we use the & operator, 
which concatenates strings, DAX converts its arguments into strings. The following formula returns 
“54” as a string:

= 5 & 4

On the other hand, this formula returns an integer result with the value of 9:

= "5" + "4"

The resulting value depends on the operator and not on the source columns, which are 
converted following the requirements of the operator. Although this behavior looks convenient, 
later in this chapter you see what kinds of errors might happen during these automatic 
conversions. Moreover, not all the operators follow this behavior. For example, comparison 
operators cannot compare strings with numbers. Consequently, you can add one number with a 
string, but you cannot compare a number with a string. You can fi nd a complete reference here: 
https://docs.microsoft.com/en-us/power-bi/desktop-data-types. Because the rules are so 
complex, we suggest you avoid automatic conversions altogether. If a conversion needs to 
happen, we recommend that you control it and make the conversion explicit. To be more explicit, 
the previous example should be written like this:

= VALUE ( "5" ) + VALUE ( "4" )

People accustomed to working with Excel or other languages might be familiar with DAX data types. 
Some details about data types depend on the engine, and they might be different for Power BI, Power 

https://docs.microsoft.com/en-us/power-bi/desktop-data-types
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Pivot, or Analysis Services. You can fi nd more detailed information about Analysis Services DAX data 
types at http://msdn.microsoft.com/en-us/library/gg492146.aspx, and Power BI information is available 
at https://docs.microsoft.com/en-us/power-bi/desktop-data-types. However, it is useful to share a few 
considerations about each of these data types.

Integer
DAX has only one Integer data type that can store a 64-bit value. All the internal calculations between 
integer values in DAX also use a 64-bit value.

Decimal
A Decimal number is always stored as a double-precision fl oating-point value. Do not confuse this DAX 
data type with the decimal and numeric data type of Transact-SQL. The corresponding data type of a 
DAX decimal number in SQL is Float.

Currency
The Currency data type, also known as Fixed Decimal Number in Power BI, stores a fi xed decimal 
number. It can represent four decimal points and is internally stored as a 64-bit integer value divided 
by 10,000. Summing or subtracting Currency data types always ignores decimals beyond the fourth 
decimal point, whereas multiplication and division produce a fl oating-point value, thus increasing the 
precision of the result. In general, if we need more accuracy than the four digits provided, we must use 
a Decimal data type.

The default format of the Currency data type includes the currency symbol. We can also apply the 
currency formatting to Integer and decimal numbers, and we can use a format without the currency 
symbol for a Currency data type.

DateTime
DAX stores dates as a DateTime data type. This format uses a fl oating-point number internally, wherein 
the integer corresponds to the number of days since December 30, 1899, and the decimal part identi-
fi es the fraction of the day. Hours, minutes, and seconds are converted to decimal fractions of a day. 
Thus, the following expression returns the current date plus one day (exactly 24 hours):

= TODAY () + 1

The result is tomorrow’s date at the time of the evaluation. If you need to take only the date part of a 
DateTime, always remember to use TRUNC to get rid of the decimal part.

Power BI offers two additional data types: Date and Time. Internally, they are a simple varia-
tion of DateTime. Indeed, Date and Time store only the integer or the decimal part of the DateTime, 
respectively.

http://msdn.microsoft.com/en-us/library/gg492146.aspx
https://docs.microsoft.com/en-us/power-bi/desktop-data-types
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The leap year bug

Lotus 1-2-3, a popular spreadsheet released in 1983, presented a bug in the handling of 
the DateTime data type. It considered 1900 as a leap year, even though it was not. The 
fi nal year in a century is a leap year only if the fi rst two digits can be divided by 4 without 
a remainder. At that time, the development team of the fi rst version of Excel deliberately 
replicated the bug, to maintain compatibility with Lotus 1-2-3. Since then, each new 
version of Excel has maintained the bug for compatibility.

At the time of printing in 2019, the bug is still there in DAX, introduced for backward com-
patibility with Excel. The presence of the bug (should we call it a feature?) might lead to errors 
on time periods prior to March 1, 1900. Thus, by design, the fi rst date offi cially supported by 
DAX is March 1, 1900. Date calculations executed on time periods prior to that date might lead 
to errors and should be considered as inaccurate.

Boolean
The Boolean data type is used to express logical conditions. For example, a calculated column defi ned 
by the following expression is of Boolean type:

= Sales[Unit Price] > Sales[Unit Cost]

You will also see Boolean data types as numbers where TRUE equals 1 and FALSE equals 0. This 
notation sometimes proves useful for sorting purposes because TRUE > FALSE.

String
Every string in DAX is stored as a Unicode string, where each character is stored in 16 bits. By default, 
the comparison between strings is not case sensitive, so the two strings “Power BI” and “POWER BI” are 
considered equal.

Variant
The Variant data type is used for expressions that might return different data types, depending on the 
conditions. For example, the following statement can return either an integer or a string, so it returns a 
variant type:

IF ( [measure] > 0, 1, "N/A" )

The Variant data type cannot be used as a data type for a column in a regular table. A DAX measure, 
and in general, a DAX expression can be Variant.
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Binary
The Binary data type is used in the data model to store images or other nonstructured types of 
information. It is not available in DAX. It was mainly used by Power View, but it might not be available 
in other tools such as Power BI.

DAX operators
Now that you have seen the importance of operators in determining the type of an expression, see 
Table 2-2, which provides a list of the operators available in DAX.

TABLE 2-2 Operators

Operator Type Symbol Use Example

Parenthesis ( ) Precedence order and grouping 
of arguments

(5 + 2) * 3

Arithmetic +
−
*
/

Addition
Subtraction/negation
Multiplication
Division

4 + 2
5 − 3
4 * 2
4 / 2

Comparison =
<>
>
>=
<
<=

Equal to
Not equal to
Greater than
Greater than or equal to
Less than
Less than or equal to

[CountryRegion] = "USA"
[CountryRegion] <> "USA"
[Quantity] > 0
[Quantity] >= 100
[Quantity] < 0
[Quantity] <= 100

Text concatenation & Concatenation of strings "Value is" & [Amount]

Logical &&

|| 

IN
NOT

AND condition between two 
Boolean expressions
OR condition between two Bool-
ean expressions
Inclusion of an element in a list
Boolean negation

[CountryRegion] = "USA" && [Quantity]>0

[CountryRegion] = "USA" || [Quantity] > 0

[CountryRegion] IN {"USA", "Canada"}
NOT [Quantity] > 0

Moreover, the logical operators are also available as DAX functions, with a syntax similar to Excel’s. 
For example, we can write expressions like these:

AND ( [CountryRegion] = "USA", [Quantity] > 0 )
OR ( [CountryRegion] = "USA", [Quantity] > 0 )

These examples are equivalent, respectively, to the following:

[CountryRegion] = "USA" && [Quantity] > 0 
[CountryRegion] = "USA" || [Quantity] > 0

Using functions instead of operators for Boolean logic becomes helpful when writing complex 
conditions. In fact, when it comes to formatting large sections of code, functions are much easier to 
format and to read than operators are. However, a major drawback of functions is that we can pass in 
only two parameters at a time. Therefore, we must nest functions if we have more than two conditions 
to evaluate.
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Table constructors
In DAX we can defi ne anonymous tables directly in the code. If the table has a single column, the syntax 
requires only a list of values—one for each row—delimited by curly braces. We can delimit multiple 
rows by parentheses, which are optional if the table is made of a single column. The two following 
defi nitions, for example, are equivalent:

{ "Red", "Blue", "White" }
{ ( "Red" ), ( "Blue" ), ( "White" ) }

If the table has multiple columns, parentheses are mandatory. Every column should have the same 
data type throughout all its rows; otherwise, DAX will automatically convert the column to a data type 
that can accommodate all the data types provided in different rows for the same column.

{
    ( "A", 10, 1.5, DATE ( 2017, 1, 1 ), CURRENCY ( 199.99 ), TRUE ),
    ( "B", 20, 2.5, DATE ( 2017, 1, 2 ), CURRENCY ( 249.99 ), FALSE ),
    ( "C", 30, 3.5, DATE ( 2017, 1, 3 ), CURRENCY ( 299.99 ), FALSE )
}

The table constructor is commonly used with the IN operator. For example, the following are 
possible, valid syntaxes in a DAX predicate:

'Product'[Color] IN { "Red", "Blue", "White" }
 
( 'Date'[Year], 'Date'[MonthNumber] ) IN { ( 2017, 12 ), ( 2018, 1 ) }

This second example shows the syntax required to compare a set of columns (tuple) using the IN 
operator. Such syntax cannot be used with a comparison operator. In other words, the following syntax 
is not valid:

( 'Date'[Year], 'Date'[MonthNumber] ) = ( 2007, 12 )

However, we can rewrite it using the IN operator with a table constructor that has a single row, as in 
the following example:

( 'Date'[Year], 'Date'[MonthNumber] ) IN { ( 2007, 12 ) }

Conditional statements
In DAX we can write a conditional expression using the IF function. For example, we can write an 
expression returning MULTI or SINGLE depending on the quantity value being greater than one or not, 
respectively.

IF (
    Sales[Quantity] > 1,
    "MULTI",
    "SINGLE" 
)
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The IF function has three parameters, but only the fi rst two are mandatory. The third is optional, and 
it defaults to BLANK. Consider the following code:

IF (
    Sales[Quantity] > 1,
    Sales[Quantity] 
)

It corresponds to the following explicit version:

IF (
    Sales[Quantity] > 1,
    Sales[Quantity],
    BLANK ()
)

Understanding calculated columns and measures

Now that you know the basics of DAX syntax, you need to learn one of the most important concepts in 
DAX: the difference between calculated columns and measures. Even though calculated columns and 
measures might appear similar at fi rst sight because you can make certain calculations using either, 
they are, in reality, different. Understanding the difference is key to unlocking the power of DAX.

Calculated columns
Depending on the tool you are using, you can create a calculated column in different ways. Indeed, the 
concept remains the same: a calculated column is a new column added to your model, but instead of 
being loaded from a data source, it is created by resorting to a DAX formula.

A calculated column is just like any other column in a table, and we can use it in rows, columns, 
fi lters, or values of a matrix or any other report. We can also use a calculated column to defi ne a rela-
tionship, if needed. The DAX expression defi ned for a calculated column operates in the context of the 
current row of the table that the calculated column belongs to. Any reference to a column returns the 
value of that column for the current row. We cannot directly access the values of other rows.

If you are using the default Import Mode of Tabular and are not using DirectQuery, one important 
concept to remember about calculated columns is that these columns are computed during database 
processing and then stored in the model. This concept might seem strange if you are accustomed to 
SQL-computed columns (not persisted), which are evaluated at query time and do not use memory. 
In Tabular, however, all calculated columns occupy space in memory and are computed during table 
processing.

This behavior is helpful whenever we create complex calculated columns. The time required to 
compute complex calculated columns is always process time and not query time, resulting in a better 
user experience. Nevertheless, be mindful that a calculated column uses precious RAM. For example, 
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if we have a complex formula for a calculated column, we might be tempted to separate the steps of 
computation into different intermediate columns. Although this technique is useful during project 
development, it is a bad habit in production because each intermediate calculation is stored in RAM 
and wastes valuable space.

If a model is based on DirectQuery instead, the behavior is hugely different. In DirectQuery 
mode, calculated columns are computed on the fl y when the Tabular engine queries the data source. 
This might result in heavy queries executed by the data source, therefore producing slow models.

  

Computing the duration of an order

Imagine we have a Sales table containing both the order and the delivery dates. Using these 
two columns, we can compute the number of days involved in delivering the order. Because 
dates are stored as number of days after 12/30/1899, a simple subtraction computes the 
difference in days between two dates:

Sales[DaysToDeliver] = Sales[Delivery Date] - Sales[Order Date]

Nevertheless, because the two columns used for subtraction are dates, the result also 
is a date. To produce a numeric result, convert the result to an integer this way:

Sales[DaysToDeliver] = INT ( Sales[Delivery Date] - Sales[Order Date] )

The result is shown in Figure 2-2.

FIGURE 2-2 By subtracting two dates and converting the result to an integer, DAX computes the number of 
days between the two dates.

Measures
Calculated columns are useful, but you can defi ne calculations in a DAX model in another way. 
Whenever you do not want to compute values for each row but rather want to aggregate values 
from many rows in a table, you will fi nd these calculations useful; they are called measures.



 CHAPTER 2 Introducing DAX 27

For example, you can defi ne a few calculated columns in the Sales table to compute the gross 
margin amount:

Sales[SalesAmount] = Sales[Quantity] * Sales[Net Price]
Sales[TotalCost] = Sales[Quantity] * Sales[Unit Cost]
Sales[GrossMargin] = Sales[SalesAmount] – Sales[TotalCost]

What happens if you want to show the gross margin as a percentage of the sales amount? You could 
create a calculated column with the following formula:

Sales[GrossMarginPct] = Sales[GrossMargin] / Sales[SalesAmount]

This formula computes the correct value at the row level—as you can see in Figure 2-3—but at the 
grand total level the result is clearly wrong.

FIGURE 2-3 The GrossMarginPct column shows a correct value on each row, but the grand total is incorrect.

The value shown at the grand total level is the sum of the individual percentages computed row by 
row within the calculated column. When we compute the aggregate value of a percentage, we cannot 
rely on calculated columns. Instead, we need to compute the percentage based on the sum of indi-
vidual columns. We must compute the aggregated value as the sum of gross margin divided by the 
sum of sales amount. In this case, we need to compute the ratio on the aggregates; you cannot use an 
aggregation of calculated columns. In other words, we compute the ratio of the sums, not the sum of 
the ratios.

It would be equally wrong to simply change the aggregation of the GrossMarginPct column to an 
average and rely on the result because doing so would provide an incorrect evaluation of the percent-
age, not considering the differences between amounts. The result of this averaged value is visible in 
Figure 2-4, and you can easily check that (330.31 / 732.23) is not equal to the value displayed, 45.96%; 
it should be 45.11% instead.
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FIGURE 2-4 Changing the aggregation method to AVERAGE does not provide the correct result.

The correct implementation for GrossMarginPct is with a measure:

GrossMarginPct := SUM ( Sales[GrossMargin] ) / SUM (Sales[SalesAmount] )

As we have already stated, the correct result cannot be achieved with a calculated column. If you 
need to operate on aggregated values instead of operating on a row-by-row basis, you must create 
measures. You might have noticed that we used := to defi ne a measure instead of the equal sign (=). 
This is a standard we used throughout the book to make it easier to differentiate between measures 
and calculated columns in code.

After you defi ne GrossMarginPct as a measure, the result is correct, as you can see in Figure 2-5.

FIGURE 2-5 GrossMarginPct defi ned as a measure shows the correct grand total.



 CHAPTER 2 Introducing DAX 29

Measures and calculated columns both use DAX expressions; the difference is the context of 
evaluation. A measure is evaluated in the context of a visual element or in the context of a DAX query. 
However, a calculated column is computed at the row level of the table it belongs to. The context of the 
visual element (later in the book, you will learn that this is a fi lter context) depends on user selections 
in the report or on the format of the DAX query. Therefore, when using SUM(Sales[SalesAmount]) in a 
measure, we mean the sum of all the rows that are aggregated under a visualization. However, when 
we use Sales[SalesAmount] in a calculated column, we mean the value of the SalesAmount column in 
the current row.

A measure needs to be defi ned in a table. This is one of the requirements of the DAX language. 
However, the measure does not really belong to the table. Indeed, we can move a measure from one 
table to another table without losing its functionality.

  

Differences between calculated columns and measures

Although they look similar, there is a big difference between calculated columns and 
measures. The value of a calculated column is computed during data refresh, and it uses 
the current row as a context. The result does not depend on user activity on the report. 
A measure operates on aggregations of data defi ned by the current context. In a matrix 
or in a pivot table, for example, source tables are fi ltered according to the coordinates of 
cells, and data is aggregated and calculated using these fi lters. In other words, a measure 
always operates on aggregations of data under the evaluation context. The evaluation 
context is explained further in Chapter 4, “Understanding evaluation contexts.”

Choosing between calculated columns and measures
Now that you have seen the difference between calculated columns and measures, it is useful to 
discuss when to use one over the other. Sometimes either is an option, but in most situations, the 
computation requirements determine the choice.

As a developer, you must defi ne a calculated column whenever you want to do the following:

 ■ Place the calculated results in a slicer or see results in rows or columns in a matrix or in a pivot 
table (as opposed to the Values area), or use the calculated column as a fi lter condition in a DAX 
query.

 ■ Defi ne an expression that is strictly bound to the current row. For example, Price * Quantity 
cannot work on an average or on a sum of those two columns.

 ■ Categorize text or numbers. For example, a range of values for a measure, a range of ages of 
customers, such as 0–18, 18–25, and so on. These categories are often used as fi lters or to slice 
and dice values.
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However, it is mandatory to defi ne a measure whenever one wants to display calculation values that 
refl ect user selections, and the values need to be presented as aggregates in a report, for example:

 ■ To calculate the profi t percentage of a report selection

 ■ To calculate ratios of a product compared to all products but keep the fi lter both by year and by 
region

We can express many calculations both with calculated columns and with measures, although we 
need to use different DAX expressions for each. For example, one can defi ne the GrossMargin as a 
calculated column:

Sales[GrossMargin] = Sales[SalesAmount] - Sales[TotalProductCost]

However, it can also be defi ned as a measure:

GrossMargin := SUM ( Sales[SalesAmount] ) - SUM ( Sales[TotalProductCost] )

We suggest you use a measure in this case because, being evaluated at query time, it does not con-
sume memory and disk space. As a rule, whenever you can express a calculation both ways, measures 
are the preferred way to go. You should limit the use of calculated columns to the few cases where 
they are strictly needed. Users with Excel experience typically prefer calculated columns over measures 
because calculated columns closely resemble the way of performing calculations in Excel. Nevertheless, 
the best way to compute a value in DAX is through a measure.

 

Using measures in calculated columns

It is obvious that a measure can refer to one or more calculated columns. Although less 
intuitive, the opposite is also true. A calculated column can refer to a measure. This way, the 
calculated column forces the calculation of a measure for the context defi ned by the current 
row. This operation transforms and consolidates the result of a measure into a column, which 
will not be infl uenced by user actions. Obviously, only certain operations can produce mean-
ingful results because a measure usually makes computations that strongly depend on the 
selection made by the user in the visualization. Moreover, whenever you, as the developer, 
use measures in a calculated column, you rely on a feature called context transition, which is 
an advanced calculation technique in DAX. Before you use a measure in a calculated column, 
we strongly suggest you read and understand Chapter 4, which explains in detail evaluation 
contexts and context transitions.

 

Introducing variables

When writing a DAX expression, one can avoid repeating the same expression and greatly enhance the 
code readability by using variables. For example, look at the following expression:

VAR TotalSales = SUM ( Sales[SalesAmount] )
VAR TotalCosts = SUM ( Sales[TotalProductCost] )
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VAR GrossMargin = TotalSales - TotalCosts
RETURN
    GrossMargin / TotalSales

Variables are defi ned with the VAR keyword. After you defi ne a variable, you need to provide a 
RETURN section that defi nes the result value of the expression. One can defi ne many variables, and the 
variables are local to the expression in which they are defi ned.

A variable defi ned in an expression cannot be used outside the expression itself. There is no such 
thing as a global variable defi nition. This means that you cannot defi ne variables used through the 
whole DAX code of the model.

Variables are computed using lazy evaluation. This means that if one defi nes a variable that, for any 
reason, is not used in the code, the variable itself will never be evaluated. If it needs to be computed, 
this happens only once. Later uses of the variable will read the value computed previously. Thus, vari-
ables are also useful as an optimization technique when used in a complex expression multiple times.

Variables are an important tool in DAX. As you will learn in Chapter 4, variables are extremely useful 
because they use the defi nition evaluation context instead of the context where the variable is used. 
In Chapter 6, “Variables,” we will fully cover variables and how to use them. We will also use variables 
extensively throughout the book.

Handling errors in DAX expressions

Now that you have seen some of the basics of the syntax, it is time to learn how to handle invalid cal-
culations gracefully. A DAX expression might contain invalid calculations because the data it references 
is not valid for the formula. For example, the formula might contain a division by zero or reference a 
column value that is not a number while being used in an arithmetic operation such as multiplication. 
It is good to learn how these errors are handled by default and how to intercept these conditions for 
special handling.

Before discussing how to handle errors, though, we describe the different kinds of errors that might 
appear during a DAX formula evaluation. They are

 ■ Conversion errors

 ■ Arithmetic operations errors

 ■ Empty or missing values

Conversion errors
The fi rst kind of error is the conversion error. As we showed previously in this chapter, DAX auto-
matically converts values between strings and numbers whenever the operator requires it. All these 
examples are valid DAX expressions:

"10" + 32 = 42
"10" & 32 = "1032"
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10 & 32 = "1032"
DATE (2010,3,25) = 3/25/2010
DATE (2010,3,25) + 14 = 4/8/2010
DATE (2010,3,25) & 14 = "3/25/201014"

These formulas are always correct because they operate with constant values. However, what about 
the following formula if VatCode is a string?

Sales[VatCode] + 100

Because the fi rst operand of this sum is a column that is of Text data type, you as a developer must be 
confi dent that DAX can convert all the values in that column into numbers. If DAX fails in converting some 
of the content to suit the operator needs, a conversion error will occur. Here are some typical situations:

"1 + 1" + 0 = Cannot convert value '1 + 1' of type Text to type Number
DATEVALUE ("25/14/2010") = Type mismatch

If you want to avoid these errors, it is important to add error detection logic in DAX expressions 
to intercept error conditions and return a result that makes sense. One can obtain the same result by 
intercepting the error after it has happened or by checking the operands for the error situation before-
hand. Nevertheless, checking for the error situation proactively is better than letting the error happen 
and then catching it.

Arithmetic operations errors
The second category of errors is arithmetic operations, such as the division by zero or the square root 
of a negative number. These are not conversion-related errors: DAX raises them whenever we try to call 
a function or use an operator with invalid values.

The division by zero requires special handling because its behavior is not intuitive (except, maybe, 
for mathematicians). When one divides a number by zero, DAX returns the special value Infi nity. In 
the special cases of 0 divided by 0 or Infi nity divided by Infi nity, DAX returns the special NaN (not a 
number) value.

Because this is unusual behavior, it is summarized in Table 2-3.

TABLE 2-3 Special Result Values for Division by Zero

Expression Result

10 / 0 Infi nity

7 / 0 Infi nity

0 / 0 NaN

(10 / 0) / (7 / 0) NaN

It is important to note that Infi nity and NaN are not errors but special values in DAX. In fact, if one 
divides a number by Infi nity, the expression does not generate an error. Instead, it returns 0:

9954 / ( 7 / 0 ) = 0
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Apart from this special situation, DAX can return arithmetic errors when calling a function with an 
incorrect parameter, such as the square root of a negative number:

SQRT ( -1 ) = An argument of function 'SQRT' has the wrong data type or the result is too 
large or too small

If DAX detects errors like this, it blocks any further computation of the expression and raises an 
error. One can use the ISERROR function to check if an expression leads to an error. We show this 
scenario later in this chapter.

Keep in mind that special values like NaN are displayed in the user interface of several tools such as 
Power BI as regular values. They can, however, be treated as errors when shown by other client tools 
such as an Excel pivot table. Finally, these special values are detected as errors by the error detection 
functions.

Empty or missing values
The third category that we examine is not a specifi c error condition but rather the presence of empty 
values. Empty values might result in unexpected results or calculation errors when combined with other 
elements in a calculation.

DAX handles missing values, blank values, or empty cells in the same way, using the value BLANK. 
BLANK is not a real value but instead is a special way to identify these conditions. We can obtain the 
value BLANK in a DAX expression by calling the BLANK function, which is different from an empty 
string. For example, the following expression always returns a blank value, which can be displayed as 
either an empty string or as “(blank)” in different client tools:

= BLANK ()

On its own, this expression is useless, but the BLANK function itself becomes useful every time there 
is the need to return an empty value. For example, one might want to display an empty result instead 
of 0. The following expression calculates the total discount for a sale transaction, leaving the blank 
value if the discount is 0:

=IF ( 
    Sales[DiscountPerc] = 0,              -- Check if there is a discount
    BLANK (),                             -- Return a blank if no discount is present
    Sales[DiscountPerc] * Sales[Amount]   -- Compute the discount otherwise
)

BLANK, by itself, is not an error; it is just an empty value. Therefore, an expression containing a 
BLANK might return a value or a blank, depending on the calculation required. For example, the 
following expression returns BLANK whenever Sales[Amount] is BLANK:

= 10 * Sales[Amount]
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In other words, the result of an arithmetic product is BLANK whenever one or both terms are 
BLANK. This creates a challenge when it is necessary to check for a blank value. Because of the implicit 
conversions, it is impossible to distinguish whether an expression is 0 (or empty string) or BLANK using 
an equal operator. Indeed, the following logical conditions are always true:

BLANK () = 0     -- Always returns TRUE
BLANK () = ""    -- Always returns TRUE

Therefore, if the columns Sales[DiscountPerc] or Sales[Clerk] are blank, the following conditions 
return TRUE even if the test is against 0 and empty string, respectively:

Sales[DiscountPerc] = 0  -- Returns TRUE if DiscountPerc is either BLANK or 0
Sales[Clerk] = ""        -- Returns TRUE if Clerk is either BLANK or ""

In such cases, one can use the ISBLANK function to check whether a value is BLANK or not:

ISBLANK ( Sales[DiscountPerc] )  -- Returns TRUE only if DiscountPerc is BLANK
ISBLANK ( Sales[Clerk] )         -- Returns TRUE only if Clerk is BLANK

The propagation of BLANK in a DAX expression happens in several other arithmetic and logical 
operations, as shown in the following examples:

BLANK () + BLANK () = BLANK ()
10 * BLANK () = BLANK ()
BLANK () / 3 = BLANK ()
BLANK () / BLANK () = BLANK ()

However, the propagation of BLANK in the result of an expression does not happen for all 
formulas. Some calculations do not propagate BLANK. Instead, they return a value depending on 
the other terms of the formula. Examples of these are addition, subtraction, division by BLANK, and 
a logical operation including a BLANK. The following expressions show some of these conditions 
along with their results:

BLANK () − 10 = −10
18 + BLANK () = 18
4 / BLANK () = Infinity
0 / BLANK () = NaN
BLANK () || BLANK () = FALSE
BLANK () && BLANK () = FALSE
( BLANK () = BLANK () ) = TRUE
( BLANK () = TRUE ) = FALSE
( BLANK () = FALSE ) = TRUE
( BLANK () = 0 ) = TRUE
( BLANK () = "" ) = TRUE
ISBLANK ( BLANK() ) = TRUE
FALSE || BLANK () = FALSE
FALSE && BLANK () = FALSE
TRUE || BLANK () = TRUE
TRUE && BLANK () = FALSE
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Empty values in Excel and SQL

Excel has a different way of handling empty values. In Excel, all empty values are consid-
ered 0 whenever they are used in a sum or in a multiplication, but they might return an 
error if they are part of a division or of a logical expression.

In SQL, null values are propagated in an expression differently from what happens with 
BLANK in DAX. As you can see in the previous examples, the presence of a BLANK in a DAX 
expression does not always result in a BLANK result, whereas the presence of NULL in SQL 
often evaluates to NULL for the entire expression. This difference is relevant whenever you use 
DirectQuery on top of a relational database because some calculations are executed in SQL 
and others are executed in DAX. The different semantics of BLANK in the two engines might 
result in unexpected behaviors.

 Understanding the behavior of empty or missing values in a DAX expression and using BLANK to 
return an empty cell in a calculation are important skills to control the results of a DAX expression. 
One can often use BLANK as a result when detecting incorrect values or other errors, as we demon-
strate in the next section.

Intercepting errors
Now that we have detailed the various kinds of errors that can occur, we still need to show you the 
techniques to intercept errors and correct them or, at least, produce an error message containing 
meaningful information. The presence of errors in a DAX expression frequently depends on the value 
of columns used in the expression itself. Therefore, one might want to control the presence of these 
error conditions and return an error message. The standard technique is to check whether an expres-
sion returns an error and, if so, replace the error with a specifi c message or a default value. There are a 
few DAX functions for this task.

The fi rst of them is the IFERROR function, which is similar to the IF function, but instead of evalu-
ating a Boolean condition, it checks whether an expression returns an error. Two typical uses of the 
 IFERROR function are as follows:

= IFERROR ( Sales[Quantity] * Sales[Price], BLANK () )
= IFERROR ( SQRT ( Test[Omega] ), BLANK () )

In the fi rst expression, if either Sales[Quantity] or Sales[Price] is a string that cannot be converted 
into a number, the returned expression is an empty value. Otherwise, the product of Quantity and Price 
is returned.

In the second expression, the result is an empty cell every time the Test[Omega] column contains a 
negative number.
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Using IFERROR this way corresponds to a more general pattern that requires using ISERROR and IF:

= IF (
    ISERROR ( Sales[Quantity] * Sales[Price] ),
    BLANK (),
    Sales[Quantity] * Sales[Price]
)
 
= IF (
    ISERROR ( SQRT ( Test[Omega] ) ),
    BLANK (),
    SQRT ( Test[Omega] )
)

In these cases, IFERROR is a better option. One can use IFERROR whenever the result is the same 
expression tested for an error; there is no need to duplicate the expression in two places, and the code 
is safer and more readable. However, a developer should use IF when they want to return the result of a 
different expression.

Besides, one can avoid raising the error altogether by testing parameters before using them. For 
example, one can detect whether the argument for SQRT is positive, returning BLANK for negative 
values:

= IF ( 
    Test[Omega] >= 0, 
    SQRT ( Test[Omega] ), 
    BLANK () 
)

Considering that the third argument of an IF statement defaults to BLANK, one can also write the 
same expression more concisely:

= IF ( 
    Test[Omega] >= 0, 
    SQRT ( Test[Omega] ) 
)

A frequent scenario is to test against empty values. ISBLANK detects empty values, returning TRUE if 
its argument is BLANK. This capability is important especially when a value being unavailable does not 
imply that it is 0. The following example calculates the cost of shipping for a sale transaction, using a 
default shipping cost for the product if the transaction itself does not specify a weight:

= IF (
   ISBLANK ( Sales[Weight] ),             -- If the weight is missing
   Sales[DefaultShippingCost],            -- then return the default cost
   Sales[Weight] * Sales[ShippingPrice]   -- otherwise multiply weight by shipping price
)

If we simply multiply product weight by shipping price, we get an empty cost for all the sales trans-
actions without weight data because of the propagation of BLANK in multiplications.
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When using variables, errors must be checked at the time of variable defi nition rather than where 
we use them. In fact, the fi rst formula in the following code returns zero, the second formula always 
throws an error, and the last one produces different results depending on the version of the product 
using DAX (the latest version throws an error also):

IFERROR ( SQRT ( -1 ), 0 )                -- This returns 0
 
VAR WrongValue = SQRT ( -1 )              -- Error happens here, so the result is
RETURN                                    -- always an error
    IFERROR ( WrongValue, 0 )             -- This line is never executed
 
IFERROR (                                 -- Different results depending on versions
    VAR WrongValue = SQRT ( -1 )          -- IFERROR throws an error in 2017 versions
    RETURN                                -- IFERROR returns 0 in versions until 2016
        WrongValue,
    0
)

The error happens when WrongValue is evaluated. Thus, the engine will never execute the IFERROR 
function in the second example, whereas the outcome of the third example depends on product 
versions. If you need to check for errors, take some extra precautions when using variables.  

Avoid using error-handling functions

Although we will cover optimizations later in the book, you need to be aware that error-
handling functions might create severe performance issues in your code. It is not that 
they are slow in and of themselves. The problem is that the DAX engine cannot use 
optimized paths in its code when errors happen. In most cases, checking operands for 
possible errors is more effi cient than using the error-handling engine. For example, 
instead of writing this:

IFERROR (
   SQRT ( Test[Omega] ),
   BLANK ()
)

It is much better to write this:

IF (
   Test[Omega] >= 0,
   SQRT ( Test[Omega] ),
   BLANK ()
)

This second expression does not need to detect the error and is faster than the 
previous expression. This, of course, is a general rule. For a detailed explanation, see 
Chapter 19, “Optimizing DAX.”
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Generating errors
Sometimes, an error is just an error, and the formula should not return a default value in case of an 
error. Indeed, returning a default value would end up producing an actual result that would be 
incorrect. For example, a confi guration table that contains inconsistent data should produce an 
invalid report rather than numbers that are unreliable, and yet it might be considered correct.

Moreover, instead of a generic error, one might want to produce an error message that is more 
meaningful to the users. Such a message would help users fi nd where the problem is.

Consider a scenario that requires the computation of the square root of the absolute temperature 
measured in Kelvin, to approximately adjust the speed of sound in a complex scientifi c calculation. 
Obviously, we do not expect that temperature to be a negative number. If that happens due to a 
problem in the measurement, we need to raise an error and stop the calculation.

Another reason to avoid IFERROR is that it cannot intercept errors happening at a deeper 
level of execution. For example, the following code intercepts any error happening in the 
conversion of the Table[Amount] column considering a blank value in case Amount does 
not contain a number. As discussed previously, this execution is expensive because it is 
evaluated for every row in Table.

SUMX ( 
    Table, 
    IFERROR ( VALUE ( Table[Amount] ), BLANK () )
)

Be mindful that, due to optimizations in the DAX engine, the following code does not 
intercept the same errors intercepted by the preceding example. If Table[Amount] contains 
a string that is not a number in just one row, the entire expression generates an error that 
is not intercepted by IFERROR.

IFERROR ( 
    SUMX ( 
        Table, 
        VALUE ( Table[Amount] )
    ), 
    BLANK () 
)

ISERROR has the same behavior as IFERROR. Be sure to use them carefully and only to 
intercept errors raised directly by the expression evaluated within IFERROR/ISERROR and not 
in nested calculations.
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In that case, this code is dangerous because it hides the problem:

= IFERROR ( 
    SQRT ( Test[Temperature] ),
    0
)

Instead, to protect the calculations, one should write the formula like this:

= IF (
    Test[Temperature] >= 0,
    SQRT ( Test[Temperature] ),
    ERROR ( "The temperature cannot be a negative number. Calculation aborted." )
)

Formatting DAX code

Before we continue explaining the DAX language, we would like to cover an important aspect of DAX—
that is, formatting the code. DAX is a functional language, meaning that no matter how complex it is, a 
DAX expression is like a single function call. The complexity of the code translates into the complexity 
of the expressions that one uses as parameters for the outermost function.

For this reason, it is normal to see expressions that span over 10 lines or more. Seeing a 20-line DAX 
expression is common, so you will become acquainted with it. Nevertheless, as formulas start to grow 
in length and complexity, it is extremely important to format the code to make it human-readable.

There is no “offi cial” standard to format DAX code, yet we believe it is important to describe the 
standard that we use in our code. It is likely not the perfect standard, and you might prefer something 
different. We have no problem with that: fi nd your optimal standard and use it. The only thing you 
need to remember is: format your code and never write everything on a single line; otherwise, you will be 
in trouble sooner than you expect.

To understand why formatting is important, look at a formula that computes a time intelligence 
calculation. This somewhat complex formula is still not the most complex you will write. Here is how the 
expression looks if you do not format it in some way:

IF(CALCULATE(NOT ISEMPTY(Balances), ALLEXCEPT (Balances, BalanceDate)),SUMX (ALL(Balances
[Account]), CALCULATE(SUM (Balances[Balance]),LASTNONBLANK(DATESBETWEEN(BalanceDate[Date],
BLANK(),MAX(BalanceDate[Date])),CALCULATE(COUNTROWS(Balances))))),BLANK())

Trying to understand what this formula computes in its present form is nearly impossible. There is 
no clue which is the outermost function and how DAX evaluates the different parameters to create the 
complete fl ow of execution. We have seen too many examples of formulas written this way by students 
who, at some point, ask for help in understanding why the formula returns incorrect results. Guess 
what? The fi rst thing we do is format the expression; only later do we start working on it.
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The same expression, properly formatted, looks like this:

IF (
    CALCULATE (
        NOT ISEMPTY ( Balances ),
        ALLEXCEPT (
            Balances,
            BalanceDate
        )
    ),
    SUMX (
        ALL ( Balances[Account] ),
        CALCULATE (
            SUM ( Balances[Balance] ),
            LASTNONBLANK (
                DATESBETWEEN (
                    BalanceDate[Date],
                    BLANK (),
                    MAX ( BalanceDate[Date] )
                ),
                CALCULATE (
                    COUNTROWS ( Balances )
                )
            )
        )
    ),
    BLANK ()
)

The code is the same, but this time it is much easier to see the three parameters of IF. Most impor-
tant, it is easier to follow the blocks that arise naturally from indenting lines and how they compose 
the complete fl ow of execution. The code is still hard to read, but now the problem is DAX, not poor 
formatting. A more verbose syntax using variables can help you read the code, but even in this case, 
the formatting is important in providing a correct understanding of the scope of each variable:

IF (
    CALCULATE (
        NOT ISEMPTY ( Balances ),
        ALLEXCEPT (
            Balances,
            BalanceDate
        )
    ),
    SUMX (
        ALL ( Balances[Account] ),
        VAR PreviousDates =
            DATESBETWEEN (
                BalanceDate[Date],
                BLANK (),
                MAX ( BalanceDate[Date] )
            )
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        VAR LastDateWithBalance =
            LASTNONBLANK (
                PreviousDates,
                CALCULATE (
                    COUNTROWS ( Balances )
                )
            )
        RETURN
            CALCULATE (
                SUM ( Balances[Balance] ),
                LastDateWithBalance
            )
    ),
    BLANK ()
)

 

DAXFormatter.com

We created a website dedicated to formatting DAX code. We created this site for ourselves 
because formatting code is a time-consuming operation and we did not want to spend our 
time doing it for every formula we write. After the tool was working, we decided to donate 
it to the public domain so that users can format their own DAX code (by the way, we have 
been able to promote our formatting rules this way).

 

You can fi nd the website at www.daxformatter.com. The user interface is simple: just copy your DAX 
code, click FORMAT, and the page refreshes showing a nicely formatted version of your code, which 
you can then copy and paste in the original window.

This is the set of rules that we use to format DAX:

 ■ Always separate function names such as IF, SUMX, and CALCULATE from any other term using a 
space and always write them in uppercase.

 ■ Write all column references in the form TableName[ColumnName], with no space between the 
table name and the opening square bracket. Always include the table name.

 ■ Write all measure references in the form [MeasureName], without any table name.

 ■ Always use a space following commas and never precede them with a space.

 ■ If the formula fi ts one single line, do not apply any other rule.

 ■ If the formula does not fi t a single line, then

• Place the function name on a line by itself, with the opening parenthesis.

• Keep all parameters on separate lines, indented with four spaces and with the comma at the 
end of the expression except for the last parameter.

• Align the closing parenthesis with the function call so that the closing parenthesis stands on 
its own line.

http://DAXFormatter.com
http://www.daxformatter.com
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These are the basic rules we use. A more detailed list of these rules is available at 
http://sql.bi/daxrules.

If you fi nd a way to express formulas that best fi ts your reading method, use it. The goal of format-
ting is to make the formula easier to read, so use the technique that works best for you. The most 
important point to remember when defi ning your personal set of formatting rules is that you always 
need to be able to see errors as soon as possible. If, in the unformatted code shown previously, DAX 
complained about a missing closing parenthesis, it would be hard to spot where the error is. In the 
formatted formula, it is much easier to see how each closing parenthesis matches the opening 
function call.

  

Help on formatting DAX

Formatting DAX is not an easy task because often we write it using a small font in a text 
box. Depending on the version, Power BI, Excel, and Visual Studio provide different text 
editors for DAX. Nevertheless, a few hints might help in writing DAX code:

 ■ To increase the font size, hold down Ctrl while rotating the wheel button on the 
mouse, making it easier to look at the code.

 ■ To add a new line to the formula, press Shift+Enter.

 ■ If editing in the text box is not for you, copy the code into another editor, such as 
Notepad or DAX Studio, and then copy and paste the formula back into the text box.

When you look at a DAX expression, at fi rst glance it may be hard to understand 
whether it is a calculated column or a measure. Thus, in our books and articles we use an 
equal sign (=) whenever we defi ne a calculated column and the assignment operator (:=) 
to defi ne measures:

CalcCol = SUM ( Sales[SalesAmount] )       -- is a calculated column
Store[CalcCol] = SUM ( Sales[SalesAmount] )  -- is a calculated column in Store table
CalcMsr := SUM ( Sales[SalesAmount]  )     -- is a measure

Finally, when using columns and measures in code, we recommend to always put a table 
name before a column and never before a measure, as we do in every example.

Introducing aggregators and iterators

Almost every data model needs to operate on aggregated data. DAX offers a set of functions that 
aggregate the values of a column in a table and return a single value. We call this group of functions 
aggregation functions. For example, the following measure calculates the sum of all the numbers in the 
SalesAmount column of the Sales table:

Sales := SUM ( Sales[SalesAmount] )

http://sql.bi/daxrules
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SUM aggregates all the rows of the table if it is used in a calculated column. Whenever it is used in 
a measure, it considers only the rows that are being fi ltered by slicers, rows, columns, and fi lter condi-
tions in the report.

There are many aggregation functions (SUM, AVERAGE, MIN, MAX, and STDEV), and their behavior 
changes only in the way they aggregate values: SUM adds values, whereas MIN returns the minimum 
value. Nearly all these functions operate only on numeric values or on dates. Only MIN and MAX can 
operate on text values also. Moreover, DAX never considers empty cells when it performs the aggrega-
tion, and this behavior is different from their counterpart in Excel (more on this later in this chapter).

 

Note MIN and MAX offer another behavior: if used with two parameters, they return 
the minimum or maximum of the two parameters. Thus, MIN (1, 2) returns 1 and MAX (1, 2) 
returns 2. This functionality is useful when one needs to compute the minimum or maxi-
mum of complex expressions because it saves having to write the same expression multiple 
times in IF statements.

All the aggregation functions we have described so far work on columns. Therefore, they aggregate 
values from a single column only. Some aggregation functions can aggregate an expression instead of 
a single column. Because of the way they work, they are known as iterators. This set of functions is use-
ful, especially when you need to make calculations using columns of different related tables, or when 
you need to reduce the number of calculated columns.

Iterators always accept at least two parameters: the fi rst is a table that they scan; the second is typi-
cally an expression that is evaluated for each row of the table. After they have completed scanning the 
table and evaluating the expression row by row, iterators aggregate the partial results according to 
their semantics.

For example, if we compute the number of days needed to deliver an order in a calculated column 
called DaysToDeliver and build a report on top of that, we obtain the report shown in Figure 2-6. Note 
that the grand total shows the sum of all the days, which is not useful for this metric:

Sales[DaysToDeliver] = INT ( Sales[Delivery Date] - Sales[Order Date] )

FIGURE 2-6 The grand total is shown as a sum, when you might want an average instead.
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A grand total that we can actually use requires a measure called AvgDelivery showing the delivery 
time for each order and the average of all the durations at the grand total level:

AvgDelivery := AVERAGE ( Sales[DaysToDeliver] )

The result of this new measure is visible in the report shown in Figure 2-7.

FIGURE 2-7 The measure aggregating by average shows the average delivery days at the grand total level.

The measure computes the average value by averaging a calculated column. One could remove the 
calculated column, thus saving space in the model, by leveraging an iterator. Indeed, although it is true 
that AVERAGE cannot average an expression, its counterpart AVERAGEX can iterate the Sales table and 
compute the delivery days row by row, averaging the results at the end. This code accomplishes the 
same result as the previous defi nition:

AvgDelivery := 
AVERAGEX ( 
    Sales, 
    INT ( Sales[Delivery Date] - Sales[Order Date] ) 
)

The biggest advantage of this last expression is that it does not rely on the presence of a calculated 
column. Thus, we can build the entire report without creating expensive calculated columns.

Most iterators have the same name as their noniterative counterpart. For example, SUM has a cor-
responding SUMX, and MIN has a corresponding MINX. Nevertheless, keep in mind that some iterators 
do not correspond to any aggregator. Later in this book, you will learn about FILTER, ADDCOLUMNS, 
GENERATE, and other functions that are iterators even if they do not aggregate their results.

When you fi rst learn DAX, you might think that iterators are inherently slow. The concept of per-
forming calculations row by row looks like a CPU-intensive operation. Actually, iterators are fast, and no 
performance penalty is caused by using iterators instead of standard aggregators. Aggregators are just 
a syntax-sugared version of iterators.

Indeed, the basic aggregation functions are a shortened version of the corresponding X-suffi xed 
function. For example, consider the following expression:

SUM ( Sales[Quantity] )
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It is internally translated into this corresponding version of the same code:

SUMX ( Sales, Sales[Quantity] )

The only advantage in using SUM is a shorter syntax. However, there are no differences in perfor-
mance between SUM and SUMX aggregating a single column. They are in all respects the same function.

We will cover more details about this behavior in Chapter 4. There we introduce the concept of 
evaluation contexts to describe properly how iterators work.

Using common DAX functions

Now that you have seen the fundamentals of DAX and how to handle error conditions, what follows is a 
brief tour through the most commonly used functions and expressions of DAX.

Aggregation functions
In the previous sections, we described the basic aggregators like SUM, AVERAGE, MIN, and MAX. You 
learned that SUM and AVERAGE, for example, work only on numeric columns.

DAX also offers an alternative syntax for aggregation functions inherited from Excel, which adds the 
suffi x A to the name of the function, just to get the same name and behavior as Excel. However, these 
functions are useful only for columns containing Boolean values because TRUE is evaluated as 1 and 
FALSE as 0. Text columns are always considered 0. Therefore, no matter what is in the content of a col-
umn, if one uses MAXA on a text column, the result will always be a 0. Moreover, DAX never considers 
empty cells when it performs the aggregation. Although these functions can be used on nonnumeric 
columns without retuning an error, their results are not useful because there is no automatic conver-
sion to numbers for text columns. These functions are named AVERAGEA, COUNTA, MINA, and MAXA. 
We suggest that you do not use these functions, whose behavior will be kept unchanged in the future 
because of compatibility with existing code that might rely on current behavior.

 

Note Despite the names being identical to statistical functions, they are used differently in 
DAX and Excel because in DAX a column has a data type, and its data type determines the 
behavior of aggregation functions. Excel handles a different data type for each cell, whereas 
DAX handles a single data type for the entire column. DAX deals with data in tabular form 
with well-defi ned types for each column, whereas Excel formulas work on heterogeneous 
cell values without well-defi ned types. If a column in Power BI has a numeric data type, all 
the values can be only numbers or empty cells. If a column is of a text type, it is always 0 
for these functions (except for COUNTA), even if the text can be converted into a number, 
whereas in Excel the value is considered a number on a cell-by-cell basis. For these reasons, 
these functions are not very useful for Text columns. Only MIN and MAX also support text 
values in DAX.
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The functions you learned earlier are useful to perform the aggregation of values. Sometimes, you 
might not be interested in aggregating values but only in counting them. DAX offers a set of functions 
that are useful to count rows or values:

 ■ COUNT operates on any data type, apart from Boolean.

 ■ COUNTA operates on any type of column.

 ■ COUNTBLANK returns the number of empty cells (blanks or empty strings) in a column.

 ■ COUNTROWS returns the number of rows in a table.

 ■ DISTINCTCOUNT returns the number of distinct values of a column, blank value included if 
present.

 ■ DISTINCTCOUNTNOBLANK returns the number of distinct values of a column, no blank value 
included.

COUNT and COUNTA are nearly identical functions in DAX. They return the number of values of the 
column that are not empty, regardless of their data type. They are inherited from Excel, where COUNTA 
accepts any data type including strings, whereas COUNT accepts only numeric columns. If we want to 
count all the values in a column that contain an empty value, you can use the COUNTBLANK function. 
Both blanks and empty values are considered empty values by COUNTBLANK. Finally, if we want to 
count the number of rows of a table, you can use the COUNTROWS function. Beware that COUNT-
ROWS requires a table as a parameter, not a column.

The last two functions, DISTINCTCOUNT and DISTINCTCOUNTNOBLANK, are useful because they 
do exactly what their names suggest: count the distinct values of a column, which it takes as its only 
parameter. DISTINCTCOUNT counts the BLANK value as one of the possible values, whereas DISTINCT-
COUNTNOBLANK ignores the BLANK value.

 

Note DISTINCTCOUNT is a function introduced in the 2012 version of DAX. The earlier 
versions of DAX did not include DISTINCTCOUNT; to compute the number of distinct values 
of a column, we had to use COUNTROWS ( DISTINCT ( table[column] ) ). The two patterns 
return the same result although DISTINCTCOUNT is easier to read, requiring only a single 
function call. DISTINCTCOUNTNOBLANK is a function introduced in 2019 and it provides 
the same semantic of a COUNT DISTINCT operation in SQL without having to write a longer 
expression in DAX.

Logical functions
Sometimes we want to build a logical condition in an expression—for example, to implement different 
calculations depending on the value of a column or to intercept an error condition. In these cases, 
we can use one of the logical functions in DAX. The earlier section titled “Handling errors in DAX 
expressions” described the two most important functions of this group: IF and IFERROR. We described 
the IF function in the “Conditional statements” section, earlier in this chapter.
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Logical functions are very simple and do what their names suggest. They are AND, FALSE, IF, 
IFERROR, NOT, TRUE, and OR. For example, if we want to compute the amount as quantity multiplied 
by price only when the Price column contains a numeric value, we can use the following pattern:

Sales[Amount] = IFERROR ( Sales[Quantity] * Sales[Price], BLANK ( ) )

If we did not use IFERROR and if the Price column contained an invalid number, the result for the 
calculated column would be an error because if a single row generates a calculation error, the error 
propagates to the whole column. The use of IFERROR, however, intercepts the error and replaces it with 
a blank value.

Another interesting function in this category is SWITCH, which is useful when we have a column 
containing a low number of distinct values, and we want to get different behaviors depending on its 
value. For example, the column Size in the Product table contains S, M, L, XL, and we might want to 
decode this value in a more explicit column. We can obtain the result by using nested IF calls:

'Product'[SizeDesc] =
IF (
    'Product'[Size] = "S",
    "Small",
    IF (
        'Product'[Size] = "M",
        "Medium",
        IF (
            'Product'[Size] = "L",
            "Large",
            IF (
                'Product'[Size] = "XL",
                "Extra Large",
                "Other"
            )
        )
    )
)

A more convenient way to express the same formula, using SWITCH, is like this:

'Product'[SizeDesc] =
SWITCH (
    'Product'[Size],
    "S", "Small",
    "M", "Medium",
    "L", "Large",
    "XL", "Extra Large",
    "Other"
)

The code in this latter expression is more readable, though not faster, because internally DAX 
translates SWITCH statements into a set of nested IF functions.
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Note SWITCH is often used to check the value of a parameter and defi ne the result of a 
measure. For example, one might create a parameter table containing YTD, MTD, QTD as 
three rows and let the user choose from the three available which aggregation to use in a 
measure. This was a common scenario before 2019. Now it is no longer needed thanks to 
the introduction of calculation groups, covered in Chapter 9, “Calculation groups.” Calcula-
tion groups are the preferred way of computing values that the user can parameterize.

 

Tip Here is an interesting way to use the SWITCH function to check for multiple condi-
tions in the same expression. Because SWITCH is converted into a set of nested IF functions, 
where the fi rst one that matches wins, you can test multiple conditions using this pattern:

SWITCH (
   TRUE (),
   Product[Size] = "XL" && Product[Color] = "Red", "Red and XL",
   Product[Size] = "XL" && Product[Color] = "Blue", "Blue and XL",
   Product[Size] = "L" && Product[Color] = "Green", "Green and L"
)

Using TRUE as the fi rst parameter means, “Return the fi rst result where the condition 
evaluates to TRUE.”

 

Information functions
Whenever there is the need to analyze the type of an expression, you can use one of the information 
functions. All these functions return a Boolean value and can be used in any logical expression. They 
are ISBLANK, ISERROR, ISLOGICAL, ISNONTEXT, ISNUMBER, and ISTEXT.

It is important to note that when a column is passed as a parameter instead of an expression, the 
functions ISNUMBER, ISTEXT, and ISNONTEXT always return TRUE or FALSE depending on the data 
type of the column and on the empty condition of each cell. This makes these functions nearly useless 
in DAX; they have been inherited from Excel in the fi rst DAX version.

You might be wondering whether you can use ISNUMBER with a text column just to check whether 
a conversion to a number is possible. Unfortunately, this approach is not possible. If you want to test 
whether a text value is convertible to a number, you must try the conversion and handle the error if it 
fails. For example, to test whether the column Price (which is of type string) contains a valid number, 
one must write

Sales[IsPriceCorrect] = NOT ISERROR ( VALUE ( Sales[Price] ) )

DAX tries to convert from a string value to a number. If it succeeds, it returns TRUE (because 
ISERROR returns FALSE); otherwise, it returns FALSE (because ISERROR returns TRUE). For example, 
the conversion fails if some of the rows have an “N/A” string value for price.
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However, if we try to use ISNUMBER, as in the following expression, we always receive FALSE as a 
result:

Sales[IsPriceCorrect] = ISNUMBER ( Sales[Price] )

In this case, ISNUMBER always returns FALSE because, based on the defi nition in the model, the 
Price column is not a number but a string, regardless of the content of each row.

Mathematical functions
The set of mathematical functions available in DAX is similar to the set available in Excel, with the same 
syntax and behavior. The mathematical functions of common use are ABS, EXP, FACT, LN, LOG, LOG10, 
MOD, PI, POWER, QUOTIENT, SIGN, and SQRT. Random functions are RAND and RANDBETWEEN. By 
using EVEN and ODD, you can test numbers. GCD and LCM are useful to compute the greatest com-
mon denominator and least common multiple of two numbers. QUOTIENT returns the integer division 
of two numbers.

Finally, several rounding functions deserve an example; in fact, we might use several approaches to 
get the same result. Consider these calculated columns, along with their results in Figure 2-8:

FLOOR = FLOOR ( Tests[Value], 0.01 )
TRUNC = TRUNC ( Tests[Value], 2 )
ROUNDDOWN = ROUNDDOWN ( Tests[Value], 2 )
MROUND = MROUND ( Tests[Value], 0.01 )
ROUND = ROUND ( Tests[Value], 2 )
CEILING = CEILING ( Tests[Value], 0.01 )
ISO.CEILING = ISO.CEILING ( Tests[Value], 0.01 )
ROUNDUP = ROUNDUP ( Tests[Value], 2 )
INT = INT ( Tests[Value] )
FIXED = FIXED ( Tests[Value], 2, TRUE )

FIGURE 2-8 This summary shows the results of using different rounding functions.

FLOOR, TRUNC, and ROUNDDOWN are similar except in the way we can specify the number of 
digits to round. In the opposite direction, CEILING and ROUNDUP are similar in their results. You can 
see a few differences in the way the rounding is done between MROUND and ROUND function.
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Trigonometric functions
DAX offers a rich set of trigonometric functions that are useful for certain calculations: COS, COSH, 
COT, COTH, SIN, SINH, TAN, and TANH. Prefi xing them with A computes the arc version (arcsine, 
arccosine, and so on). We do not go into the details of these functions because their use is 
straightforward.

DEGREES and RADIANS perform conversion to degrees and radians, respectively, and SQRTPI 
computes the square root of its parameter after multiplying it by pi.

Text functions
Most of the text functions available in DAX are similar to those available in Excel, with only a few 
exceptions. The text functions are CONCATENATE, CONCATENATEX, EXACT, FIND, FIXED, FORMAT, 
LEFT, LEN, LOWER, MID, REPLACE, REPT, RIGHT, SEARCH, SUBSTITUTE, TRIM, UPPER, and VALUE. These 
functions are useful for manipulating text and extracting data from strings that contain multiple values. 
For example, Figure 2-9 shows an example of the extraction of fi rst and last names from a string that 
contains these values separated by commas, with the title in the middle that we want to remove.

FIGURE 2-9 This example shows fi rst and last names extracted using text functions.

To achieve this result, you start calculating the position of the two commas. Then we use these 
numbers to extract the right part of the text. The SimpleConversion column implements a formula that 
might return inaccurate values if there are fewer than two commas in the string, and it raises an error 
if there are no commas at all. The FirstLastName column implements a more complex expression that 
does not fail in case of missing commas:

People[Comma1] = IFERROR ( FIND ( ",", People[Name] ), BLANK ( ) )
People[Comma2] = IFERROR ( FIND ( " ,", People[Name], People[Comma1] + 1 ), BLANK ( ) )
People[SimpleConversion] =
MID ( People[Name], People[Comma2] + 1, LEN ( People[Name] ) )
    & " "
    & LEFT ( People[Name], People[Comma1] - 1 )
People[FirstLastName] =
TRIM (
    MID (
        People[Name],
        IF ( ISNUMBER ( People[Comma2] ), People[Comma2], People[Comma1] ) + 1,
        LEN ( People[Name] )
    )
)
    & IF (
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        ISNUMBER ( People[Comma1] ),
        " " & LEFT ( People[Name], People[Comma1] - 1 ),
        ""
    )

As you can see, the FirstLastName column is defi ned by a long DAX expression, but you must use it 
to avoid possible errors that would propagate to the whole column if even a single value generates an 
error.

Conversion functions
You learned previously that DAX performs automatic conversions of data types to adjust them to 
operator needs. Although the conversion happens automatically, a set of functions can still perform 
explicit data type conversions.

CURRENCY can transform an expression into a Currency type, whereas INT transforms an expres-
sion into an Integer. DATE and TIME take the date and time parts as parameters and return a correct 
DateTime. VALUE transforms a string into a numeric format, whereas FORMAT gets a numeric value as 
its fi rst parameter and a string format as its second parameter, and it can transform numeric values into 
strings. FORMAT is commonly used with DateTime. For example, the following expression returns “2019 
Jan 12”:

= FORMAT ( DATE ( 2019, 01, 12 ), "yyyy mmm dd" )

The opposite operation, that is, converting strings into DateTime values, is performed using the 
DATEVALUE function.

 

DATEVALUE with dates in different format

DATEVALUE displays a special behavior regarding dates in different formats. In the European 
standard, dates are written with the format “dd/mm/yy”, whereas Americans prefer to use 
“mm/dd/yy”. For example, the 28th of February has different string representations in the 
two cultures. If you provide to DATEVALUE a date that cannot be converted using the default 
regional setting, instead of immediately raising an error, it tries a second conversion switch-
ing months and days. DATEVALUE also supports the unambiguous format “yyyy-mm-dd”. 
As an example, the following three expressions evaluate to February 28, no matter which 
regional settings you have:

DATEVALUE ( "28/02/2018" )     -- This is February 28 in European format
DATEVALUE ( "02/28/2018" )     -- This is February 28 in American format
DATEVALUE ( "2018-02-28" )     -- This is February 28 (format is not ambiguous)

Sometimes, DATEVALUE does not raise errors when you would expect them. However, 
this is the behavior of the function by design.
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Date and time functions
In almost every type of data analysis, handling time and dates is an important part of the job. Many 
DAX functions operate on date and time. Some of them correspond to similar functions in Excel and 
make simple transformations to and from a DateTime data type. The date and time functions are DATE, 
DATEVALUE, DAY, EDATE, EOMONTH, HOUR, MINUTE, MONTH, NOW, SECOND, TIME, TIMEVALUE, 
TODAY, WEEKDAY, WEEKNUM, YEAR, and YEARFRAC.

These functions are useful to compute values on top of dates, but they are not used to perform 
typical time intelligence calculations such as comparing aggregated values year over year or calculat-
ing the year-to-date value of a measure. To perform time intelligence calculations, you use another 
set of functions called time intelligence functions, which we describe in Chapter 8, “Time intelligence 
calculations.”

As we mentioned earlier in this chapter, a DateTime data type internally uses a fl oating-point 
number wherein the integer part corresponds to the number of days after December 30, 1899, and the 
decimal part indicates the fraction of the day in time. Hours, minutes, and seconds are converted into 
decimal fractions of the day. Thus, adding an integer number to a DateTime value increments the value 
by a corresponding number of days. However, you will probably fi nd it more convenient to use the 
conversion functions to extract the day, month, and year from a date. The following expressions used 
in Figure 2-10 show how to extract this information from a table containing a list of dates:

'Date'[Day] = DAY ( Calendar[Date] )
'Date'[Month] = FORMAT ( Calendar[Date], "mmmm" )
'Date'[MonthNumber] = MONTH ( Calendar[Date] )
'Date'[Year] = YEAR ( Calendar[Date] )

FIGURE 2-10 This example shows how to extract date information using date and time functions.
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Relational functions
Two useful functions that you can use to navigate through relationships inside a DAX formula are 
RELATED and RELATEDTABLE.

You already know that a calculated column can reference column values of the table in which it is 
defi ned. Thus, a calculated column defi ned in Sales can reference any column of Sales. However, what if 
one must refer to a column in another table? In general, one cannot use columns in other tables unless 
a relationship is defi ned in the model between the two tables. If the two tables share a relationship, you 
can use the RELATED function to access columns in the related table.

For example, one might want to compute a calculated column in the Sales table that checks whether 
the product that has been sold is in the “Cell phones” category and, in that case, apply a reduction fac-
tor to the standard cost. To compute such a column, one must use a condition that checks the value of 
the product category, which is not in the Sales table. Nevertheless, a chain of relationships starts from 
Sales, reaching Product Category through Product and Product Subcategory, as shown in Figure 2-11.

FIGURE 2-11 Sales has a chained relationship with Product Category.

Regardless of how many steps are necessary to travel from the original table to the related table, 
DAX follows the complete chain of relationships, and it returns the related column value. Thus, the 
formula for the AdjustedCost column can look like this:

Sales[AdjustedCost] =
IF (
    RELATED ( 'Product Category'[Category] ) = "Cell Phone",
    Sales[Unit Cost] * 0.95,
    Sales[Unit Cost]
)

In a one-to-many relationship, RELATED can access the one-side from the many-side because in that 
case, only one row in the related table exists, if any. If no such row exists, RELATED returns BLANK.

If an expression is on the one-side of the relationship and needs to access the many-side, RELATED 
is not helpful because many rows from the other side might be available for a single row. In that case, 
we can use RELATEDTABLE. RELATEDTABLE returns a table containing all the rows related to the current 
row. For example, if we want to know how many products are in each category, we can create a column 
in Product Category with this formula:

'Product Category'[NumOfProducts] = COUNTROWS ( RELATEDTABLE ( Product ) )
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For each product category, this calculated column shows the number of products related, as shown 
in Figure 2-12.

FIGURE 2-12 You can count the number of products by using RELATEDTABLE.

As is the case for RELATED, RELATEDTABLE can follow a chain of relationships always starting from 
the one-side and going toward the many-side. RELATEDTABLE is often used in conjunction with itera-
tors. For example, if we want to compute the sum of quantity multiplied by net price for each category, 
we can write a new calculated column as follows:

'Product Category'[CategorySales] = 
SUMX ( 
    RELATEDTABLE ( Sales ),
    Sales[Quantity] * Sales[Net Price] 
)

The result of this calculated column is shown in Figure 2-13.

FIGURE 2-13 Using RELATEDTABLE and iterators, we can compute the amount of sales per category.

Because the column is calculated, this result is consolidated in the table, and it does not change 
according to the user selection in the report, as it would if it were written in a measure.
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Conclusions

In this chapter, you learned many new functions and started looking at some DAX code. You may not 
remember all the functions right away, but the more you use them, the more familiar they will become.

The more crucial topics you learned in this chapter are

 ■ Calculated columns are columns in a table that are computed with a DAX expression. Calculated 
columns are computed at data refresh time and do not change their value depending on user 
selection.

 ■ Measures are calculations expressed in DAX. Instead of being computed at refresh time like 
calculated columns are, measures are computed at query time. Consequently, the value of a 
measure depends on the user selection in the report.

 ■ Errors might happen at any time in a DAX expression; it is preferable to detect the error condi-
tion beforehand rather than letting the error happen and intercepting it after the fact.

 ■ Aggregators like SUM are useful to aggregate columns, whereas to aggregate expressions, you 
need to use iterators. Iterators work by scanning a table and evaluating an expression row by 
row. At the end of the iteration, iterators aggregate a result according to their semantics.

In the next chapter, you will continue on your learning path by studying the most important table 
functions available in DAX.
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C H A P T E R  3

Using basic table functions

In this chapter, you learn the basic table functions available in DAX. Table functions are regular DAX 
functions that—instead of returning a single value—return a table. Table functions are useful when 
writing both DAX queries and many advanced calculations that require iterating over tables. The 
 chapter includes several examples of such calculations.

The goal of this chapter is to introduce the notion of table functions, but not to provide a detailed 
explanation of all the table functions in DAX. A larger number of table functions is included in 
 Chapter 12, “Working with tables,” and in Chapter 13, “Authoring queries.” Here, we explain the role 
of most common and important table functions in DAX, and how to use them in common scenarios, 
including in scalar DAX expressions.

Introducing table functions

Until now, you have seen that a DAX expression usually returns a single value, such as a string or a num-
ber. An expression that results in a single value is called a scalar expression. When defi ning a measure or 
a calculated column, you always write scalar expressions, as in the following examples:

= 4 + 3
= "DAX is a beautiful language"
= SUM ( Sales[Quantity] )

Indeed, the primary goal of a measure is to produce results that are rendered in a report, in a pivot 
table, or in a chart. At the end of the day, the source of all these reports is a number—in other words, a 
scalar expression. Nevertheless, as part of the calculation of a scalar value, you are likely to use tables. 
For example, a simple iteration like the following uses a table as part of the calculation of the sales 
amount:

Sales Amount := SUMX ( Sales, Sales[Quantity] * Sales[Net Price] )

In this example, SUMX iterates over the Sales table. Thus, though the result of the full calculation is a 
scalar value, during the computation the formula scans the Sales table. The same code could iterate the 
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result of a table function, like the following code. This code computes the sales amount only for rows 
greater than one:

Sales Amount Multiple Items := 
SUMX ( 
    FILTER ( 
        Sales, 
        Sales[Quantity] > 1
    ),
    Sales[Quantity] * Sales[Net Price] 
)

In the example, we use a FILTER function in place of the reference to Sales. Intuitively, FILTER is a 
function that fi lters the content of a table based on a condition. We will describe FILTER in full later. For 
now, it is important to note that whenever you reference the content of a table, you can replace the 
reference with the result of a table function.

 

Important In the previous code you see a fi lter applied to a sum aggregation. This is not 
a best practice. In the next chapters, you will learn how to use CALCULATE to implement 
more fl exible and effi cient fi lters. The purpose of the examples in this chapter is not to pro-
vide best practices for DAX measures, but rather to explain how table functions work using 
simple expressions. We will apply these concepts later in more complex scenarios.

 

Moreover, in Chapter 2, “Introducing DAX,” you learned that you can defi ne variables as part of a 
DAX expression. There, we used variables to store scalar values. However, variables can store tables too. 
For example, the previous code could be written this way by using a variable:

Sales Amount Multiple Items :=
VAR 
    MultipleItemSales = FILTER ( Sales, Sales[Quantity] > 1 )
RETURN
    SUMX (
        MultipleItemSales,
        Sales[Quantity] * Sales[Unit Price]
    )

MultipleItemSales is a variable that stores a whole table because its expression is a table function. 
We strongly encourage using variables whenever possible because they make the code easier to read. 
By simply assigning a name to an expression, you already are documenting your code extremely well.

In a calculated column or inside an iteration, one can also use the RELATEDTABLE function to 
retrieve all the rows of a related table. For example, the following calculated column in the Product 
table computes the sales amount of the corresponding product:

'Product'[Product Sales Amount] =
SUMX (
    RELATEDTABLE ( Sales ),
    Sales[Quantity] * Sales[Unit Price]
)
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Table functions can be nested too. For example, the following calculated column in the Product 
table computes the product sales amount considering only sales with a quantity greater than one:

'Product'[Product Sales Amount Multiple Items] =
SUMX (
    FILTER (
        RELATEDTABLE ( Sales ),
        Sales[Quantity] > 1
    ),
    Sales[Quantity] * Sales[Unit Price]
)

In the sample code, RELATEDTABLE is nested inside FILTER. As a rule, when there are nested calls, 
DAX evaluates the innermost function fi rst and then evaluates the others up to the outermost function.

 

Note As you will see later, the execution order of nested calls can be a source of confusion 
because CALCULATE and CALCULATETABLE have a different order of evaluation from FILTER. 
In the next section, you learn the behavior of FILTER. You will fi nd the description for CALCU-
LATE and CALCULATETABLE in Chapter 5, “Understanding CALCULATE and CALCULATETABLE.”

 

In general, we cannot use the result of a table function as the value of a measure or of a calculated 
column. Both measures and calculated columns require the expression to be a scalar value. Instead, we 
can assign the result of a table expression to a calculated table. A calculated table is a table whose value 
is determined by a DAX expression rather than loaded from a data source.

For example, we can create a calculated table containing all the products with a unit price greater 
than 3,000 by using a table expression like the following:

ExpensiveProducts = 
FILTER (
    'Product',
    'Product'[Unit Price] > 3000
)

Calculated tables are available in Power BI and Analysis Services, but not in Power Pivot for Excel (as 
of 2019). The more you use table functions, the more you will use them to create more complex data 
models by using calculated tables and/or complex table expressions inside your measures.

Introducing EVALUATE syntax

Query tools such as DAX Studio are useful to author complex table expressions. In that case, a common 
statement used to inspect the result of a table expression is EVALUATE:

EVALUATE
FILTER (
    'Product',
    'Product'[Unit Price] > 3000
)
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One can execute the preceding DAX query in any tool that executes DAX queries (DAX Studio, Microsoft 
Excel, SQL Server Management Studio, Reporting Services, and so on). A DAX query is a DAX expression 
that returns a table, used with the EVALUATE statement. EVALUATE has a complex syntax, which we fully 
cover in Chapter 13. Here we only introduce the more commonly used EVALUATE syntax, which is as follows:

[DEFINE { MEASURE <tableName>[<name>] = <expression> }]
EVALUATE <table>
[ORDER BY {<expression> [{ASC | DESC}]} [, …]]

The initial DEFINE MEASURE part can be useful to defi ne measures that are local to the query. It becomes 
useful when we are debugging formulas because we can defi ne a local measure, test it, and then deploy the 
code in the model once it behaves as expected. Most of the syntax is optional. Indeed, the simplest query 
one can author retrieves all the rows and columns from an existing table, as shown in Figure 3-1:

EVALUATE 'Product'

FIGURE 3-1 The result of the query execution in DAX Studio.

The ORDER BY clause controls the sort order:

EVALUATE 
FILTER (
    'Product',
    'Product'[Unit Price] > 3000
)
ORDER BY
    'Product'[Color],
    'Product'[Brand] ASC,
    'Product'[Class] DESC

 

Note Please note that the Sort By Column property defi ned in a model does not affect 
the sort order in a DAX query. The sort order specifi ed by EVALUATE can only use columns 
included in the result. Thus, a client that generates a dynamic DAX query should read the 
Sort By Column property in a model’s metadata, include the column for the sort order in the 
query, and then generate a corresponding ORDER BY condition.

 

EVALUATE is not a powerful statement by itself. The power of querying with DAX comes from the 
power of using the many DAX table functions that are available in the language. In the next sections, 
you learn how to create advanced calculations by using and combining different table functions.
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Understanding FILTER

Now that we have introduced what table functions are, it is time to describe in full the basic table func-
tions. Indeed, by combining and nesting the basic functions, you can already compute many powerful 
expressions. The fi rst function you learn is FILTER. The syntax of FILTER is the following:

FILTER ( <table>, <condition> )

FILTER receives a table and a logical condition as parameters. As a result, FILTER returns all the rows 
satisfying the condition. FILTER is both a table function and an iterator at the same time. In order to return a 
result, it scans the table evaluating the condition on a row-by-row basis. In other words, it iterates the table.

For example, the following calculated table returns the Fabrikam products (Fabrikam being a brand).

FabrikamProducts =
FILTER (
    'Product',
    'Product'[Brand] = "Fabrikam"
)

FILTER is often used to reduce the number of rows in iterations. For example, if a developer wants to 
compute the sales of red products, they can author a measure like the following one:

RedSales := 
SUMX ( 
    FILTER ( 
        Sales, 
        RELATED ( 'Product'[Color] ) = "Red" 
    ),
    Sales[Quantity] * Sales[Net Price] 
)

You can see the result in Figure 3-2, along with the total sales.

FIGURE 3-2 RedSales shows the amount of sales of only red products.
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The RedSales measure iterated over a subset of the Sales table—namely the set of sales that are 
related to a red product. FILTER adds a condition to the existing conditions. For example, RedSales in 
the Audio row shows the sales of products that are both of Audio category and of Red color.

It is possible to nest FILTER in another FILTER function. In general, nesting two fi lters produces the 
same result as combining the conditions of the two FILTER functions with an AND function. In other 
words, the following two queries produce the same result:

FabrikamHighMarginProducts =
FILTER (
    FILTER ( 
        'Product',
        'Product'[Brand] = "Fabrikam"
    ),
    'Product'[Unit Price] > 'Product'[Unit Cost] * 3
)
 
FabrikamHighMarginProducts =
FILTER (
    'Product',
    AND (
        'Product'[Brand] = "Fabrikam",
        'Product'[Unit Price] > 'Product'[Unit Cost] * 3
    )
)

However, performance might be different on large tables depending on the selectivity of the condi-
tions. If one condition is more selective than the other, applying the most selective condition fi rst by 
using a nested FILTER function is considered best practice.

For example, if there are many products with the Fabrikam brand, but few products priced at three 
times their cost, then the following query applies the fi lter over Unit Price and Unit Cost in the inner-
most FILTER. By doing so, the formula applies the most restrictive fi lter fi rst, in order to reduce the 
number of iterations needed to check for the brand:

FabrikamHighMarginProducts =
FILTER (
    FILTER (
        'Product',
        'Product'[Unit Price] > 'Product'[Unit Cost] * 3
    ),
    'Product'[Brand] = "Fabrikam"
)

Using FILTER, a developer can often produce code that is easier to read and to maintain over time. 
For example, imagine you need to compute the number of red products. Without using table func-
tions, one possible implementation might be the following:
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NumOfRedProducts :=
SUMX ( 
    'Product',
    IF ( 'Product'[Color] = "Red", 1, 0 )
)

The inner IF returns either 1 or 0 depending on the color of the product, and summing this expres-
sion returns the number of red products. Although it works, this code is somewhat tricky. A better 
implementation of the same measure is the following:

NumOfRedProducts :=
COUNTROWS ( 
    FILTER ( 'Product', 'Product'[Color] = "Red" )
)

This latter expression better shows what the developer wanted to obtain. Moreover, not only is the 
code easier to read for a human being, but the DAX optimizer is also better able to understand the 
developer’s intention. Therefore, the optimizer produces a better query plan, leading in turn to better 
performance.

Introducing ALL and ALLEXCEPT

In the previous section you learned FILTER, which is a useful function whenever we want to restrict the 
number of rows in a table. Sometimes we want to do the opposite; that is, we want to extend the num-
ber of rows to consider for a certain calculation. In that case, DAX offers a set of functions designed 
for that purpose: ALL, ALLEXCEPT, ALLCROSSFILTERED, ALLNOBLANKROW, and ALLSELECTED. In this 
section, you learn ALL and ALLEXCEPT, whereas the latter two are described later in this chapter and 
ALLCROSSFILTERD is introduced in Chapter 14, “Advanced DAX concepts.”

ALL returns all the rows of a table or all the values of one or more columns, depending on the 
parameters used. For example, the following DAX expression returns a ProductCopy calculated table 
with a copy of all the rows in the Product table:

ProductCopy = ALL ( 'Product' )

 

Note ALL is not necessary in a calculated table because there are no report fi lters infl uenc-
ing it. However, ALL is useful in measures, as shown in the next examples.

 

ALL is extremely useful whenever we need to compute percentages or ratios because it ignores the 
fi lters automatically introduced by a report. Imagine we need a report like the one in Figure 3-3, which 
shows on the same row both the sales amount and the percentage of the given amount against the 
grand total.
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FIGURE 3-3 The report shows the sales amounts and each percentage against the grand total.

The Sales Amount measure computes a value by iterating over the Sales table and performing the 
multiplication of Sales[Quantity] by Sales[Net Price]:

Sales Amount := 
SUMX ( 
    Sales, 
    Sales[Quantity] * Sales[Net Price] 
)

To compute the percentage, we divide the sales amount by the grand total. Thus, the formula must 
compute the grand total of sales even when the report is deliberately fi ltering one given category. This 
can be obtained by using the ALL function. Indeed, the following measure produces the total of all 
sales, no matter what fi lter is being applied to the report:

All Sales Amount := 
SUMX ( 
    ALL ( Sales ), 
    Sales[Quantity] * Sales[Net Price] 
)

In the formula we replaced the reference to Sales with ALL ( Sales ), making good use of the ALL 
function. At this point, we can compute the percentage by performing a simple division:

Sales Pct := DIVIDE ( [Sales Amount], [All Sales Amount] )

Figure 3-4 shows the result of the three measures together.

The parameter of ALL cannot be a table expression. It needs to be either a table name or a list of col-
umn names. You have already learned what ALL does with a table. What is its result if we use a column 
instead? In that case, ALL returns all the distinct values of the column in the entire table. The Categories 
calculated table is obtained from the Category column of the Product table:

Categories = ALL ( 'Product'[Category] )

Figure 3-5 shows the result of the Categories calculated table.



 CHAPTER 3 Using basic table functions 65

FIGURE 3-4 The All Sales Amount measure always produces the grand total as a result.

FIGURE 3-5 Using ALL with a column produces the list of distinct values of that column.

We can specify multiple columns from the same table in the parameters of the ALL function. In that 
case, ALL returns all the existing combinations of values in those columns. For example, we can obtain 
the list of all categories and subcategories by adding the Product[Subcategory] column to the list of 
values, obtaining the result shown in Figure 3-6:

Categories = 
ALL ( 
    'Product'[Category], 
    'Product'[Subcategory] 
)

Throughout all its variations, ALL ignores any existing fi lter in order to produce a result. We can use ALL as 
an argument of an iteration function, such as SUMX and FILTER, or as a fi lter argument in a CALCULATE func-
tion. You learn the CALCULATE function in Chapter 5.

If we want to include most, but not all the columns of a table in an ALL function call, we can use ALLEXCEPT 
instead. The syntax of ALLEXCEPT requires a table followed by the columns we want to exclude. As a result, ALL-
EXCEPT returns a table with a unique list of existing combinations of values in the other columns of the table.
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FIGURE 3-6 The list contains the distinct, existing values of category and subcategory.

ALLEXCEPT is a way to write a DAX expression that will automatically include in the result any addi-
tional columns that could appear in the table in the future. For example, if we have a Product table with 
fi ve columns (ProductKey, Product Name, Brand, Class, Color), the following two expressions produce 
the same result:

ALL ( 'Product'[Product Name], 'Product'[Brand], 'Product'[Class] )
ALLEXCEPT ( 'Product', 'Product'[ProductKey], 'Product'[Color] )

However, if we later add the two columns Product[Unit Cost] and Product[Unit Price], then the result 
of ALL will ignore them, whereas ALLEXCEPT will return the equivalent of:

ALL (
    'Product'[Product Name],
    'Product'[Brand],
    'Product'[Class],
    'Product'[Unit Cost],
    'Product'[Unit Price]
)

In other words, with ALL we declare the columns we want, whereas with ALLEXCEPT we declare the 
columns that we want to remove from the result. ALLEXCEPT is mainly useful as a parameter of CAL-
CULATE in advanced calculations, and it is seldomly adopted with simpler formulas. Thus, even if we 
included its description here for completeness, it will become useful only later in the learning path.

Top categories and subcategories

As an example of using ALL as a table function, imagine we want to produce a dashboard 
that shows the category and subcategory of products that sold more than twice the 
average sales amount. To produce this report, we need to fi rst compute the average sales 
per subcategory and then, once the value has been determined, retrieve from the list of 
subcategories the ones that have a sales amount larger than twice that average.
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The following code produces that table, and it is worth examining deeper to get a 
feeling of the power of table functions and variables:

BestCategories = 
VAR Subcategories =
    ALL ( 'Product'[Category], 'Product'[Subcategory] )
VAR AverageSales =
    AVERAGEX (
        Subcategories,
        SUMX ( RELATEDTABLE ( Sales ), Sales[Quantity] * Sales[Net Price] )
    )
VAR TopCategories =
    FILTER (
        Subcategories,
        VAR SalesOfCategory =
            SUMX ( RELATEDTABLE ( Sales ), Sales[Quantity] * Sales[Net Price] )
        RETURN
            SalesOfCategory >= AverageSales * 2
    )
RETURN
    TopCategories

The fi rst variable (Subcategories) stores the list of all categories and subcategories. Then, 
AverageSales computes the average of the sales amount for each subcategory. Finally, Top-
Categories removes from Subcategories the subcategories that do not have a sales amount 
larger than twice the value of AverageSales.

The result of this table is visible in Figure 3-7.

FIGURE 3-7 These are the top subcategories that sold more than twice the average.

Once you master CALCULATE and fi lter contexts, you will be able to author the same calcu-
lations with a shorter and more effi cient syntax. Nevertheless, in this example you can already 
appreciate how combining table functions can produce powerful results, which are useful for 
dashboards and reports.
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Understanding VALUES, DISTINCT, and the blank row

In the previous section, you saw that ALL used with one column returns a table with all its unique 
values. DAX provides two other similar functions that return a list of unique values for a column: 
VALUES and DISTINCT. These two functions look almost identical, the only difference being in how 
they handle the blank row that might exist in a table. You will learn about the optional blank row 
later in this section; for now let us focus on what these two functions perform.

ALL always returns all the distinct values of a column. On the other hand, VALUES returns only the 
distinct visible values. You can appreciate the difference between the two behaviors by looking at the 
two following measures:

NumOfAllColors := COUNTROWS ( ALL ( 'Product'[Color] ) )
NumOfColors := COUNTROWS ( VALUES ( 'Product'[Color] ) )

NumOfAllColors counts all the colors of the Product table, whereas NumOfColors counts only the 
ones that—given the fi lter in the report—are visible. The result of these two measures, sliced by 
category, is visible in Figure 3-8.

FIGURE 3-8 For a given category, only a subset of the colors is returned by VALUES.

Because the report slices by category, each given category contains products with some, but not 
all, the colors. VALUES returns the distinct values of a column evaluated in the current fi lter. If we use 
VALUES or DISTINCT in a calculated column or in a calculated table, then their behavior is identical 
to that of ALL because there is no active fi lter. On the other hand, when used in a measure, these two 
functions compute their result considering the existing fi lters, whereas ALL ignores any fi lter.

As you read earlier, the two functions are nearly identical. It is now important to understand why 
VALUES and DISTINCT are two variations of the same behavior. The difference is the way they consider 
the presence of a blank row in the table. First, we need to understand how come a blank row might 
appear in our table if we did not explicitly create a blank row.

The fact is that the engine automatically creates a blank row in any table that is on the one-side of a 
relationship in case the relationship is invalid. To demonstrate the behavior, we removed all the silver-
colored products from the Product table. Since there were 16 distinct colors initially and we removed one 
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color, one would expect the total number of colors to be 15. Instead, the report in Figure 3-9 shows some-
thing unexpected: NumOfAllColors is still 16 and the report shows a new row at the top, with no name.

FIGURE 3-9 The fi rst rows shows a blank for the category, and the total number of colors is 16 instead of 15.

Because Product is on the one-side of a relationship with Sales, for each row in the Sales table there 
is a related row in the Product table. Nevertheless, because we deliberately removed all the products 
with one color, there are now many rows in Sales that no longer have a valid relationship with the 
Product table. Be mindful, we did not remove any row from Sales; we removed a color with the intent of 
breaking the relationship.

To guarantee that these rows are considered in all the calculations, the engine automatically added 
to the Product table a row containing blank in all its columns. All the orphaned rows in Sales are linked 
to this newly introduced blank row.

Important Only one blank row is added to the Product table, despite the fact that multiple 
different products referenced in the Sales table no longer have a corresponding ProductKey 
in the Product table.

 

Indeed, in Figure 3-9 you can see that the fi rst row shows a blank for the Category and accounts for one 
color. The number comes from a row containing blank in the category, blank in the color, and blank in all 
the columns of the table. You will not see the row if you inspect the table because it is an automatic row 
created during the loading of the data model. If, at some point, the relationship becomes valid again—if 
you were to add the silver products back—then the blank row will disappear from the table.

Certain functions in DAX consider the blank row as part of their result, whereas others do not. 
Specifi cally, VALUES considers the blank row as a valid row, and it returns it. On the other hand, 
DISTINCT does not return it. You can appreciate the difference by looking at the following new 
measure, which counts the DISTINCT colors instead of VALUES:

NumOfDistinctColors := COUNTROWS ( DISTINCT ( 'Product'[Color] ) )

The result is visible in Figure 3-10.
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FIGURE 3-10 NumOfDistinctColors shows a blank for the blank row, and its total shows 15 instead of 16.

A well-designed model should not present any invalid relationships. Thus, if your model is perfect, 
then the two functions always return the same values. Nevertheless, when dealing with invalid relation-
ships, you need to be aware of this behavior because otherwise you might end up writing incorrect 
calculations. For example, imagine that we want to compute the average sales per product. A possible 
solution is to compute the total sales and divide that by the number of products, by using this code:

AvgSalesPerProduct := 
DIVIDE ( 
    SUMX ( 
        Sales, 
        Sales[Quantity] * Sales[Net Price] 
    ),
    COUNTROWS ( 
        VALUES ( 'Product'[Product Code] ) 
    )
)

The result is visible in Figure 3-11. It is obviously wrong because the fi rst row is a huge, meaningless 
number.

FIGURE 3-11 The fi rst row shows a huge value accounted for a category with no name.
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The number shown in the fi rst row, where Category is blank, corresponds to the sales of all the silver 
products—which no longer exist in the Product table. This blank row associates all the products that 
were silver and are no longer in the Product table. The numerator of DIVIDE considers all the sales 
of silver products. The denominator of DIVIDE counts a single blank row returned by VALUES. Thus, 
a single non-existing product (the blank row) is cumulating the sales of many other products refer-
enced in Sales and not available in the Product table, leading to a huge number. Here, the problem is 
the invalid relationship, not the formula by itself. Indeed, no matter what formula we create, there are 
many sales of products in the Sales table for which the database has no information. Nevertheless, it is 
useful to look at how different formulations of the same calculation return different results. Consider 
these two other variations:

AvgSalesPerDistinctProduct := 
DIVIDE ( 
    SUMX ( Sales, Sales[Quantity] * Sales[Net Price] ),
    COUNTROWS ( DISTINCT ( 'Product'[Product Code] ) )
)
 
AvgSalesPerDistinctKey := 
DIVIDE ( 
    SUMX ( Sales, Sales[Quantity] * Sales[Net Price] ),
    COUNTROWS ( VALUES ( Sales[ProductKey] ) )
)

In the fi rst variation, we used DISTINCT instead of VALUES. As a result, COUNTROWS returns a blank 
and the result will be a blank. In the second variation, we still used VALUES, but this time we are count-
ing the number of Sales[ProductKey]. Keep in mind that there are many different Sales[ProductKey] 
values, all related to the same blank row. The result is visible in Figure 3-12.

FIGURE 3-12 In the presence of invalid relationships, the measures are most likely wrong—each in their own way.

It is interesting to note that AvgSalesPerDistinctKey is the only correct calculation. Since we sliced by 
Category, each category had a different number of invalid product keys—all of which collapsed to the 
single blank row.

However, the correct approach should be to fi x the relationship so that no sale is orphaned of its 
product. The golden rule is to not have any invalid relationships in the model. If, for any reason, you 
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have invalid relationships, then you need to be extremely cautious in how you handle the blank row, as 
well as how its presence might affect your calculations.

As a fi nal note, consider that the ALL function always returns the blank row, if present. In case you 
need to remove the blank row from the result, then ALLNOBLANKROW is the function you will want 
to use.

VALUES of multiple columns

The functions VALUES and DISTINCT only accept a single column as a parameter. There 
is no corresponding version for two or more columns, as there is for ALL and ALLNO-
BLANKROW. In case we need to obtain the distinct, visible combinations of values from 
different columns, then VALUES is of no help. Later in Chapter 12 you will learn that:

VALUES ( 'Product'[Category], 'Product'[Subcategory] )

can be obtained by writing:

SUMMARIZE ( 'Product', 'Product'[Category], 'Product'[Subcategory] )

 

Later, you will see that VALUES and DISTINCT are often used as a parameter of iterator functions. 
There are no differences in their results whenever the relationships are valid. In such a case, when you 
iterate over the values of a column, you need to consider the blank row as a valid row, in order to make 
sure that you iterate all the possible values. As a rule of thumb, VALUES should be your default choice, 
only leaving DISTINCT to cases when you want to explicitly exclude the possible blank value. Later in 
this book, you will also learn how to leverage DISTINCT instead of VALUES to avoid circular dependen-
cies. We will cover it in Chapter 15, “Advanced relationships handling.”

VALUES and DISTINCT also accept a table as an argument. In that case, they exhibit different 
behaviors:

■ DISTINCT returns the distinct values of the table, not considering the blank row. Thus, dupli-
cated rows are removed from the result.

■ VALUES returns all the rows of the table, without removing duplicates, plus the additional blank 
row if present. Duplicated rows, in this case, are kept untouched.

Using tables as scalar values

Although VALUES is a table function, we will often use it to compute scalar values because of a special 
feature in DAX: a table with a single row and a single column can be used as if it were a scalar value. 
Imagine we produce a report like the one in Figure 3-13, reporting the number of brands sliced by 
category and subcategory.
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FIGURE 3-13 The report shows the number of brands available for each category and subcategory.

One might also want to see the names of the brands beside their number. One possible solution is 
to use VALUES to retrieve the different brands and, instead of counting them, return their value. This 
is possible only in the special case when there is only one value for the brand. Indeed, in that case it is 
possible to return the result of VALUES and DAX automatically converts it into a scalar value. To make 
sure that there is only one brand, one needs to protect the code with an IF statement:

Brand Name :=
IF (
    COUNTROWS ( VALUES ( Product[Brand] ) ) = 1,
    VALUES ( Product[Brand] )
)

The result is visible in Figure 3-14. When the Brand Name column contains a blank, it means that 
there are two or more different brands.

FIGURE 3-14 When VALUES returns a single row, we can use it as a scalar value, as in the Brand Name measure.

The Brand Name measure uses COUNTROWS to check whether the Color column of the  Products 
table only has one value selected. Because this pattern is frequently used in DAX code, there is a 
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simpler function that checks whether a column only has one visible value: HASONEVALUE. The follow-
ing is a better implementation of the Brand Name measure, based on HASONEVALUE:

Brand Name :=
IF (
    HASONEVALUE ( 'Product'[Brand] ),
    VALUES ( 'Product'[Brand] )
)

Moreover, to make the lives of developers easier, DAX also offers a function that automatically 
checks if a column contains a single value and, if so, it returns the value as a scalar. In case there are 
multiple values, it is also possible to defi ne a default value to be returned. That function is SELECTED-
VALUE. The previous measure can also be defi ned as

Brand Name := SELECTEDVALUE ( 'Product'[Brand] )

By including the second optional argument, one can provide a message stating that the result con-
tains multiple results:

Brand Name := SELECTEDVALUE ( 'Product'[Brand], "Multiple brands" )

The result of this latest measure is visible in Figure 3-15.

FIGURE 3-15 SELECTEDVALUE returns a default value in case there are multiple rows for the Brand Name column.

What if, instead of returning a message like “Multiple brands,” one wants to list all the brands? In 
that case, an option is to iterate over the VALUES of Product[Brand] and use the CONCATENATEX func-
tion, which produces a good result even if there are multiple values:

[Brand Name] :=
CONCATENATEX ( 
    VALUES ( 'Product'[Brand] ), 
    'Product'[Brand],
    ", " 
)

Now the result contains the different brands separated by a comma instead of the generic message, 
as shown in Figure 3-16.
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FIGURE 3-16 CONCATENATEX builds strings out of tables, concatenating expressions.

Introducing ALLSELECTED

The last table function that belongs to the set of basic table functions is ALLSELECTED. Actu-
ally, ALLSELECTED is a very complex table function—probably the most complex table function in 
DAX. In Chapter 14, we will uncover all the secrets of ALLSELECTED. Nevertheless, ALLSELECTED is 
useful even in its basic implementation. For that reason, it is worth mentioning in this introductory 
chapter.

ALLSELECTED is useful when retrieving the list of values of a table, or a column, as visible in the 
current report and considering all and only the fi lters outside of the current visual. To see when 
ALLSELECTED becomes useful, look at the report in Figure 3-17.

FIGURE 3-17 The report contains a matrix and a slicer, on the same page.

The value of Sales Pct is computed by the following measure:

Sales Pct :=
DIVIDE (
    SUMX ( Sales, Sales[Quantity] * Sales[Net Price] ),
    SUMX ( ALL ( Sales ), Sales[Quantity] * Sales[Net Price] )
)
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Because the denominator uses the ALL function, it always computes the grand total of all sales, 
regardless of any fi lter. As such, if one uses the slicer to reduce the number of categories shown, the 
report still computes the percentage against all the sales. For example, Figure 3-18 shows what happens 
if one selects some categories with the slicer.

FIGURE 3-18 Using ALL, the percentage is still computed against the grand total of all sales.

Some rows disappeared as expected, but the amounts reported in the remaining rows are 
unchanged. Moreover, the grand total of the matrix no longer accounts for 100%. If this is not the 
expected result, meaning that you want the percentage to be computed not against the grand total of 
sales but rather only on the selected values, then ALLSELECTED becomes useful.

Indeed, by writing the code of Sales Pct using ALLSELECTED instead of ALL, the denominator com-
putes the sales of all categories considering all and only the fi lters outside of the matrix. In other words, 
it returns the sales of all categories except Audio, Music, and TV.

Sales Pct :=
DIVIDE (
    SUMX ( Sales, Sales[Quantity] * Sales[Net Price] ),
    SUMX ( ALLSELECTED ( Sales ), Sales[Quantity] * Sales[Net Price] )
)

The result of this latter version is visible in Figure 3-19.

FIGURE 3-19 Using ALLSELECTED, the percentage is computed against the sales only considering outer fi lters.

The total is now 100% and the numbers reported refl ect the percentage against the visible total, 
not against the grand total of all sales. ALLSELECTED is a powerful and useful function. Unfortunately, 
to achieve this purpose, it ends up being an extraordinarily complex function too. Only much later in 
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the book will we be able to explain it in full. Because of its complexity, ALLSELECTED sometimes returns 
unexpected results. By unexpected we do not mean wrong, but rather, ridiculously hard to understand 
even for seasoned DAX developers.

When used in simple formulas like the one we have shown here, ALLSELECTED proves to be particu-
larly useful, anyway.

Conclusions

As you have seen in this chapter, basic table functions are already immensely powerful, and they allow 
you to start creating many useful calculations. FILTER, ALL, VALUES and ALLSELECTED are extremely 
common functions that appear in many DAX formulas.

Learning how to mix table functions to produce the result you want is particularly important 
because it will allow you to seamlessly achieve advanced calculations. Moreover, when mixed with the 
power of CALCULATE and of context transition, table functions produce compact, neat, and powerful 
calculations. In the next chapters, we introduce evaluation contexts and the CALCULATE function. After 
having learned CALCULATE, you will probably revisit this chapter to use table functions as parameters 
of CALCULATE, thus leveraging their full potential.
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C H A P T E R  4

Understanding evaluation contexts

At this point in the book, you have learned the basics of the DAX language. You know how to create 
calculated columns and measures, and you have a good understanding of common functions used in 
DAX. This is the chapter where you move to the next level in this language: After learning a solid theo-
retical background of the DAX language, you become a real DAX champion.

With the knowledge you have gained so far, you can already create many interesting reports, but 
you need to learn evaluation contexts in order to create more complex formulas. Indeed, evaluation 
contexts are the basis of all the advanced features of DAX.

We want to give a few words of warning to our readers. The concept of evaluation contexts is simple, 
and you will learn and understand it soon. Nevertheless, you need to thoroughly understand several 
subtle considerations and details. Otherwise, you will feel lost at a certain point on your DAX learning 
path. We have been teaching DAX to thousands of users in public and private classes, so we know that 
this is normal. At a certain point, you have the feeling that formulas work like magic because they work, 
but you do not understand why. Do not worry: you will be in good company. Most DAX students reach 
that point, and many others will reach it in the future. It simply means that evaluation contexts are not 
clear enough to them. The solution, at that point, is easy: Come back to this chapter, read it again, and 
you will probably fi nd something new that you missed during your fi rst read.

Moreover, evaluation contexts play an important role when using the CALCULATE function—which 
is probably the most powerful and hard-to-learn DAX function. We introduce CALCULATE in 
Chapter 5, “Understanding CALCULATE and CALCULATETABLE,” and then we use it throughout the rest 
of the book. Understanding CALCULATE without having a solid understanding of evaluation contexts 
is problematic. On the other hand, understanding the importance of evaluation contexts without hav-
ing ever tried to use CALCULATE is nearly impossible. Thus, in our experience with previous books we 
have written, this chapter and the subsequent one are the two that are always marked up and have the 
corners of pages folded over.

In the rest of the book we will use these concepts. Then in Chapter 14, “Advanced DAX concepts,” 
you will complete your learning of evaluation contexts with expanded tables. Beware that the content 
of this chapter is not the defi nitive description of evaluation contexts just yet. A more detailed descrip-
tion of evaluation contexts is the description based on expanded tables, but it would be too hard to 
learn about expanded tables before having a good understanding of the basics of evaluation contexts. 
Therefore, we introduce the whole theory in different steps.
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Introducing evaluation contexts

There are two evaluation contexts: the fi lter context and the row context. In the next sections, you learn 
what they are and how to use them to write DAX code. Before learning what they are, it is important to 
state one point: They are different concepts, with different functionalities and a completely different usage.

The most common mistake of DAX newbies is that of confusing the two contexts as if the row con-
text was a slight variation of a fi lter context. This is not the case. The fi lter context fi lters data, whereas 
the row context iterates tables. When DAX is iterating, it is not fi ltering; and when it is fi ltering, it is not 
iterating. Even though this is a simple concept, we know from experience that it is hard to imprint in 
the mind. Our brain seems to prefer a short path to learning—when it believes there are some similari-
ties, it uses them by merging the two concepts into one. Do not be fooled. Whenever you have the 
feeling that the two evaluation contexts look the same, stop and repeat this sentence in your mind like 
a mantra: “The fi lter context fi lters, the row context iterates, they are not the same.”

An evaluation context is the context under which a DAX expression is evaluated. In fact, any DAX 
expression can provide different values in different contexts. This behavior is intuitive, and this is 
the reason why one can write DAX code without learning about evaluation contexts in advance. You 
probably reached this point in the book having authored DAX code without learning about evaluation 
contexts. Because you want more, it is now time to be more precise, to set up the foundations of DAX 
the right way, and to prepare yourself to unleash the full power of DAX.

Understanding fi lter contexts
Let us begin by understanding what an evaluation context is. All DAX expressions are evaluated inside a 
context. The context is the “environment” within which the formula is evaluated. For example, consider 
a measure such as

Sales Amount := SUMX ( Sales, Sales[Quantity] * Sales[Net Price] )

This formula computes the sum of quantity multiplied by price in the Sales table. We can use this 
measure in a report and look at the results, as shown in Figure 4-1.

FIGURE 4-1 The measure Sales Amount, without a context, shows the grand total of sales.

This number alone does not look interesting. However, if you think carefully, the formula computes 
exactly what one would expect: the sum of all sales amounts. In a real report, one is likely to slice the 
value by a certain column. For example, we can select the product brand, use it on the rows, and the 
matrix report starts to reveal interesting business insights as shown in Figure 4-2.
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FIGURE 4-2 Sum of Sales Amount, sliced by brand, shows the sales of each brand in separate rows.

The grand total is still there, but now it is the sum of smaller values. Each value, together with all the 
others, provides more detailed insights. However, you should note that something weird is happening: 
The formula is not computing what we apparently asked. In fact, inside each cell of the report, the 
formula is no longer computing the sum of all sales. Instead, it computes the sales of a given brand. 
Finally, note that nowhere in the code does it say that it can (or should) work on subsets of data. This 
fi ltering happens outside of the formula.

Each cell computes a different value because of the evaluation context under which DAX executes 
the formula. You can think of the evaluation context of a formula as the surrounding area of the cell 
where DAX evaluates the formula.

DAX evaluates all formulas within a respective context. Even though the formula is 
the same, the result is different because DAX executes the same code against different 
subsets of data.

This context is named Filter Context and, as the name suggests, it is a context that fi lters tables. 
Any formula ever authored will have a different value depending on the fi lter context used to perform 
its evaluation. This behavior, although intuitive, needs to be well understood because it hides many 
complexities.

Every cell of the report has a different fi lter context. You should consider that every cell has a dif-
ferent evaluation—as if it were a different query, independent from the other cells in the same report. 
The engine might perform some level of internal optimization to improve computation speed, but you 
should assume that every cell has an independent and autonomous evaluation of the underlying DAX 
expression. Therefore, the computation of the Total row in Figure 4-2 is not computed by summing the 
other rows of the report. It is computed by aggregating all the rows of the Sales table, although this 
means other iterations were already computed for the other rows in the same report. Consequently, 
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depending on the DAX expression, the result in the Total row might display a different result, unrelated 
to the other rows in the same report.

 

Note In these examples, we are using a matrix for the sake of simplicity. We can defi ne an 
evaluation context with queries too, and you will learn more about it in future chapters. For 
now, it is better to keep it simple and only think of reports, to have a simplifi ed and visual 
understanding of the concepts.

  

When Brand is on the rows, the fi lter context fi lters one brand for each cell. If we increase the com-
plexity of the matrix by adding the year on the columns, we obtain the report in Figure 4-3.

FIGURE 4-3 Sales amount is sliced by brand and year.

Now each cell shows a subset of data pertinent to one brand and one year. The reason for this is that 
the fi lter context of each cell now fi lters both the brand and the year. In the Total row, the fi lter is only 
on the brand, whereas in the Total column the fi lter is only on the year. The grand total is the only cell 
that computes the sum of all sales because—there—the fi lter context does not apply any fi lter to the 
model.

The rules of the game should be clear at this point: The more columns we use to slice and dice, 
the more columns are being fi ltered by the fi lter context in each cell of the matrix. If one adds the 
Store[Continent] column to the rows, the result is—again—different, as shown in Figure 4-4.
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FIGURE 4-4 The context is defi ned by the set of fi elds on rows and on columns.

Now the fi lter context of each cell is fi ltering brand, country, and year. In other words, the fi lter con-
text contains the complete set of fi elds that one uses on rows and columns of the report.

 

Note Whether a fi eld is on the rows or on the columns of the visual, or on the slicer and/or 
page/report/visual fi lter, or in any other kind of fi lter we can create with a report—all this 
is irrelevant. All these fi lters contribute to defi ne a single fi lter context, which DAX uses to 
evaluate the formula. Displaying a fi eld on rows or columns is useful for aesthetic purposes, 
but nothing changes in the way DAX computes values.

 

Visual interactions in Power BI compose a fi lter context by combining different elements from a 
graphical interface. Indeed, the fi lter context of a cell is computed by merging together all the fi lters 
coming from rows, columns, slicers, and any other visual used for fi ltering. For example, look at 
Figure 4-5.
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FIGURE 4-5 In a typical report, the context is defi ned in many ways, including slicers, fi lters, and other visuals.

The fi lter context of the top-left cell (A.Datum, CY 2007, 57,276.00) not only fi lters the row and the 
column of the visual, but it also fi lters the occupation (Professional) and the continent (Europe), which 
are coming from different visuals. All these fi lters contribute to the defi nition of a single fi lter context 
valid for one cell, which DAX applies to the whole data model prior to evaluating the formula.

A more formal defi nition of a fi lter context is to say that a fi lter context is a set of fi lters. A fi lter, 
in turn, is a list of tuples, and a tuple is a set of values for some defi ned columns. Figure 4-6 shows a 
visual representation of the fi lter context under which the highlighted cell is evaluated. Each element 
of the report contributes to creating the fi lter context, and every cell in the report has a different fi lter 
context.

Calendar Year

CY 2007

Education

High School

Partial College

Brand

Contoso

FIGURE 4-6 The fi gure shows a visual representation of a fi lter context in a Power BI report.

The fi lter context of Figure 4-6 contains three fi lters. The fi rst fi lter contains a tuple for Calendar Year 
with the value CY 2007. The second fi lter contains two tuples for Education with the values High School 
and Partial College. The third fi lter contains a single tuple for Brand, with the value Contoso. You might 
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notice that each fi lter contains tuples for one column only. You will learn how to create tuples with 
multiple columns later. Multi-column tuples are both powerful and complex tools in the hand of a DAX 
developer.

Before leaving this introduction, let us recall the measure used at the beginning of this section:

Sales Amount := SUMX ( Sales, Sales[Quantity] * Sales[Net Price] )

Here is the correct way of reading the previous measure: The measure computes the sum of Quantity 
multiplied by Net Price for all the rows in Sales which are visible in the current fi lter context.

The same applies to simpler aggregations. For example, consider this measure:

Total Quantity := SUM ( Sales[Quantity] )

It sums the Quantity column of all the rows in Sales that are visible in the current fi lter context. You 
can better understand its working by considering the corresponding SUMX version:

Total Quantity := SUMX ( Sales, Sales[Quantity] )

Looking at the SUMX defi nition, we might consider that the fi lter context affects the evaluation of 
the Sales expression, which only returns the rows of the Sales table that are visible in the current fi lter 
context. This is true, but you should consider that the fi lter context also applies to the following mea-
sures, which do not have a corresponding iterator:

Customers := DISTINCTCOUNT ( Sales[CustomerKey] )  -- Count customers in filter context
 
Colors :=
VAR ListColors = DISTINCT ( 'Product'[Color] )     -- Unique colors in filter context
RETURN COUNTROWS ( ListColors )                    -- Count unique colors

It might look pedantic, at this point, to spend so much time stressing the concept that a fi lter con-
text is always active, and that it affects the formula result. Nevertheless, keep in mind that DAX requires 
you to be extremely precise. Most of the complexity of DAX is not in learning new functions. Instead, 
the complexity comes from the presence of many subtle concepts. When these concepts are mixed 
together, what emerges is a complex scenario. Right now, the fi lter context is defi ned by the report. As 
soon as you learn how to create fi lter contexts by yourself (a critical skill described in the next chapter), 
being able to understand which fi lter context is active in each part of your formula will be of para-
mount importance.

Understanding the row context
In the previous section, you learned about the fi lter context. In this section, you now learn the second 
type of evaluation context: the row context. Remember, although both the row context and the fi lter 
context are evaluation contexts, they are not the same concept. As you learned in the previous section, 
the purpose of the fi lter context is, as its name implies, to fi lter tables. On the other hand, the row con-
text is not a tool to fi lter tables. Instead, it is used to iterate over tables and evaluate column values.
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This time we use a different formula for our considerations, defi ning a calculated column to com-
pute the gross margin:

Sales[Gross Margin] = Sales[Quantity] * ( Sales[Net Price] - Sales[Unit Cost] )

There is a different value for each row in the resulting calculated column, as shown in Figure 4-7.

FIGURE 4-7 There is a different value in each row of Gross Margin, depending on the value of other columns.

As expected, for each row of the table there is a different value in the calculated column. Indeed, 
because there are given values in each row for the three columns used in the expression, it comes as a 
natural consequence that the fi nal expression computes different values. As it happened with the fi lter 
context, the reason is the presence of an evaluation context. This time, the context does not fi lter a 
table. Instead, it identifi es the row for which the calculation happens.

 

Note The row context references a row in the result of a DAX table expression. It should 
not be confused with a row in the report. DAX does not have a way to directly reference a 
row or a column in the report. The values displayed in a matrix in Power BI and in a Pivot-
Table in Excel are the result of DAX measures computed in a fi lter context, or are values 
stored in the table as native or calculated columns.

  

In other words, we know that a calculated column is computed row by row, but how does DAX know 
which row it is currently iterating? It knows the row because there is another evaluation context provid-
ing the row—it is the row context. When we create a calculated column over a table with one million 
rows, DAX creates a row context that evaluates the expression iterating over the table row by row, 
using the row context as the cursor.
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When we create a calculated column, DAX creates a row context by default. In that case, there is no 
need to manually create a row context: A calculated column is always executed in a row context. You 
have already learned how to create a row context manually—by starting an iteration. In fact, one can 
write the gross margin as a measure, like in the following code:

Gross Margin := 
SUMX ( 
    Sales,
    Sales[Quantity] * ( Sales[Net Price] - Sales[Unit Cost] )
)

In this case, because the code is for a measure, there is no automatic row context. SUMX, being an 
iterator, creates a row context that starts iterating over the Sales table, row by row. During the iteration, 
it executes the second expression of SUMX inside the row context. Thus, during each step of the itera-
tion, DAX knows which value to use for the three column names used in the expression.

The row context exists when we create a calculated column or when we are computing an expres-
sion inside an iteration. There is no other way of creating a row context. Moreover, it helps to think 
that a row context is needed whenever we want to obtain the value of a column for a certain row. For 
example, the following measure defi nition is invalid. Indeed, it tries to compute the value of Sales[Net 
Price] and there is no row context providing the row for which the calculation needs to be executed:

Gross Margin := Sales[Quantity] * ( Sales[Net Price] - Sales[Unit Cost] )

This same expression is valid when executed for a calculated column, and it is invalid if used in a 
measure. The reason is not that measures and calculated columns have different ways of using DAX. 
The reason is that a calculated column has an automatic row context, whereas a measure does not. If 
one wants to evaluate an expression row by row inside a measure, one needs to start an iteration to 
create a row context.

 

Note A column reference requires a row context to return the value of the column from a 
table. A column reference can be also used as an argument for several DAX functions with-
out a row context. For example, DISTINCT and DISTINCTCOUNT can have a column refer-
ence as a parameter, without defi ning a row context. Nonetheless, a column reference in a 
DAX expression requires a row context to be evaluated.

  

At this point, we need to repeat one important concept: A row context is not a special kind of fi lter 
context that fi lters one row. The row context is not fi ltering the model in any way; the row context only 
indicates to DAX which row to use out of a table. If one wants to apply a fi lter to the model, the tool to 
use is the fi lter context. On the other hand, if the user wants to evaluate an expression row by row, then 
the row context will do the job.
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Testing your understanding of evaluation contexts

Before moving on to more complex descriptions about evaluation contexts, it is useful to test your 
understanding of contexts with a couple of examples. Please do not look at the explanation immedi-
ately; stop after the question and try to answer it. Then read the explanation to make sense of it. As a 
hint, try to remember, while thinking, ”The fi lter context fi lters; the row context iterates. This means that 
the row context does not fi lter, and the fi lter context does not iterate.”

Using SUM in a calculated column
The fi rst test uses an aggregator inside a calculated column. What is the result of the following expres-
sion, used in a calculated column, in Sales?

Sales[SumOfSalesQuantity] = SUM ( Sales[Quantity] )

Remember, this internally corresponds to this equivalent syntax:

Sales[SumOfSalesQuantity] = SUMX ( Sales, Sales[Quantity] )

Because it is a calculated column, it is computed row by row in a row context. What number do you 
expect to see? Choose from these three answers:

 ■ The value of Quantity for that row, that is, a different value for each row.

 ■ The total of Quantity for all the rows, that is, the same value for all the rows.

 ■ An error; we cannot use SUM inside a calculated column.

Stop reading, please, while we wait for your educated guess before moving on.

Here is the correct reasoning. You have learned that the formula means, “the sum of quantity for all 
the rows visible in the current fi lter context.” Moreover, because the code is executed for a calculated 
column, DAX evaluates the formula row by row, in a row context. Nevertheless, the row context is not 
fi ltering the table. The only context that can fi lter the table is the fi lter context. This turns the question 
into a different one: What is the fi lter context, when the formula is evaluated? The answer is straight-
forward: The fi lter context is empty. Indeed, the fi lter context is created by visuals or by queries, and a 
calculated column is computed at data refresh time when no fi ltering is happening. Thus, SUM works 
on the whole Sales table, aggregating the value of Sales[Quantity] for all the rows of Sales.

The correct answer is the second answer. This calculated column computes the same value for each 
row, that is, the grand total of Sales[Quantity] repeated for all the rows. Figure 4-8 shows the result of 
the SumOfSalesQuantity calculated column.
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FIGURE 4-8 SUM ( Sales[Quantity] ), in a calculated column, is computed against the entire database.

This example shows that the two evaluation contexts exist at the same time, but they do not interact. 
The evaluation contexts both work on the result of a formula, but they do so in different ways. 
Aggregators like SUM, MIN, and MAX only use the fi lter context, and they ignore the row context. If 
you have chosen the fi rst answer, as many students typically do, it is perfectly normal. The thing is that 
you are still confusing the fi lter context and the row context. Remember, the fi lter context fi lters; the 
row context iterates. The fi rst answer is the most common, when using intuitive logic, but it is wrong—
now you know why. However, if you chose the correct answer ... then we are glad this section helped 
you in learning the important difference between the two contexts.

Using columns in a measure
The second test is slightly different. Imagine we defi ne the formula for the gross margin in a measure 
instead of in a calculated column. We have a column with the net price, another column for the product 
cost, and we write the following expression:

GrossMargin% := ( Sales[Net Price] - Sales[Unit Cost] ) / Sales[Unit Cost]

What will the result be? As it happened earlier, choose among the three possible answers:

 ■ The expression works correctly, time to test the result in a report.

 ■ An error, we should not even write this formula.

 ■ We can defi ne the formula, but it will return an error when used in a report.

As in the previous test, stop reading, think about the answer, and then read the following 
explanation.
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The code references Sales[Net Price] and Sales[Unit Cost] without any aggregator. As such, DAX 
needs to retrieve the value of the columns for a certain row. DAX has no way of detecting which row 
the formula needs to be computed for because there is no iteration happening and the code is not in a 
calculated column. In other words, DAX is missing a row context that would make it possible to retrieve 
a value for the columns that are part of the expression. Remember that a measure does not have an 
automatic row context; only calculated columns do. If we need a row context in a measure, we should 
start an iteration.

Thus, the second answer is the correct one. We cannot write the formula because it is syntactically 
wrong, and we get an error when trying to enter the code.

Using the row context with iterators

You learned that DAX creates a row context whenever we defi ne a calculated column or when we start 
an iteration with an X-function. When we use a calculated column, the presence of the row context is 
simple to use and understand. In fact, we can create simple calculated columns without even knowing 
about the presence of the row context. The reason is that the row context is created automatically by 
the engine. Therefore, we do not need to worry about the presence of the row context. On the other 
hand, when using iterators we are responsible for the creation and the handling of the row context. 
Moreover, by using iterators we can create multiple nested row contexts; this increases the complexity 
of the code. Therefore, it is important to understand more precisely the behavior of row contexts with 
iterators.

For example, look at the following DAX measure:

IncreasedSales := SUMX ( Sales, Sales[Net Price] * 1.1 )

Because SUMX is an iterator, SUMX creates a row context on the Sales table and uses it during the 
iteration. The row context iterates the Sales table (fi rst parameter) and provides the current row to the 
second parameter during the iteration. In other words, DAX evaluates the inner expression (the second 
parameter of SUMX) in a row context containing the currently iterated row on the fi rst parameter.

Please note that the two parameters of SUMX use different contexts. In fact, any piece of DAX code 
works in the context where it is called. Thus, when the expression is executed, there might already be a 
fi lter context and one or many row contexts active. Look at the same expression with comments:

SUMX (
    Sales,                     -- External filter and row contexts
    Sales[Net Price] * 1.1     -- External filter and row contexts + new row context
)

The fi rst parameter, Sales, is evaluated using the contexts coming from the caller. The second 
parameter (the expression) is evaluated using both the external contexts plus the newly created row 
context.
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All iterators behave the same way:

 1. Evaluate the fi rst parameter in the existing contexts to determine the rows to scan.

 2. Create a new row context for each row of the table evaluated in the previous step.

 3. Iterate the table and evaluate the second parameter in the existing evaluation context, includ-
ing the newly created row context.

 4. Aggregate the values computed during the previous step.

Be mindful that the original contexts are still valid inside the expression. Iterators add a new row 
context; they do not modify existing fi lter contexts. For example, if the outer fi lter context contains a 
fi lter for the color Red, that fi lter is still active during the whole iteration. Besides, remember that the 
row context iterates; it does not fi lter. Therefore, no matter what, we cannot override the outer fi lter 
context using an iterator.

This rule is always valid, but there is an important detail that is not trivial. If the previous contexts 
already contained a row context for the same table, then the newly created row context hides the 
previous existing row context on the same table. For DAX newbies, this is a possible source of mistakes. 
Therefore, we discuss row context hiding in more detail in the next two sections.

Nested row contexts on different tables
The expression evaluated by an iterator can be very complex. Moreover, the expression can, on its own, 
contain further iterations. At fi rst sight, starting an iteration inside another iteration might look strange. 
Still, it is a common DAX practice because nesting iterators produce powerful expressions.

For example, the following code contains three nested iterators, and it scans three tables: Catego-
ries, Products, and Sales.

SUMX (
    'Product Category',                   -- Scans the Product Category table
    SUMX (                                -- For each category
        RELATEDTABLE ( 'Product' ),       -- Scans the category products
        SUMX (                            -- For each product
            RELATEDTABLE ( Sales )        -- Scans the sales of that product
            Sales[Quantity]               --
                * 'Product'[Unit Price]   -- Computes the sales amount of that sale
                * 'Product Category'[Discount]   
        ) 
    )
)

The innermost expression—the multiplication of three factors—references three tables. In fact, 
three row contexts are opened during that expression evaluation: one for each of the three tables that 
are currently being iterated. It is also worth noting that the two RELATEDTABLE functions return the 
rows of a related table starting from the current row context. Thus, RELATEDTABLE ( Product), being 
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executed in a row context from the Categories table, returns the products of the given category. The 
same reasoning applies to RELATEDTABLE ( Sales ), which returns the sales of the given product.

The previous code is suboptimal in terms of both performance and readability. As a rule, it is fi ne to 
nest iterators provided that the number of rows to scan is not too large: hundreds is good, thousands 
is fi ne, millions is bad. Otherwise, we may easily hit performance issues. We used the previous code to 
demonstrate that it is possible to create multiple nested row contexts; we will see more useful examples 
of nested iterators later in the book. One can express the same calculation in a much faster and read-
able way by using the following code, which relies on one individual row context and the RELATED 
function:

SUMX (
    Sales,
    Sales[Quantity] 
        * RELATED ( 'Product'[Unit Price] )
        * RELATED ( 'Product Category'[Discount] )
)

Whenever there are multiple row contexts on different tables, one can use them to reference the 
iterated tables in a single DAX expression. There is one scenario, however, which proves to be challenging. 
This happens when we nest multiple row contexts on the same table, which is the topic covered in the 
following section.

Nested row contexts on the same table
The scenario of having nested row contexts on the same table might seem rare. However, it does hap-
pen quite often, and more frequently in calculated columns. Imagine we want to rank products based 
on the list price. The most expensive product should be ranked 1, the second most expensive product 
should be ranked 2, and so on. We could solve the scenario using the RANKX function. But for educa-
tional purposes, we show how to solve it using simpler DAX functions.

To compute the ranking, for each product we can count the number of products whose price is 
higher than the current product’s. If there is no product with a higher price than the current product 
price, then the current product is the most expensive and its ranking is 1. If there is only one product 
with a higher price, then the ranking is 2. In fact, what we are doing is computing the ranking of a 
product by counting the number of products with a higher price and adding 1 to the result.

Therefore, one can author a calculated column using this code, where we used PriceOfCurrent-
Product as a placeholder to indicate the price of the current product.

1.  'Product'[UnitPriceRank] =
2.  COUNTROWS (
3.      FILTER (
4.          'Product',
5.          'Product'[Unit Price] > PriceOfCurrentProduct
6.      )
7.  ) + 1



 CHAPTER 4 Understanding Evaluation Contexts 93

FILTER returns the products with a price higher than the current products’ price, and COUNTROWS 
counts the rows of the result of FILTER. The only remaining issue is fi nding a way to express the price of 
the current product, replacing PriceOfCurrentProduct with a valid DAX syntax. By “current,” we mean 
the value of the column in the current row when DAX computes the column. It is harder than you might 
expect.

Focus your attention on line 5 of the previous code. There, the reference to Product[Unit Price] refers 
to the value of Unit Price in the current row context. What is the active row context when DAX executes 
row number 5? There are two row contexts. Because the code is written in a calculated column, there is 
a default row context automatically created by the engine that scans the Product table. Moreover, 
FILTER being an iterator, there is the row context generated by FILTER that scans the product table 
again. This is shown graphically in Figure 4-9.

Product[UnitPriceRank] =

COUNTROWS (
    FILTER (
        Product,
        Product[Unit Price] >= PriceOfCurrentProduct
    )
) + 1

Row context of the

calculated column

Row context of the

FILTER function

FIGURE 4-9 During the evaluation of the innermost expression, there are two row contexts on the 
same table.

The outer box includes the row context of the calculated column, which is iterating over Product. 
However, the inner box shows the row context of the FILTER function, which is iterating over Product 
too. The expression Product[Unit Price] depends on the context. Therefore, a reference to Product[Unit 
Price] in the inner box can only refer to the currently iterated row by FILTER. The problem is that, in that 
box, we need to evaluate the value of Unit Price that is referenced by the row context of the calculated 
column, which is now hidden.

Indeed, when one does not create a new row context using an iterator, the value of Product[Unit 
Price] is the desired value, which is the value in the current row context of the calculated column, as in 
this simple piece of code:

Product[Test] = Product[Unit Price]

To further demonstrate this, let us evaluate Product[Unit Price] in the two boxes, with some dummy 
code. What comes out are different results as shown in Figure 4-10, where we added the evaluation of 
Product[Unit Price] right before COUNTROWS, only for educational purposes.
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Products[UnitPriceRank] =

Product[UnitPrice] +

COUNTROWS (
    FILTER (
        Product,
        Product[Unit Price] >= PriceOfCurrentProduct
    )
) + 1

This is the value of the current

product in the calculated column

This is the value of the

product iterated by FILTER

FIGURE 4-10 Outside of the iteration, Product[Unit Price] refers to the row context of the calculated column.

Here is a recap of the scenario so far:

 ■ The inner row context, generated by FILTER, hides the outer row context.

 ■ We need to compare the inner Product[Unit Price] with the value of the outer Product[Unit 
Price].

 ■ If we write the comparison in the inner expression, we are unable to access the outer 
Product[Unit Price].

Because we can retrieve the current unit price, if we evaluate it outside of the row context of 
FILTER, the best approach to this problem is saving the value of the Product[Unit Price] inside a variable. 
Indeed, one can evaluate the variable in the row context of the calculated column using this code:

'Product'[UnitPriceRank] =
VAR
    PriceOfCurrentProduct = 'Product'[Unit Price]
RETURN
    COUNTROWS (
        FILTER (
           'Product',
           'Product'[Unit Price] > PriceOfCurrentProduct
        )
    ) + 1

Moreover, it is even better to write the code in a more descriptive way by using more variables to 
separate the different steps of the calculation. This way, the code is also easier to follow:

'Product'[UnitPriceRank] =
VAR PriceOfCurrentProduct = 'Product'[Unit Price]
VAR MoreExpensiveProducts = 
    FILTER (
        'Product',
        'Product'[Unit Price] > PriceOfCurrentProduct
    )
RETURN
    COUNTROWS ( MoreExpensiveProducts ) + 1
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Figure 4-11 shows a graphical representation of the row contexts of this latter formulation of the 
code, which makes it easier to understand which row context DAX computes each part of the formula in.

Product[UnitPriceRank] =
VAR PriceOfCurrentProduct = Product[Unit Price]
VAR MoreExpensiveProducts =
    FILTER (
        Product,
        Product[Unit Price] > PriceOfCurrentProduct
    )
RETURN
    COUNTROWS ( MoreExpensiveProducts ) + 1

This is the value of the current

product in the calculated column

This is the value of the

product iterated by FILTER

FIGURE 4-11 The value of PriceOfCurrentProduct is evaluated in the outer row context.

Figure 4-12 shows the result of this calculated column.

FIGURE 4-12 UnitPriceRank is a useful example of how to use variables to navigate within nested row contexts.
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Because there are 14 products with the same unit price, their rank is always 1; the fi fteenth product 
has a rank of 15, shared with other products with the same price. It would be great if we could rank 1, 2, 
3 instead of 1, 15, 19 as is the case in the fi gure. We will fi x this soon but, before that, it is important to 
make a small digression.

To solve a scenario like the one proposed, it is necessary to have a solid understanding of what a 
row context is, to be able to detect which row context is active in different parts of the formula and, 
most importantly, to conceive how the row context affects the value returned by a DAX expression. It 
is worth stressing that the same expression Product[Unit Price], evaluated in two different parts of the 
formula, returns different values because of the different contexts under which it is evaluated. When 
one does not have a solid understanding of evaluation contexts, it is extremely hard to work on such 
complex code.

As you have seen, a simple ranking expression with two row contexts proves to be a challenge. Later 
in Chapter 5 you learn how to create multiple fi lter contexts. At that point, the complexity of the code 
increases a lot. However, if you understand evaluation contexts, these scenarios are simple. Before 
moving to the next level in DAX, you need to understand evaluation contexts well. This is the reason 
why we urge you to read this whole section again—and maybe the whole chapter so far—until these 
concepts are crystal clear. It will make reading the next chapters much easier and your learning experi-
ence much smoother.

Before leaving this example, we need to solve the last detail—that is, ranking using a sequence of 1, 
2, 3 instead of the sequence obtained so far. The solution is easier than expected. In fact, in the previ-
ous code we focused on counting the products with a higher price. By doing that, the formula counted 
14 products ranked 1 and assigned 15 to the second ranking level. However, counting products is not 
very useful. If the formula counted the prices higher than the current price, rather than the products, 
then all 14 products would be collapsed into a single price.

'Product'[UnitPriceRankDense] =
VAR PriceOfCurrentProduct = 'Product'[Unit Price]
VAR HigherPrices =
    FILTER (
        VALUES ( 'Product'[Unit Price] ),
        'Product'[Unit Price] > PriceOfCurrentProduct
    )
RETURN
    COUNTROWS ( HigherPrices ) + 1

Figure 4-13 shows the new calculated column, along with UnitPriceRank.
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FIGURE 4-13 UnitPriceRankDense returns a more useful ranking because it counts prices, not products.

This fi nal small step is counting prices instead of counting products, and it might seem harder than 
expected. The more you work with DAX, the easier it will become to start thinking in terms of ad hoc 
temporary tables created for the purpose of a calculation.

In this example you learned that the best technique to handle multiple row contexts on the same 
table is by using variables. Keep in mind that variables were introduced in the DAX language as late as 
2015. You might fi nd existing DAX code—written before the age of variables—that uses another tech-
nique to access outer row contexts: the EARLIER function, which we describe in the next section.

Using the EARLIER function
DAX provides a function that accesses the outer row contexts: EARLIER. EARLIER retrieves the value of 
a column by using the previous row context instead of the last one. Therefore, we can express the value 
of PriceOfCurrentProduct using EARLIER ( Product[UnitPrice] ).

Many DAX newbies feel intimidated by EARLIER because they do not understand row contexts well 
enough and they do not realize that they can nest row contexts by creating multiple iterations over the 
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same table. EARLIER is a simple function, once you understand the concept of row context and nesting. 
For example, the following code solves the previous scenario without using variables:

'Product'[UnitPriceRankDense] =
COUNTROWS (
    FILTER (
        VALUES ( 'Product'[Unit Price] ),
        'Product'[UnitPrice] > EARLIER ( 'Product'[UnitPrice] )
    )
) + 1

 

Note EARLIER accepts a second parameter, which is the number of steps to skip, so that 
one can skip two or more row contexts. Moreover, there is also a function named EARLIEST 
that lets a developer access the outermost row context defi ned for a table. In the real world, 
neither EARLIEST nor the second parameter of EARLIER is used often. Though having two 
nested row contexts is a common scenario in calculated columns, having three or more of 
them is something that rarely happens. Besides, since the advent of variables, EARLIER has 
virtually become useless because variable usage superseded EARLIER.

 

The only reason to learn EARLIER is to be able to read existing DAX code. There are no further rea-
sons to use EARLIER in newer DAX code because variables are a better way to save the required value 
when the right row context is accessible. Using variables for this purpose is a best practice and results in 
more readable code.

Understanding FILTER, ALL, and context interactions

In the preceding examples, we used FILTER as a convenient way of fi ltering a table. FILTER is a common 
function to use whenever one wants to apply a fi lter that further restricts the existing fi lter context.

Imagine that we want to create a measure that counts the number of red products. With the knowl-
edge gained so far, the formula is easy:

NumOfRedProducts :=
VAR RedProducts =
    FILTER (
        'Product',
        'Product'[Color] = "Red"
    )
RETURN
    COUNTROWS ( RedProducts )

We can use this formula inside a report. For example, put the product brand on the rows to produce 
the report shown in Figure 4-14.
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FIGURE 4-14 We can count the number of red products using the FILTER function.

Before moving on with this example, stop for a moment and think carefully about how DAX com-
puted these values. Brand is a column of the Product table. Inside each cell of the report, the fi lter 
context fi lters one given brand. Therefore, each cell shows the number of products of the given brand 
that are also red. The reason for this is that FILTER iterates the Product table as it is visible in the current 
fi lter context, which only contains products with that specifi c brand. It might seem trivial, but it is better 
to repeat this a few times than there being a chance of forgetting it.

This is more evident if we add a slicer to the report fi ltering the color. In Figure 4-15 there are two 
identical reports with two slicers fi ltering color, where each slicer only fi lters the report on its immedi-
ate right. The report on the left fi lters Red and the numbers are the same as in Figure 4-14, whereas the 
report on the right is empty because the slicer is fi ltering Azure.

FIGURE 4-15 DAX evaluates NumOfRedProducts taking into account the outer context defi ned by the slicer.

In the report on the right, the Product table iterated by FILTER only contains Azure products, 
and, because FILTER can only return Red products, there are no products to return. As a result, the 
NumOfRedProducts measure always evaluates to blank.
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The important part of this example is the fact that in the same formula, there are both a fi lter 
context coming from the outside—the cell in the report, which is affected by the slicer selection—and 
a row context introduced in the formula by the FILTER function. Both contexts work at the same time 
and modify the result. DAX uses the fi lter context to evaluate the Product table, and the row context to 
evaluate the fi lter condition row by row during the iteration made by FILTER.

We want to repeat this concept again: FILTER does not change the fi lter context. FILTER is an iterator 
that scans a table (already fi ltered by the fi lter context) and it returns a subset of that table, according to 
the fi ltering condition. In Figure 4-14, the fi lter context is fi ltering the brand and, after FILTER returned the 
result, it still only fi ltered the brand. Once we added the slicer on the color in Figure 4-15, the fi lter con-
text contained both the brand and the color. For this reason, in the left-hand side report FILTER returned 
all the products iterated, and in the right-hand side report it did not return any product. In both reports, 
FILTER did not change the fi lter context. FILTER only scanned a table and returned a fi ltered result.

At this point, one might want to defi ne another formula that returns the number of red products 
regardless of the selection done on the slicer. In other words, the code needs to ignore the selection 
made on the slicer and must always return the number of all the red products.

To accomplish this, the ALL function comes in handy. ALL returns the content of a table ignoring the 
fi lter context. We can defi ne a new measure, named NumOfAllRedProducts, by using this expression:

NumOfAllRedProducts :=
VAR AllRedProducts =
    FILTER (
        ALL ( 'Product' ),
        'Product'[Color] = "Red"
    )
RETURN
    COUNTROWS ( AllRedProducts )

This time, FILTER does not iterate Product. Instead, it iterates ALL ( Product ).

ALL ignores the fi lter context and always returns all the rows of the table, so that FILTER returns the 
red products even if products were previously fi ltered by another brand or color.

The result shown in Figure 4-16—although correct—might be surprising.

FIGURE 4-16 NumOfAllRedProducts returns strange results.
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There are a couple of interesting things to note here, and we want to describe both in more detail:

 ■ The result is always 99, regardless of the brand selected on the rows.

 ■ The brands in the left matrix are different from the brands in the right matrix.

First, 99 is the total number of red products, not the number of red products of any given brand. 
ALL—as expected—ignores the fi lters on the Product table. It not only ignores the fi lter on the color, 
but it also ignores the fi lter on the brand. This might be an undesired effect. Nonetheless, ALL is easy 
and powerful, but it is an all-or-nothing function. If used, ALL ignores all the fi lters applied to the 
table specifi ed as its argument. With the knowledge you have gained so far, you cannot yet choose to 
only ignore part of the fi lter. In the example, it would have been better to only ignore the fi lter on the 
color. Only after the next chapter, with the introduction of CALCULATE, will you have better options to 
achieve the selective ignoring of fi lters.

Let us now describe the second point: The brands on the two reports are different. Because the 
slicer is fi ltering one color, the full matrix is computed with the fi lter on the color. On the left the color 
is Red, whereas on the right the color is Azure. This determines two different sets of products, and 
consequently, of brands. The list of brands used to populate the axis of the report is computed in the 
original fi lter context, which contains a fi lter on color. Once the axes have been computed, then DAX 
computes values for the measure, always returning 99 as a result regardless of the brand and color. 
Thus, the report on the left shows the brands of red products, whereas the report on the right shows 
the brands of azure products, although in both reports the measure shows the total of all the red prod-
ucts, regardless of their brand.

 

Note The behavior of the report is not specifi c to DAX, but rather to the SUMMARIZE-
COLUMNS function used by Power BI. We cover SUMMARIZECOLUMNS in Chapter 13, 
“Authoring queries.”

  

We do not want to further explore this scenario right now. The solution comes later when you learn 
CALCULATE, which offers a lot more power (and complexity) for the handling of fi lter contexts. As 
of now, we used this example to show that you might fi nd unexpected results from relatively simple 
formulas because of context interactions and the coexistence, in the same expression, of fi lter and row 
contexts.

Working with several tables

Now that you have learned the basics of evaluation contexts, we can describe how the context behaves 
when it comes to relationships. In fact, few data models contain just one single table. There would most 
likely be several tables, linked by relationships. If there is a relationship between Sales and Product, 
does a fi lter context on Product fi lter Sales, too? And what about a fi lter on Sales, is it fi ltering Product? 
Because there are two types of evaluation contexts (the row context and the fi lter context) and rela-
tionships have two sides (a one-side and a many-side), there are four different scenarios to analyze.
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The answer to these questions is already found in the mantra you are learning in this chapter, “The 
fi lter context fi lters; the row context iterates” and in its consequence, “The fi lter context does not iterate; 
the row context does not fi lter.”

To examine the scenario, we use a data model containing six tables, as shown in Figure 4-17.

FIGURE 4-17 Data model used to learn the interaction between contexts and relationships.

The model presents a couple of noteworthy details:

 ■ There is a chain of relationships starting from Sales and reaching Product Category, through 
Product and Product Subcategory.

 ■ The only bidirectional relationship is between Sales and Product. All remaining relationships are 
set to be single cross-fi lter direction.

This model is going to be useful when looking at the details of evaluation contexts and relationships 
in the next sections.

Row contexts and relationships
The row context iterates; it does not fi lter. Iteration is the process of scanning a table row by row and of 
performing an operation in the meantime. Usually, one wants some kind of aggregation like sum or 
average. During an iteration, the row context is iterating an individual table, and it provides a value to 
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all the columns of the table, and only that table. Other tables, although related to the iterated table, do 
not have a row context on them. In other words, the row context does not interact automatically with 
relationships.

Consider as an example a calculated column in the Sales table containing the difference between 
the unit price stored in the fact table and the unit price stored in the Product table. The following DAX 
code does not work because it uses the Product[UnitPrice] column and there is no row context on 
Product:

Sales[UnitPriceVariance] = Sales[Unit Price] – 'Product'[Unit Price]

This being a calculated column, DAX automatically generates a row context on the table contain-
ing the column, which is the Sales table. The row context on Sales provides a row-by-row evaluation 
of expressions using the columns in Sales. Even though Product is on the one-side of a one-to-many 
relationship with Sales, the iteration is happening on the Sales table only.

When we are iterating on the many-side of a relationship, we can access columns on the one-side 
of the relationship, but we must use the RELATED function. RELATED accepts a column reference as 
the parameter and retrieves the value of the column in the corresponding row in the target table. 
RELATED can only reference one column and multiple RELATED functions are required to access more 
than one column on the one-side of the relationship. The correct version of the previous code is the 
following:

Sales[UnitPriceVariance] = Sales[Unit Price] - RELATED ( 'Product'[Unit Price] )

RELATED requires a row context (that is, an iteration) on the table on the many-side of a relation-
ship. If the row context were active on the one-side of a relationship, then RELATED would no longer 
be useful because RELATED would fi nd multiple rows by following the relationship. In this case, that 
is, when iterating the one-side of a relationship, the function to use is RELATEDTABLE. RELATEDTABLE 
returns all the rows of the table on the many-side that are related with the currently iterated table. For 
example, if one wants to compute the number of sales of each product, the following formula defi ned 
as a calculated column on Product solves the problem:

Product[NumberOfSales] = 
VAR SalesOfCurrentProduct = RELATEDTABLE ( Sales ) 
RETURN 
    COUNTROWS ( SalesOfCurrentProduct )

This expression counts the number of rows in the Sales table that corresponds to the current 
product. The result is visible in Figure 4-18.
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FIGURE 4-18 RELATEDTABLE is useful in a row context on the one-side of the relationship.

Both RELATED and RELATEDTABLE can traverse a chain of relationships; they are not limited to a 
single hop. For example, one can create a column with the same code as before but, this time, in the 
Product Category table:

'Product Category'[NumberOfSales] = 
VAR SalesOfCurrentProductCategory = RELATEDTABLE ( Sales ) 
RETURN 
    COUNTROWS ( SalesOfCurrentProductCategory )

The result is the number of sales for the category, which traverses the chain of relationships from 
Product Category to Product Subcategory, then to Product to fi nally reach the Sales table.

In a similar way, one can create a calculated column in the Product table that copies the category 
name from the Product Category table.

'Product'[Category] = RELATED ( 'Product Category'[Category] )

In this case, a single RELATED function traverses the chain of relationships from Product to Product 
Subcategory to Product Category.

 

Note The only exception to the general rule of RELATED and RELATEDTABLE is for one-
to-one relationships. If two tables share a one-to-one relationship, then both RELATED and 
RELATEDTABLE work in both tables and they result either in a column value or in a table with 
a single row, depending on the function used.

  

Regarding chains of relationships, all the relationships need to be of the same type—that is, one-
to-many or many-to-one. If the chain links two tables through a one-to-many relationship to a bridge 
table, followed by a many-to-one relationship to the second table, then neither RELATED nor RELATED-
TABLE works with single-direction fi lter propagation. Only RELATEDTABLE can work using bidirectional 
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fi lter propagation, as explained later. On the other hand, a one-to-one relationship behaves as a 
one-to-many and as a many-to-one relationship at the same time. Thus, there can be a one-to-one 
relationship in a chain of one-to-many (or many-to-one) without interrupting the chain.

For example, in the model we chose as a reference, Customer is related to Sales and Sales is related 
to Product. There is a one-to-many relationship between Customer and Sales, and then a many-to-one 
relationship between Sales and Product. Thus, a chain of relationships links Customer to Product. 
However, the two relationships are not in the same direction. This scenario is known as a many-to-
many relationship. A customer is related to many products bought and a product is in turn related to 
many customers who bought that product. We cover many-to-many relationships later in Chapter 15, 
“Advanced relationships”; let us focus on row context, for the moment. If one uses RELATEDTABLE 
through a many-to-many relationship, the result would be wrong. Consider a calculated column in 
Product with this formula:

Product[NumOfBuyingCustomers] =
VAR CustomersOfCurrentProduct = RELATEDTABLE ( Customer ) 
RETURN 
    COUNTROWS ( CustomersOfCurrentProduct )

The result of the previous code is not the number of customers who bought that product. Instead, 
the result is the total number of customers, as shown in Figure 4-19.

FIGURE 4-19 RELATEDTABLE does not work over a many-to-many relationship.

RELATEDTABLE cannot follow the chain of relationships because they are not going in the same 
direction. The row context from Product does not reach Customers. It is worth noting that if we try 
the formula in the opposite direction, that is, if we count the number of products bought for each 
customer, the result is correct: a different number for each row representing the number of products 
bought by the customer. The reason for this behavior is not the propagation of a row context but, 
rather, the context transition generated by RELATEDTABLE. We added this fi nal note for full disclosure. 
It is not time to elaborate on this just yet. You will have a better understanding of this after reading 
Chapter 5.
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Filter context and relationships
In the previous section, you learned that the row context iterates and, as such, that it does not use 
relationships. The fi lter context, on the other hand, fi lters. A fi lter context is not applied to an individual 
table. Instead, it always works on the whole model. At this point, you can update the evaluation context 
mantra to its complete formulation:

The fi lter context fi lters the model; the row context iterates one table.

Because a fi lter context fi lters the model, it uses relationships. The fi lter context interacts with 
relationships automatically, and it behaves differently depending on how the cross-fi lter direction of 
the relationship is set. The cross-fi lter direction is represented with a small arrow in the middle of a 
relationship, as shown in Figure 4-20.

FIGURE 4-20 Behavior of fi lter context and relationships.

The fi lter context uses a relationship by going in the direction allowed by the arrow. In all relation-
ships the arrow allows propagation from the one-side to the many-side, whereas when the cross-fi lter 
direction is BOTH, propagation is allowed from the many-side to the one-side too.

A relationship with a single cross-fi lter is a unidirectional relationship, whereas a relationship with 
BOTH cross-fi lter directions is a bidirectional relationship.

This behavior is intuitive. Although we have not explained this sooner, all the reports we have used 
so far relied on this behavior. Indeed, in a typical report fi ltering by Product[Color] and aggregating 
the Sales[Quantity], one would expect the fi lter from Product to propagate to Sales. This is exactly 
what happens: Product is on the one-side of a relationship; thus a fi lter on Product propagates to Sales, 
regardless of the cross-fi lter direction.
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Because our sample data model contains both a bidirectional relationship and many unidirectional 
relationships, we can demonstrate the fi ltering behavior by using three different measures that count 
the number of rows in the three tables: Sales, Product, and Customer.

[NumOfSales]     := COUNTROWS ( Sales )
[NumOfProducts]  := COUNTROWS ( Product )
[NumOfCustomers] := COUNTROWS ( Customer )

The report contains the Product[Color] on the rows. Therefore, each cell is evaluated in a fi lter con-
text that fi lters the product color. Figure 4-21 shows the result.

FIGURE 4-21 This shows the behavior of fi lter context and relationships.

In this fi rst example, the fi lter is always propagating from the one-side to the many-side of rela-
tionships. The fi lter starts from Product[Color]. From there, it reaches Sales, which is on the many-side 
of the relationship with Product, and Product, because it is the very same table. On the other hand, 
NumOfCustomers always shows the same value—the total number of customers. This is because the 
relationship between Customer and Sales does not allow propagation from Sales to Customer. The fi lter 
is moved from Product to Sales, but from there it does not reach Customer.

You might have noticed that the relationship between Sales and Product is a bidirectional relation-
ship. Thus, a fi lter context on Customer also fi lters Sales and Product. We can prove it by changing the 
report, slicing by Customer[Education] instead of Product[Color]. The result is visible in Figure 4-22.
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FIGURE 4-22 Filtering by customer education, the Product table is fi ltered too.

This time the fi lter starts from Customer. It can reach the Sales table because Sales is on the many-
side of the relationship. Furthermore, it propagates from Sales to Product because the relationship 
between Sales and Product is bidirectional—its cross-fi lter direction is BOTH.

Beware that a single bidirectional relationship in a chain does not make the whole chain bidirec-
tional. In fact, a similar measure that counts the number of subcategories, such as the following one, 
demonstrates that the fi lter context starting from Customer does not reach Product Subcategory:

NumOfSubcategories := COUNTROWS ( 'Product Subcategory' )

Adding the measure to the previous report produces the results shown in Figure 4-23, where the 
number of subcategories is the same for all the rows.

FIGURE 4-23 If the relationship is unidirectional, customers cannot fi lter subcategories.

Because the relationship between Product and Product Subcategory is unidirectional, the fi lter does 
not propagate to Product Subcategory. If we update the relationship, setting the cross-fi lter direction to 
BOTH, the result is different as shown in Figure 4-24.

FIGURE 4-24 If the relationship is bidirectional, customers can fi lter subcategories too.
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With the row context, we use RELATED and RELATEDTABLE to propagate the row context through 
relationships. On the other hand, with the fi lter context, no functions are needed to propagate the 
fi lter. The fi lter context fi lters the model, not a table. As such, once one applies a fi lter context, the 
entire model is subject to the fi lter according to the relationships.

 

Important From the examples, it may look like enabling bidirectional fi ltering on all the 
relationships is a good option to let the fi lter context propagate to the whole model. This is 
defi nitely not the case. We will cover advanced relationships in depth later, in Chapter 15. 
Bidirectional fi lters come with a lot more complexity than what we can share with this 
introductory chapter, and you should not use them unless you have a clear idea of the 
consequences. As a rule, you should enable bidirectional fi lters in specifi c measures by using 
the CROSSFILTER function, and only when strictly required.

  

Using DISTINCT and SUMMARIZE in fi lter contexts

Now that you have a solid understanding of evaluation contexts, we can use this knowledge to solve a 
scenario step-by-step. In the meantime, we provide the analysis of a few details that—hopefully—will 
shed more light on the fundamental concepts of row context and fi lter context. Besides, in this example 
we also further describe the SUMMARIZE function, briefl y introduced in Chapter 3, “Using basic table 
functions.”

Before going into more details, please note that this example shows several inaccurate calculations 
before reaching the correct solution. The purpose is educational because we want to teach the process 
of writing DAX code rather than give a solution. In the process of authoring a measure, it is likely you 
will make several initial errors. In this guided example, we describe the correct way of reasoning, which 
helps you solve similar errors by yourself.

The requirement is to compute the average age of customers of Contoso. Even though this looks 
like a legitimate requirement, it is not complete. Are we speaking about their current age or their age 
at the time of the sale? If a customer buys three times, should it count as one event or as three events 
in the average? What if they buy three times at different ages? We need to be more precise. Here is the 
more complete requirement: “Compute the average age of customers at the time of sale, counting each 
customer only once if they made multiple purchases at the same age.”

The solution can be split into two steps:

 ■ Computing the age of the customer when the sale happened

 ■ Averaging it
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The age of the customer changes for every sale. Thus, the age needs to be stored in the Sales table. 
For each row in Sales, one can compute the age of the customer at the time when the sale happened. 
A calculated column perfectly fi ts this need:

Sales[Customer Age] = 
DATEDIFF (                            -- Compute the difference between
    RELATED ( Customer[Birth Date] ), -- the customer’s birth date
    Sales[Order Date],                -- and the date of the sale
    YEAR                              -- in years
)

Because Customer Age is a calculated column, it is evaluated in a row context that iterates Sales. 
The formula needs to access Customer[Birth Date], which is a column in Customer, on the one-side of a 
relationship with Sales. In this case, RELATED is needed to let DAX access the target table. In the sample 
database Contoso, there are many customers for whom the birth date is blank. DATEDIFF returns blank 
if the fi rst parameter is blank.

Because the requirement is to provide the average, a fi rst—and inaccurate—solution might be a 
measure that averages this column:

Avg Customer Age Wrong := AVERAGE ( Sales[Customer Age] )

The result is incorrect because Sales[Customer Age] contains multiple rows with the same age if a 
customer made multiple purchases at a certain age. The requirement is to compute each customer 
only once, and this formula is not following such a requirement. Figure 4-25 shows the result of this last 
measure side-by-side with the expected result.

FIGURE 4-25 A simple average computes the wrong result for the customer’s age.
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Here is the problem: The age of each customer must be counted only once. A possible solution—
still inaccurate—would be to perform a DISTINCT of the customer ages and then average it, with the 
following measure:

Avg Customer Age Wrong Distinct := 
AVERAGEX (                             -- Iterate on the distinct values of 
    DISTINCT ( Sales[Customer Age] ),  -- Sales[Customer Age] and compute the
    Sales[Customer Age]                -- average of the customer’s age
)

This solution is not the correct one yet. In fact, DISTINCT returns the distinct values of the customer 
age. Two customers with the same age would be counted only once by this formula. The requirement 
is to count each customer once, whereas this formula is counting each age once. In fact, Figure 4-26 
shows the report with the new formulation of Avg Customer Age. You see that this solution is still 
inaccurate.

FIGURE 4-26 The average of the distinct customer ages still provides a wrong result.

In the last formula, one might try to replace Customer Age with CustomerKey as the parameter of 
DISTINCT, as in the following code:

Avg Customer Age Invalid Syntax := 
AVERAGEX (                             -- Iterate on the distinct values of 
    DISTINCT ( Sales[CustomerKey] ),   -- Sales[CustomerKey] and compute the
    Sales[Customer Age]                -- average of the customer’s age
)

This code contains an error and DAX will not accept it. Can you spot the reason, without reading the 
solution we provide in the next paragraph?
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AVERAGEX generates a row context that iterates a table. The table provided as the fi rst parameter 
to AVERAGEX is DISTINCT ( Sales[CustomerKey] ). DISTINCT returns a table with one column only, and 
all the unique values of the customer key. Therefore, the row context generated by AVERAGEX only 
contains one column, namely Sales[CustomerKey]. DAX cannot evaluate Sales[Customer Age] in a row 
context that only contains Sales[CustomerKey].

What is needed is a row context that has the granularity of Sales[CustomerKey] but that also con-
tains Sales[Customer Age]. SUMMARIZE, introduced in Chapter 3, can generate the existing unique 
combinations of two columns. Now we can fi nally show a version of this code that implements all the 
requirements:

Correct Average := 
AVERAGEX (                     -- Iterate on 
    SUMMARIZE (                -- all the existing combinations
        Sales,                 -- that exist in Sales
        Sales[CustomerKey],    -- of the customer key and 
        Sales[Customer Age]    -- the customer age
    ),                         -- 
    Sales[Customer Age]        -- and average the customer’s age
)

As usual, it is possible to use a variable to split the calculation in multiple steps. Note that the access 
to the Customer Age column still requires a reference to the Sales table name in the second argument 
of the AVERAGEX function. A variable can contain a table, but it cannot be used as a table reference.

Correct Average := 
VAR CustomersAge =
    SUMMARIZE (                -- Existing combinations
        Sales,                 -- that exist in Sales
        Sales[CustomerKey],    -- of the customer key and 
        Sales[Customer Age]    -- the customer age
    ) 
RETURN
AVERAGEX (                     -- Iterate on list of
    CustomersAge,              -- Customers/age in Sales
    Sales[Customer Age]        -- and average the customer’s age
)

SUMMARIZE generates all the combinations of customer and age available in the current fi lter con-
text. Thus, multiple customers with the same age will duplicate the age, once per customer. AVERAGEX 
ignores the presence of CustomerKey in the table; it only uses the customer age. CustomerKey is only 
needed to count the correct number of occurrences of each age.

It is worth stressing that the full measure is executed in the fi lter context generated by the report. 
Thus, only the customers who bought something are evaluated and returned by SUMMARIZE. Every 
cell of the report has a different fi lter context, only considering the customers who purchased at least 
one product of the color displayed in the report.
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Conclusions

It is time to recap the most relevant topics you learned in this chapter about evaluation contexts.

 ■ There are two evaluation contexts: the fi lter context and the row context. The two evaluation 
contexts are not variations of the same concept: the fi lter context fi lters the model; the row con-
text iterates one table.

 ■ To understand a formula’s behavior, you always need to consider both evaluation contexts 
because they operate at the same time.

 ■ DAX creates a row context automatically for a calculated column. One can also create a row 
context programmatically by using an iterator. Every iterator defi nes a row context.

 ■ You can nest row contexts and, in case they are on the same table, the innermost row context 
hides the previous row contexts on the same table. Variables are useful to store values retrieved 
when the required row context is accessible. In earlier versions of DAX where variables were not 
available, the EARLIER function was used to get access to the previous row context. As of today, 
using EARLIER is discouraged.

 ■ When iterating over a table that is the result of a table expression, the row context only contains 
the columns returned by the table expression.

 ■ Client tools like Power BI create a fi lter context when you use fi elds on rows, columns, slicers, 
and fi lters. A fi lter context can also be created programmatically by using CALCULATE, which we 
introduce in the next chapter.

 ■ The row context does not propagate through relationships automatically. One needs to force 
the propagation by using RELATED and RELATEDTABLE. You need to use these functions in a 
row context on the correct side of a one-to-many relationship: RELATED on the many-side, 
RELATEDTABLE on the one-side.

 ■ The fi lter context fi lters the model, and it uses relationships according to their cross-fi lter 
direction. It always propagates from the one-side to the many-side. In addition, if you use the 
cross-fi ltering direction BOTH, then the propagation also happens from the many-side to the 
one-side.

At this point, you have learned the most complex conceptual topics of the DAX language. These 
points rule all the evaluation fl ows of your formulas, and they are the pillars of the DAX language. 
Whenever you encounter an expression that does not compute what you want, there is a huge chance 
that was because you have not fully understood these rules.

As we said in the introduction, at fi rst glance all these topics look simple. In fact, they are. What 
makes them complex is the fact that in a DAX expression you might have several evaluation contexts 
active in different parts of the formula. Mastering evaluation contexts is a skill that you will gain with 
experience, and we will try to help you on this by showing many examples in the next chapters. After 
writing some DAX formulas of your own, you will intuitively know which contexts are used and which 
functions they require, and you will fi nally master the DAX language.
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C H A P T E R  5

Understanding CALCULATE and 
CALCULATETABLE

In this chapter we continue our journey in discovering the power of the DAX language with a detailed 
explanation of a single function: CALCULATE. The same considerations apply for CALCULATETABLE, 
which evaluates and returns a table instead of a scalar value. For simplicity’s sake, we will refer to 
CALCULATE in the examples, but remember that CALCULATETABLE displays the same behavior.

CALCULATE is the most important, useful, and complex function in DAX, so it deserves a full chapter. 
The function itself is simple to learn; it only performs a few tasks. Complexity comes from the fact that 
CALCULATE and CALCULATETABLE are the only functions in DAX that can create new fi lter contexts. 
Thus, although they are simple functions, using CALCULATE or CALCULATETABLE in a formula instantly 
increases its complexity.

This chapter is as tough as the previous chapter was. We suggest you carefully read it once, get a 
general feeling for CALCULATE, and move on to the remaining part of the book. Then, as soon as you 
feel lost in a specifi c formula, come back to this chapter and read it again from the beginning. You will 
probably discover new information each time you read it.

Introducing CALCULATE and CALCULATETABLE

The previous chapter described the two evaluation contexts: the row context and the fi lter context. 
The row context automatically exists for a calculated column, and one can create a row context pro-
grammatically by using an iterator. The fi lter context, on the other hand, is created by the report, and 
we have not described yet how to programmatically create a fi lter context. CALCULATE and CALCU-
LATETABLE are the only functions required to operate on the fi lter context. Indeed, CALCULATE and 
CALCULATETABLE are the only functions that can create a new fi lter context by manipulating the 
existing one. From here onwards, we will show examples based on CALCULATE only, but remember 
that CALCULATETABLE performs the same operation for DAX expressions returning a table. Later in the 
book there are more examples using CALCULATETABLE, as in Chapter 12, “Working with tables,” and in 
Chapter 13, “Authoring queries.”

Creating fi lter contexts
Here we will introduce the reason why one would want to create new fi lter contexts with a practi-
cal example. As described in the next sections, writing code without being able to create new fi lter 
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contexts results in verbose and unreadable code. What follows is an example of how creating a new 
fi lter context can drastically improve code that, at fi rst, looked rather complex.

Contoso is a company that sells electronic products all around the world. Some products are 
branded Contoso, whereas others have different brands. One of the reports requires a comparison of 
the gross margins, both as an amount and as a percentage, of Contoso-branded products against their 
competitors. The fi rst part of the report requires the following calculations:

Sales Amount := SUMX ( Sales, Sales[Quantity] * Sales[Net Price] )
Gross Margin := SUMX ( Sales, Sales[Quantity] * ( Sales[Net Price] - Sales[Unit Cost] ) )
GM % := DIVIDE ( [Gross Margin], [Sales Amount] )

One beautiful aspect of DAX is that you can build more complex calculations on top of existing 
measures. In fact, you can appreciate this in the defi nition of GM %, the measure that computes the 
percentage of the gross margin against the sales. GM % simply invokes the two original measures as it 
divides them. If you already have a measure that computes a value, you can call the measure instead of 
rewriting the full code.

Using the three measures defi ned above, one can build the fi rst report, as shown in Figure 5-1.

FIGURE 5-1 The three measures provide quick insights in the margin of different categories.

The next step in building the report is more intricate. In fact, the fi nal report we want is the one in 
Figure 5-2 that shows two additional columns: the gross margin for Contoso-branded products, both 
as amount and as percentage.

FIGURE 5-2 The last two columns of the report show gross margin amount and gross margin percentage for 
Contoso-branded products.
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With the knowledge acquired so far, you are already capable of authoring the code for these two 
measures. Indeed, because the requirement is to restrict the calculation to only one brand, a solution is 
to use FILTER to restrict the calculation of the gross margin to Contoso products only:

Contoso GM := 
VAR ContosoSales =             -- Saves the rows of Sales which are related
    FILTER (                   -- to Contoso-branded products into a variable
        Sales,                 
        RELATED ( 'Product'[Brand] ) = "Contoso" 
    )
VAR ContosoMargin =            -- Iterates over ContosoSales
    SUMX (                     -- to only compute the margin for Contoso
        ContosoSales, 
        Sales[Quantity] * ( Sales[Net Price] - Sales[Unit Cost] ) 
    )
RETURN
    ContosoMargin

The ContosoSales variable contains the rows of Sales related to all the Contoso-branded prod-
ucts. Once the variable is computed, SUMX iterates on ContosoSales to compute the margin. Because 
the iteration is on the Sales table and the fi lter is on the Product table, one needs to use RELATED to 
retrieve the related product for each row in Sales. In a similar way, one can compute the gross margin of 
Contoso by iterating the ContosoSales variable twice:

Contoso GM % := 
VAR ContosoSales =             -- Saves the rows of Sales which are related
    FILTER (                   -- to Contoso-branded products into a variable
        Sales,                 
        RELATED ( 'Product'[Brand] ) = "Contoso" 
    )
VAR ContosoMargin =            -- Iterates over ContosoSales
    SUMX (                     -- to only compute the margin for Contoso
        ContosoSales, 
        Sales[Quantity] * ( Sales[Net Price] - Sales[Unit Cost] ) 
    )
VAR ContosoSalesAmount =       -- Iterates over ContosoSales
    SUMX (                     -- to only compute the sales amount for Contoso
        ContosoSales, 
        Sales[Quantity] * Sales[Net Price]  
    ) 
VAR Ratio =
    DIVIDE ( ContosoMargin, ContosoSalesAmount )
RETURN
    Ratio

The code for Contoso GM % is a bit longer but, from a logical point of view, it follows the same pat-
tern as Contoso GM. Although these measures work, it is easy to note that the initial elegance of DAX 
is lost. Indeed, the model already contains one measure to compute the gross margin and another 
measure to compute the gross margin percentage. However, because the new measures needed to be 
fi ltered, we had to rewrite the expression to add the condition.
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It is worth stressing that the basic measures Gross Margin and GM % can already compute the 
values for Contoso. In fact, from Figure 5-2 you can note that the gross margin for Contoso is equal to 
3,877,070.65 and the percentage is equal to 52.73%. One can obtain the very same numbers by slicing 
the base measures Gross Margin and GM % by Brand, as shown in Figure 5-3.

FIGURE 5-3 When sliced by brand, the base measures compute the value of Gross Margin and GM % for Contoso.

In the highlighted cells, the fi lter context created by the report is fi ltering the Contoso brand. 
The fi lter context fi lters the model. Therefore, a fi lter context placed on the Product[Brand] column 
fi lters the Sales table because of the relationship linking Sales to Product. Using the fi lter context, one 
can fi lter a table indirectly because the fi lter context operates on the whole model.

Thus, if we could make DAX compute the Gross Margin measure by creating a fi lter context pro-
grammatically, which only fi lters the Contoso-branded products, then our implementation of the last 
two measures would be much easier. This is possible by using CALCULATE.

The complete description of CALCULATE comes later in this chapter. First, we examine the syntax of 
CALCULATE:

CALCULATE ( Expression, Condition1, … ConditionN )

CALCULATE can accept any number of parameters. The only mandatory parameter is the fi rst one, 
that is, the expression to evaluate. The conditions following the fi rst parameter are called fi lter argu-
ments. CALCULATE creates a new fi lter context based on the set of fi lter arguments. Once the new fi lter 
context is computed, CALCULATE applies it to the model, and it proceeds with the evaluation of the 
expression. Thus, by leveraging CALCULATE, the code for Contoso Margin and Contoso GM % becomes 
much simpler:

Contoso GM := 
CALCULATE ( 
    [Gross Margin],                 -- Computes the gross margin
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    'Product'[Brand] = "Contoso"    -- In a filter context where brand = Contoso
)
 
Contoso GM % := 
CALCULATE ( 
    [GM %],                         -- Computes the gross margin percentage
    'Product'[Brand] = "Contoso"    -- In a filter context where brand = Contoso
)

Welcome back, simplicity and elegance! By creating a fi lter context that forces the brand to be Con-
toso, one can rely on existing measures and change their behavior without having to rewrite the code 
of the measures.

CALCULATE lets you create new fi lter contexts by manipulating the fi lters in the current context. As 
you have seen, this leads to simple and elegant code. In the next sections we provide a complete and 
more formal defi nition of the behavior of CALCULATE, describing in detail what CALCULATE does and 
how to take advantage of its features. Indeed, so far we have kept the example rather high-level when, 
in fact, the initial defi nition of the Contoso measures is not semantically equivalent to the fi nal defi ni-
tion. There are some differences that one needs to understand well.

Introducing CALCULATE
Now that you have had an initial exposure to CALCULATE, it is time to start learning the details of this 
function. As introduced earlier, CALCULATE is the only DAX function that can modify the fi lter context; 
and remember, when we mention CALCULATE, we also include CALCULATETABLE. CALCULATE does 
not modify a fi lter context: It creates a new fi lter context by merging its fi lter parameters with the exist-
ing fi lter context. Once CALCULATE ends, its fi lter context is discarded and the previous fi lter context 
becomes effective again.

We have introduced the syntax of CALCULATE as

CALCULATE ( Expression, Condition1, … ConditionN )

The fi rst parameter is the expression that CALCULATE will evaluate. Before evaluating the expres-
sion, CALCULATE computes the fi lter arguments and uses them to manipulate the fi lter context.

The fi rst important thing to note about CALCULATE is that the fi lter arguments are not Boolean 
conditions: The fi lter arguments are tables. Whenever you use a Boolean condition as a fi lter argument 
of CALCULATE, DAX translates it into a table of values.

In the previous section we used this code:

Contoso GM := 
CALCULATE ( 
    [Gross Margin],                 -- Computes the gross margin
    'Product'[Brand] = "Contoso"    -- In a filter context where brand = Contoso
)
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Using a Boolean condition is only a shortcut for the complete CALCULATE syntax. This is known as 
syntax sugar. It reads this way:

Contoso GM := 
CALCULATE ( 
    [Gross Margin],                     -- Computes the gross margin
    FILTER (                            -- Using as valid values for Product[Brand]
        ALL ( 'Product'[Brand] ),       -- any value for Product[Brand]
        'Product'[Brand] = "Contoso"    -- which is equal to "Contoso"
    )
)

The two syntaxes are equivalent, and there are no performance or semantic differences between 
them. That being said, particularly when you are learning CALCULATE for the fi rst time, it is useful to 
always read fi lter arguments as tables. This makes the behavior of CALCULATE more apparent. Once 
you get used to CALCULATE semantics, the compact version of the syntax is more convenient. It is 
shorter and easier to read.

A fi lter argument is a table, that is, a list of values. The table provided as a fi lter argument defi nes 
the list of values that will be visible—for the column—during the evaluation of the expression. In the 
previous example, FILTER returns a table with one row only, containing a value for Product[Brand] that 
equals “Contoso”. In other words, “Contoso” is the only value that CALCULATE will make visible for the 
Product[Brand] column. Therefore, CALCULATE fi lters the model including only products of the 
Contoso brand. Consider these two defi nitions:

Sales Amount := 
    SUMX ( 
        Sales, 
        Sales[Quantity] * Sales[Net Price] 
    )
 
Contoso Sales := 
CALCULATE ( 
    [Sales Amount], 
    FILTER ( 
        ALL ( 'Product'[Brand] ),
        'Product'[Brand] = "Contoso"
    )
)

The fi lter parameter of FILTER in the CALCULATE of Contoso Sales scans ALL(Product[Brand]); there-
fore, any previously existing fi lter on the product brand is overwritten by the new fi lter. This is more evi-
dent when you use the measures in a report that slices by brand. You can see in Figure 5-4 that Contoso 
Sales reports on all the rows/brands the same value as Sales Amount did for Contoso specifi cally.

In every row, the report creates a fi lter context containing the relevant brand. For example, in 
the row for Litware the original fi lter context created by the report contains a fi lter that only shows 
Litware products. Then, CALCULATE evaluates its fi lter argument, which returns a table containing 
only Contoso. The newly created fi lter overwrites the previously existing fi lter on the same column. 
You can see a graphic representation of the process in Figure 5-5.
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FIGURE 5-4 Contoso Sales overwrites the existing fi lter with the new fi lter for Contoso.

Contoso Sales :=
CALCULATE (
    [Sales Amount],
    FILTER (
        ALL ( 'Product'[Brand] ),
        'Product'[Brand] = "Contoso"
    )
)

Brand

Litware

Brand

Contoso

Contoso

OVERWRITE

Brand

FIGURE 5-5 The fi lter with Litware is overwritten by the fi lter with Contoso evaluated by CALCULATE.
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CALCULATE does not overwrite the whole original fi lter context. It only replaces previously existing 
fi lters on the columns contained in the fi lter argument. In fact, if one changes the report to now slice by 
Product[Category], the result is different, as shown in Figure 5-6.

FIGURE 5-6 If the report fi lters by Category, the fi lter on Brand will be merged and no overwrite happens.

Now the report is fi ltering Product[Category], whereas CALCULATE applies a fi lter on Product[Brand] 
to evaluate the Contoso Sales measure. The two fi lters do not work on the same column of the Product 
table. Therefore, no overwriting happens, and the two fi lters work together as a new fi lter context. As 
a result, each cell is showing the sales of Contoso for the given category. The scenario is depicted in 
Figure 5-7.

Contoso Sales :=
CALCULATE (
    [Sales Amount],
    FILTER (
        ALL ( 'Product'[Brand] ),
        'Product'[Brand] = "Contoso"
    )
)

Cell phones

Category

Contoso

Brand

Brand

Contoso

Category

Cell phones

FIGURE 5-7 CALCULATE overwrites fi lters on the same column. It merges fi lters if they are on different columns.



 CHAPTER 5 Understanding CALCULATE and CALCULATETABLE 123

Now that you have seen the basics of CALCULATE, we can summarize its semantics:

 ■ CALCULATE makes a copy of the current fi lter context.

 ■ CALCULATE evaluates each fi lter argument and produces, for each condition, the list of valid 
values for the specifi ed columns.

 ■ If two or more fi lter arguments affect the same column, they are merged together using an 
AND operator (or using the set intersection in mathematical terms).

 ■ CALCULATE uses the new condition to replace existing fi lters on the columns in the model. 
If a column already has a fi lter, then the new fi lter replaces the existing one. On the other 
hand, if the column does not have a fi lter, then CALCULATE adds the new fi lter to the fi lter 
context.

 ■ Once the new fi lter context is ready, CALCULATE applies the fi lter context to the model, and it 
computes the fi rst argument: the expression. In the end, CALCULATE restores the original fi lter 
context, returning the computed result.

 

Note CALCULATE does another very important task: It transforms any existing row con-
text into an equivalent fi lter context. You fi nd a more detailed discussion on this topic later 
in this chapter, under “Understanding context transition.” Should you do a second reading 
of this section, do remember: CALCULATE creates a fi lter context out of the existing row 
contexts.

  

CALCULATE accepts fi lters of two types:

 ■ Lists of values, in the form of a table expression. In that case, you provide the exact list of val-
ues you want to make visible in the new fi lter context. The fi lter can be a table with any number 
of columns. Only the existing combinations of values in different columns will be considered in 
the fi lter.

 ■ Boolean conditions, such as Product[Color] = “White”. These fi lters need to work on a single 
column because the result needs to be a list of values for a single column. This type of fi lter 
argument is also known as predicate.

If you use the syntax with a Boolean condition, DAX transforms it into a list of values. Thus, when-
ever you write this code:

Sales Amount Red Products :=
CALCULATE (
    [Sales Amount],
    'Product'[Color] = "Red"
)
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DAX transforms the expression into this:

Sales Amount Red Products :=
CALCULATE (
    [Sales Amount],
    FILTER (
        ALL ( 'Product'[Color] ),
        'Product'[Color] = "Red"
    )
)

For this reason, you can only reference one column in a fi lter argument with a Boolean condition. 
DAX needs to detect the column to iterate in the FILTER function, which is generated in the background 
automatically. If the Boolean expression references two or more columns, then you must explicitly write 
the FILTER iteration, as you learn later in this chapter.

Using CALCULATE to compute percentages
Now that we have introduced CALCULATE, we can use it to defi ne several calculations. The goal of this 
section is to bring your attention to some details about CALCULATE that are not obvious at fi rst sight. 
Later in this chapter, we will cover more advanced aspects of CALCULATE. For now, we focus on some 
of the issues you might encounter when you start using CALCULATE.

A pattern that appears often is that of percentages. When working with percentages, it is very 
important to defi ne exactly the calculation required. In this set of examples, you learn how different 
uses of CALCULATE and ALL functions provide different results.

We can start with a simple percentage calculation. We want to build the following report showing 
the sales amount along with the percentage over the grand total. You can see in Figure 5-8 the result 
we want to obtain.

FIGURE 5-8 Sales Pct shows the percentage of the current category against the grand total.

To compute the percentage, one needs to divide the value of Sales Amount in the current fi lter con-
text by the value of Sales Amount in a fi lter context that ignores the existing fi lter on Category. In fact, 
the value of 1.26% for Audio is computed as 384,518.16 divided by 30,591,343.98.
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In each row of the report, the fi lter context already contains the current category. Thus, for Sales 
Amount, the result is automatically fi ltered by the given category. The denominator of the ratio needs 
to ignore the current fi lter context, so that it evaluates the grand total. Because the fi lter arguments of 
CALCULATE are tables, it is enough to provide a table function that ignores the current fi lter context on 
the category and always returns all the categories—regardless of any fi lter. You previously learned that 
this function is ALL. Look at the following measure defi nition:

All Category Sales := 
CALCULATE (                         -- Changes the filter context of
    [Sales Amount],                 -- the sales amount
    ALL ( 'Product'[Category] )     -- making ALL categories visible
)

ALL removes the fi lter on the Product[Category] column from the fi lter context. Thus, in any cell of 
the report, it ignores any fi lter existing on the categories. The effect is that the fi lter on the category 
applied by the row of the report is removed. Look at the result in Figure 5-9. You can see that each row 
of the report for the All Category Sales measure returns the same value all the way through—the grand 
total of Sales Amount.

ALL ( 'Product'[Category] )
removes the current filter

on the category

Category

Audio

All Category Sales :=
CALCULATE (
    [Sales Amount],
    ALL ( 'Product'[Category] )
)

REMOVE

FILTER

Category

FIGURE 5-9 ALL removes the fi lter on Category, so CALCULATE defi nes a fi lter context without any fi lter on 
Category.

The All Category Sales measure is not useful by itself. It is unlikely a user would want to create a 
report that shows the same value on all the rows. However, that value is perfect as the denominator of 
the percentage we are looking to compute. In fact, the formula computing the percentage can be writ-
ten this way:
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Sales Pct := 
VAR CurrentCategorySales =                    -- CurrentCategorySales contains
    [Sales Amount]                            -- the sales in the current context
VAR AllCategoriesSales =                      -- AllCategoriesSales contains
    CALCULATE (                               -- the sales amount in a filter context
        [Sales Amount],                       -- where all the product categories
        ALL ( 'Product'[Category] )           -- are visible
    )
VAR Ratio =
    DIVIDE ( 
        CurrentCategorySales, 
        AllCategoriesSales 
    )
RETURN
    Ratio

As you have seen in this example, mixing table functions and CALCULATE makes it possible to author use-
ful measures easily. We use this technique a lot in the book because it is the primary calculation tool in DAX.

 

Note ALL has specifi c semantics when used as a fi lter argument of CALCULATE. In fact, 
it does not replace the fi lter context with all the values. Instead, CALCULATE uses ALL to 
remove the fi lter on the category column from the fi lter context. The side effects of this 
behavior are somewhat complex to follow and do not belong in this introductory section. 
We will cover them in more detail later in this chapter.

  

As we said in the introduction of this section, it is important to pay attention to small details when 
authoring percentages like the one we are currently writing. In fact, the percentage works fi ne if the 
report is slicing by category. The code removes the fi lter from the category, but it does not touch any 
other existing fi lter. Therefore, if the report adds other fi lters, the result might not be exactly what one 
wants to achieve. For example, look at the report in Figure 5-10 where we added the Product[Color] 
column as a second level of detail in the rows of the report.

FIGURE 5-10 Adding the color to the report produces unexpected results at the color level.
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Looking at percentages, the value at the category level is correct, whereas the value at the color 
level looks wrong. In fact, the color percentages do not add up—neither to the category level nor to 
100%. To understand the meaning of these values and how they are evaluated, it is always of great help 
to focus on one cell and understand exactly what happened to the fi lter context. Focus on Figure 5-11.

Black

Color

Audio

Category

Black

Color
REMOVE
FILTER

Category

Sales Pct :=
VAR CurrentCategorySales =

[Sales Amount]

CALCULATE (

)

[Sales Amount],
ALL ( 'Product'[Category] )

CurrentCategorySales,
AllCategoriesSales

VAR AllCategoriesSales =

VAR Ratio =

)

RETURN Ratio

DIVIDE (

FIGURE 5-11 ALL on Product[Category] removes the fi lter on category, but it leaves the fi lter on color intact.

The original fi lter context created by the report contained both a fi lter on category and a fi lter on 
color. The fi lter on Product[Color] is not overwritten by CALCULATE, which only removes the fi lter from 
Product[Category]. As a result, the fi nal fi lter context only contains the color. Therefore, the denomina-
tor of the ratio contains the sales of all the products of the given color—Black—and of any category.

The calculation being wrong is not an unexpected behavior of CALCULATE. The problem here is that 
the formula has been designed to specifi cally work with a fi lter on a category, leaving any other fi lter 
untouched. The same formula makes perfect sense in a different report. Look at what happens if one 
switches the order of the columns, building a report that slices by color fi rst and category second, as in 
Figure 5-12.
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FIGURE 5-12 The result looks more reasonable once color and category are interchanged.

The report in Figure 5-12 makes a lot more sense. The measure computes the same result, but it is 
more intuitive thanks to the layout of the report. The percentage shown is the percentage of the cat-
egory inside the given color. Color by color, the percentage always adds up to 100%.

In other words, when the user is required to compute a percentage, they should pay special atten-
tion in determining the denominator of the percentage. CALCULATE and ALL are the primary tools to 
use, but the specifi cation of the formula depends on the business requirements.

Back to the example: The goal is to fi x the calculation so that it computes the percentage against a 
fi lter on either the category or the color. There are multiple ways of performing the operation, all lead-
ing to slightly different results that are worth examining deeper.

One possible solution is to let CALCULATE remove the fi lter from both the category and the color. 
Adding multiple fi lter arguments to CALCULATE accomplishes this goal:

Sales Pct := 
VAR CurrentCategorySales = 
    [Sales Amount]
VAR AllCategoriesAndColorSales = 
    CALCULATE ( 
        [Sales Amount], 
        ALL ( 'Product'[Category] ), -- The two ALL conditions could also be replaced
        ALL ( 'Product'[Color] )     -- by ALL ( 'Product'[Category], 'Product'[Color] )
    )
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VAR Ratio =
    DIVIDE ( 
        CurrentCategorySales, 
        AllCategoriesAndColorSales 
    )
RETURN
    Ratio

This latter version of Sales Pct works fi ne with the report containing the color and the category, but 
it still suffers from limitations similar to the previous versions. In fact, it produces the right percent-
age with color and category—as you can see in Figure 5-13—but it will fail as soon as one adds other 
columns to the report.

FIGURE 5-13 With ALL on product category and color, the percentages now sum up correctly.

Adding another column to the report would create the same inconsistency noticed so far. If the user 
wants to create a percentage that removes all the fi lters on the Product table, they could still use the 
ALL function passing a whole table as an argument:

Sales Pct All Products := 
VAR CurrentCategorySales = 
    [Sales Amount]
VAR AllProductSales = 
    CALCULATE ( 
        [Sales Amount], 
        ALL ( 'Product' )
    )
VAR Ratio =
    DIVIDE ( 
        CurrentCategorySales, 
        AllProductSales
    )
RETURN
    Ratio
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ALL on the Product table removes any fi lter on any column of the Product table. In Figure 5-14 you 
can see the result of that calculation.

FIGURE 5-14 ALL used on the product table removes the fi lters from all the columns of the Product table.

So far, you have seen that by using CALCULATE and ALL together, you can remove fi lters—from a 
column, from multiple columns, or from a whole table. The real power of CALCULATE is that it offers 
many options to manipulate a fi lter context, and its capabilities do not end there. In fact, one might 
want to analyze the percentages by also slicing columns from different tables. For example, if the 
report is sliced by product category and customer continent, the last measure we created is not perfect 
yet, as you can see in Figure 5-15.

FIGURE 5-15 Slicing with columns of multiple tables still shows unexpected results.

At this point, the problem might be evident to you. The measure at the denominator removes 
any fi lter from the Product table, but it leaves the fi lter on Customer[Continent] intact. Therefore, the 
denominator computes the total sales of all products in the given continent.

As in the previous scenario, the fi lter can be removed from multiple tables by putting several fi lters 
as arguments of CALCULATE:
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Sales Pct All Products and Customers := 
VAR CurrentCategorySales = 
    [Sales Amount]
VAR AllProductAndCustomersSales = 
    CALCULATE ( 
        [Sales Amount], 
        ALL ( 'Product' ),
        ALL ( Customer )
    )
VAR Ratio =
    DIVIDE ( 
        CurrentCategorySales, 
        AllProductAndCustomersSales
    )
RETURN
    Ratio

By using ALL on two tables, now CALCULATE removes the fi lters from both tables. The result, as 
expected, is a percentage that adds up correctly, as you can appreciate in Figure 5-16.

FIGURE 5-16 Using ALL on two tables removes the fi lter context on both tables at the same time.

As with two columns, the same challenge comes up with two tables. If a user adds another column 
from a third table to the context, the measure will not remove the fi lter from the third table. One pos-
sible solution when they want to remove the fi lter from any table that might affect the calculation is to 
remove any fi lter from the fact table itself. In our model the fact table is Sales. Here is a measure that 
computes an additive percentage no matter what fi lter is interacting with the Sales table:

Pct All Sales := 
VAR CurrentCategorySales = 
    [Sales Amount]
VAR AllSales = 
    CALCULATE ( 
        [Sales Amount], 
        ALL ( Sales )
    )
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VAR Ratio =
    DIVIDE ( 
        CurrentCategorySales, 
        AllSales
    )
RETURN
    Ratio

This measure leverages relationships to remove the fi lter from any table that might fi lter Sales. At 
this stage, we cannot explain the details of how it works because it leverages expanded tables, which 
we introduce in Chapter 14, “Advanced DAX concepts.” You can appreciate its behavior by inspecting 
Figure 5-17, where we removed the amount from the report and added the calendar year on the col-
umns. Please note that the Calendar Year belongs to the Date table, which is not used in the measure. 
Nevertheless, the fi lter on Date is removed as part of the removal of fi lters from Sales.

FIGURE 5-17 ALL on the fact table removes any fi lter from related tables as well.

Before leaving this long exercise with percentages, we want to show another fi nal example of fi lter 
context manipulation. As you can see in Figure 5-17, the percentage is always against the grand total, 
exactly as expected. What if the goal is to compute a percentage over the grand total of only the cur-
rent year? In that case, the new fi lter context created by CALCULATE needs to be prepared carefully. 
Indeed, the denominator needs to compute the total of sales regardless of any fi lter apart from the 
current year. This requires two actions:

 ■ Removing all fi lters from the fact table

 ■ Restoring the fi lter for the year

Beware that the two conditions are applied at the same time, although it might look like the two 
steps come one after the other. You have already learned how to remove all the fi lters from the fact 
table. The last step is learning how to restore an existing fi lter.
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Note The goal of this section is to explain basic techniques for manipulating the 
fi lter context. Later in this chapter you see another easier approach to solve this specifi c 
requirement—percentage over the visible grand total—by using ALLSELECTED.

  

In Chapter 3, “Using basic table functions,” you learned the VALUES function. VALUES returns the 
list of values of a column in the current fi lter context. Because the result of VALUES is a table, it can be 
used as a fi lter argument for CALCULATE. As a result, CALCULATE applies a fi lter on the given column, 
restricting its values to those returned by VALUES. Look at the following code:

Pct All Sales CY := 
VAR CurrentCategorySales = 
    [Sales Amount]
VAR AllSalesInCurrentYear = 
    CALCULATE ( 
        [Sales Amount], 
        ALL ( Sales ),
        VALUES ( 'Date'[Calendar Year] )
    )
VAR Ratio =
    DIVIDE ( 
        CurrentCategorySales, 
        AllSalesInCurrentYear
    )
RETURN
    Ratio

Once used in the report the measure accounts for 100% for every year, still computing the percent-
age against any other fi lter apart from the year. You see this in Figure 5-18.

FIGURE 5-18 By using VALUES, you can restore part of the fi lter context, reading it from the original fi lter context.

Figure 5-19 depicts the full behavior of this complex formula.
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Cell phones
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Calendar Year REMOVE
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Category CY 2007

Calendar Year

Pct All Sales CY :=
VAR CurrentCategorySales =

[Sales Amount]

CALCULATE (

)

[Sales Amount],
ALL ( Sales ),
VALUES ( 'Date'[Calendar Year] )

CurrentCategorySales,
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CY 2007

OVERWRITE
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FIGURE 5-19 The key of this diagram is that VALUES is still evaluated in the original fi lter context.

Here is a review of the diagram:

 ■ The cell containing 4.22% (sales of Cell Phones for Calendar Year 2007) has a fi lter context that 
fi lters Cell phones for CY 2007.

 ■ CALCULATE has two fi lter arguments: ALL ( Sales ) and VALUES ( Date[Calendar Year] ).

• ALL ( Sales ) removes the fi lter from the Sales table.

• VALUES ( Date[Calendar Year] ) evaluates the VALUES function in the original fi lter context, 
still affected by the presence of CY 2007 on the columns. As such, it returns the only year vis-
ible in the current fi lter context—that is, CY 2007.

The two fi lter arguments of CALCULATE are applied to the current fi lter context, resulting in a fi lter 
context that only contains a fi lter on Calendar Year. The denominator computes the total sales in a fi lter 
context with CY 2007 only.

It is of paramount importance to understand clearly that the fi lter arguments of CALCULATE are 
evaluated in the original fi lter context where CALCULATE is called. In fact, CALCULATE changes the 
fi lter context, but this only happens after the fi lter arguments are evaluated.

Using ALL over a table followed by VALUES over a column is a technique used to replace the fi lter 
context with a fi lter over that same column.
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Note The previous example could also have been obtained by using ALLEXCEPT. The 
semantics of ALL/VALUES is different from ALLEXCEPT. In Chapter 10, “Working with the fi l-
ter context,” you will see a complete description of the differences between the ALLEXCEPT 
and the ALL/VALUES techniques.

  

As you have seen in these examples, CALCULATE, in itself, is not a complex function. Its behavior is 
simple to describe. At the same time, as soon as you start using CALCULATE, the complexity of the code 
becomes much higher. Indeed, you need to focus on the fi lter context and understand exactly how CALCU-
LATE generates the new fi lter context. A simple percentage hides a lot of complexity, and that complexity 
is all in the details. Before one really masters the handling of evaluation contexts, DAX is a bit of a mystery. 
The key to unlocking the full power of the language is all in mastering evaluation contexts. Moreover, in all 
these examples we only had to manage one CALCULATE. In a complex formula, having four or fi ve different 
contexts in the same code is not unusual because of the presence of many instances of CALCULATE.

It is a good idea to read this whole section about percentages at least twice. In our experience, a 
second read is much easier and lets you focus on the important aspects of the code. We wanted to 
show this example to stress the importance of theory, when it comes to CALCULATE. A small change in 
the code has an important effect on the numbers computed by the formula. After your second read, 
proceed with the next sections where we focus more on theory than on practical examples.

Introducing KEEPFILTERS
You learned in the previous sections that the fi lter arguments of CALCULATE overwrite any previously 
existing fi lter on the same column. Thus, the following measure returns the sales of Audio regardless of 
any previously existing fi lter on Product[Category]:

Audio Sales := 
CALCULATE ( 
    [Sales Amount], 
    'Product'[Category] = "Audio" 
)

As you can see in Figure 5-20, the value of Audio is repeated on all the rows of the report.

FIGURE 5-20 Audio Sales always shows the sales of Audio products, regardless of the current fi lter context.
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CALCULATE overwrites the existing fi lters on the columns where a new fi lter is applied. All the 
remaining columns of the fi lter context are left intact. In case you do not want to overwrite existing fi l-
ters, you can wrap the fi lter argument with KEEPFILTERS. For example, if you want to show the amount 
of Audio sales when Audio is present in the fi lter context and a blank value if Audio is not present in the 
fi lter context, you can write the following measure:

Audio Sales KeepFilters := 
CALCULATE ( 
    [Sales Amount], 
    KEEPFILTERS ( 'Product'[Category] = "Audio" )
)

KEEPFILTERS is the second CALCULATE modifi er that you learn—the fi rst one was ALL. We further 
cover CALCULATE modifi ers later in this chapter. KEEPFILTERS alters the way CALCULATE applies a fi lter 
to the new fi lter context. Instead of overwriting an existing fi lter over the same column, it adds the new 
fi lter to the existing ones. Therefore, only the cells where the fi ltered category was already included in 
the fi lter context will produce a visible result. You see this in Figure 5-21.

FIGURE 5-21 Audio Sales KeepFilters shows the sales of Audio products only for the Audio row and for the Grand 
Total.

KEEPFILTERS does exactly what its name implies. Instead of overwriting the existing fi lter, it 
keeps the existing fi lter and adds the new fi lter to the fi lter context. We can depict the behavior 
with Figure 5-22.

Because KEEPFILTERS avoids overwriting, the new fi lter generated by the fi lter argument of CAL-
CULATE is added to the context. If we look at the cell for the Audio Sales KeepFilters measure in the 
Cell Phones row, there the resulting fi lter context contains two fi lters: one fi lters Cell Phones; the other 
fi lters Audio. The intersection of the two conditions results in an empty set, which produces a blank 
result.
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Audio Sales KeepFilters := 
CALCULATE (

[Sales Amount],
KEEPFILTERS ( 'Product'[Category] = "Audio" )

)

Category

Cell phones

Category

Audio

KEEPFILTERS

Cell phones

Category

Audio

Category

FIGURE 5-22 The fi lter context generated with KEEPFILTERS fi lters at the same time as both Cell phones and Audio.

The behavior of KEEPFILTERS is clearer when there are multiple elements selected in a column. 
For example, consider the following measures; they fi lter Audio and Computers with and without 
KEEPFILTERS:

Always Audio-Computers :=
CALCULATE (
    [Sales Amount],
    'Product'[Category] IN { "Audio", "Computers" }
)
 
KeepFilters Audio-Computers :=
CALCULATE (
    [Sales Amount],
    KEEPFILTERS ( 'Product'[Category] IN { "Audio", "Computers" } )
)

The report in Figure 5-23 shows that the version with KEEPFILTERS only computes the sales amount 
values for Audio and for Computers, leaving all other categories blank. The Total row only takes Audio 
and Computers into account.
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FIGURE 5-23 Using KEEPFILTERS, the original and the new fi lter contexts are merged together.

KEEPFILTERS can be used either with a predicate or with a table. Indeed, the previous code could 
also be written in a more verbose way:

KeepFilters Audio-Computers :=
CALCULATE (
    [Sales Amount],
    KEEPFILTERS ( 
        FILTER ( 
            ALL ( 'Product'[Category] ),
            'Product'[Category] IN { "Audio", "Computers" } 
        )
    )
)

This is just an example for educational purposes. You should use the simplest predicate syntax avail-
able for a fi lter argument. When fi ltering a single column, you can avoid writing the FILTER explicitly. 
Later however, you will see that more complex fi lter conditions require an explicit FILTER. In those 
cases, the KEEPFILTERS modifi er can be used around the explicit FILTER function, as you see in the next 
section.

Filtering a single column
In the previous section, we introduced fi lter arguments referencing a single column in CALCULATE. 
It is important to note that you can have multiple references to the same column in one expression. 
For example, the following is a valid syntax because it references the same column (Sales[Net Price]) 
twice.

Sales 10-100 :=
CALCULATE (
    [Sales Amount],
    Sales[Net Price] >= 10 && Sales[Net Price] <= 100
)
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In fact, this is converted into the following syntax:

Sales 10-100 :=
CALCULATE (
    [Sales Amount],
    FILTER ( 
        ALL ( Sales[Net Price] ),
        Sales[Net Price] >= 10 && Sales[Net Price] <= 100
    )
)

The resulting fi lter context produced by CALCULATE only adds one fi lter over the Sales[Net Price] 
column. One important note about predicates as fi lter arguments in CALCULATE is that although they 
look like conditions, they are tables. If you read the fi rst of the last two code snippets, it looks as though 
CALCULATE evaluates a condition. Instead, CALCULATE evaluates the list of all the values of Sales[Net 
Price] that satisfy the condition. Then, CALCULATE uses this table of values to apply a fi lter to the 
model.

When two conditions are in a logical AND, they can be represented as two separate fi lters. Indeed, 
the previous expression is equivalent to the following one:

Sales 10-100 :=
CALCULATE (
    [Sales Amount],
    Sales[Net Price] >= 10,
    Sales[Net Price] <= 100
)

However, keep in mind that the multiple fi lter arguments of CALCULATE are always merged with a 
logical AND. Thus, you must use a single fi lter in case of a logical OR statement, such as in the following 
measure:

Sales Blue+Red :=
CALCULATE (
    [Sales Amount],
    'Product'[Color] = "Red" || 'Product'[Color] = "Blue"
)

By writing multiple fi lters, you would combine two independent fi lters in a single fi lter context. The 
following measure always produces a blank result because there are no products that are both Blue 
and Red at the same time:

Sales Blue and Red :=
CALCULATE (
    [Sales Amount],
    'Product'[Color] = "Red",
    'Product'[Color] = "Blue"
)
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In fact, the previous measure corresponds to the following measure with a single fi lter:

Sales Blue and Red :=
CALCULATE (
    [Sales Amount],
    'Product'[Color] = "Red" && 'Product'[Color] = "Blue"
)

The fi lter argument always returns an empty list of colors allowed in the fi lter context. Therefore, the 
measure always returns a blank value.

Whenever a fi lter argument refers to a single column, you can use a predicate. We suggest you do 
so because the resulting code is much easier to read. You should do so for logical AND conditions too. 
Nevertheless, never forget that you are relying on syntax-sugaring only. CALCULATE always works with 
tables, although the compact syntax might suggest otherwise.

On the other hand, whenever there are two or more different column references in a fi lter argument, 
it is necessary to write the FILTER condition as a table expression. You learn this in the following section.

Filtering with complex conditions
A fi lter argument referencing multiple columns requires an explicit table expression. It is important to 
understand the different techniques available to write such fi lters. Remember that creating a fi lter with 
the minimum number of columns required by the predicate is usually a best practice.

Consider a measure that sums the sales for only the transactions with an amount greater than or 
equal to 1,000. Getting the amount of each transaction requires the multiplication of the Quantity and 
Net Price columns. This is because you do not have a column that stores that amount for each row of 
the Sales table in the sample Contoso database. You might be tempted to write something like the fol-
lowing expression, which unfortunately will not work:

Sales Large Amount :=
CALCULATE (
    [Sales Amount],
    Sales[Quantity] * Sales[Net Price] >= 1000
)

This code is not valid because the fi lter argument references two different columns in the same 
expression. As such, it cannot be converted automatically by DAX into a suitable FILTER condition. The 
best way to write the required fi lter is by using a table that only has the existing combinations of the 
columns referenced in the predicate:

Sales Large Amount :=
CALCULATE (
    [Sales Amount],
    FILTER ( 
        ALL ( Sales[Quantity], Sales[Net Price] ),
        Sales[Quantity] * Sales[Net Price] >= 1000
    )
)
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This results in a fi lter context that has a fi lter with two columns and a number of rows that cor-
respond to the unique combinations of Quantity and Net Price that satisfy the fi lter condition. This is 
shown in Figure 5-24.

Quantity

1

Net Price

1000.00

1 1001.00

1 1199.00

… …

2 500.00

2 500.05

… …

3 333.34

…

FIGURE 5-24 The multi-column fi lter only includes combinations of Quantity and Net Price producing a result 
greater than or equal to 1,000.

This fi lter produces the result in Figure 5-25.

FIGURE 5-25 Sales Large Amount only shows sales of transactions with a large amount.

Be mindful that the slicer in Figure 5-25 is not fi ltering any value: The two displayed values are the 
minimum and the maximum values of Net Price. The next step is showing how the measure is interact-
ing with the slicer. In a measure like Sales Large Amount, you need to pay attention when you overwrite 
existing fi lters over Quantity or Net Price. Indeed, because the fi lter argument uses ALL on the two 
columns, it ignores any previously existing fi lter on the same columns including, in this example, the 
fi lter of the slicer. The report in Figure 5-26 is the same as Figure 5-25 but, this time, the slicer fi lters for 
net prices between 500 and 3,000. The result is surprising.
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FIGURE 5-26 There are no sales for Audio in the current price range; still Sales Large Amount is showing a result.

The presence of value of Sales Large Amount for Audio and Music, Movies and Audio Books is unex-
pected. Indeed, for these two categories there are no sales in the net price range between 500 and 3,000, 
which is the fi lter context generated by the slicer. Still, the Sales Large Amount measure is showing a result.

The reason is that the fi lter context of Net Price created by the slicer is ignored by the Sales Large 
Amount measure, which overwrites the existing fi lter over both Quantity and Net Price. If you carefully 
compare fi gures 5-25 and 5-26, you will notice that the value of Sales Large Amount is identical, as if the 
slicer was not added to the report. Indeed, Sales Large Amount is completely ignoring the slicer.

If you focus on a cell, like the value of Sales Large Amount for Audio, the code executed to compute 
its value is the following:

Sales Large Amount :=
CALCULATE ( 
    CALCULATE (
        [Sales Amount],
        FILTER ( 
            ALL ( Sales[Quantity], Sales[Net Price] ),
            Sales[Quantity] * Sales[Net Price] >= 1000
        )
    ),
    'Product'[Category] = "Audio",
    Sales[Net Price] >= 500
)

From the code, you can see that the innermost ALL ignores the fi lter on Sales[Net Price] set by the 
outer CALCULATE. In that scenario, you can use KEEPFILTERS to avoid the overwrite of existing fi lters:

Sales Large Amount KeepFilter :=
CALCULATE (
    [Sales Amount],
    KEEPFILTERS ( 
        FILTER ( 
            ALL ( Sales[Quantity], Sales[Net Price] ),
            Sales[Quantity] * Sales[Net Price] >= 1000
        )
    )
)
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The new Sales Large Amount KeepFilter measure produces the result shown in Figure 5-27.

FIGURE 5-27 Using KEEPFILTERS, the calculation takes into account the outer slicer too.

Another way of specifying a complex fi lter is by using a table fi lter instead of a column fi lter. This is 
one of the preferred techniques of DAX newbies, although it is very dangerous to use. In fact, the previ-
ous measure can be written using a table fi lter:

Sales Large Amount Table :=
CALCULATE (
    [Sales Amount],
    FILTER ( 
        Sales,
        Sales[Quantity] * Sales[Net Price] >= 1000
    )
)

As you may remember, all the fi lter arguments of CALCULATE are evaluated in the fi lter context that 
exists outside of the CALCULATE itself. Thus, the iteration over Sales only considers the rows fi ltered in 
the existing fi lter context, which contains a fi lter on Net Price. Therefore, the semantic of the Sales Large 
Amount Table measure corresponds to the Sales Large Amount KeepFilter measure.

Although this technique looks easy, you should be careful in using it because it could have serious 
consequences on performance and on result accuracy. We will cover the details of these issues in 
Chapter 14. For now, just remember that the best practice is to always use a fi lter with the smallest 
possible number of columns.

Moreover, you should avoid table fi lters because they usually are more expensive. The Sales table 
might be very large, and scanning it row by row to evaluate a predicate can be a time-consuming 
operation. The fi lter in Sales Large Amount KeepFilter, on the other hand, only iterates the number of 
unique combinations of Quantity and Net Price. That number is usually much smaller than the number 
of rows of the entire Sales table.
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Evaluation order in CALCULATE
Whenever you look at DAX code, the natural order of evaluation is innermost fi rst. For example, look at 
the following expression:

Sales Amount Large :=
SUMX ( 
    FILTER ( Sales, Sales[Quantity] >= 100 ),
    Sales[Quantity] * Sales[Net Price]
)

DAX needs to evaluate the result of FILTER before starting the evaluation of SUMX. In fact, SUMX 
iterates a table. Because that table is the result of FILTER, SUMX cannot start executing before FILTER 
has fi nished its job. This rule is true for all DAX functions, except for CALCULATE and CALCULATETABLE. 
Indeed, CALCULATE evaluates its fi lter arguments fi rst and only at the end does it evaluate the fi rst 
parameter, which is the expression to evaluate to provide the CALCULATE result.

Moreover, things are a bit more intricate because CALCULATE changes the fi lter context. All the 
fi lter arguments are executed in the fi lter context outside of CALCULATE, and each fi lter is evaluated 
independently. The order of fi lters within the same CALCULATE does not matter. Consequently, all the 
following measures are completely equivalent:

Sales Red Contoso :=
CALCULATE (
    [Sales Amount],
    'Product'[Color] = "Red",
    KEEPFILTERS ( 'Product'[Brand] = "Contoso" )
)
 
Sales Red Contoso :=
CALCULATE (
    [Sales Amount],
    KEEPFILTERS ( 'Product'[Brand] = "Contoso" ),
    'Product'[Color] = "Red"
)
 
Sales Red Contoso :=
VAR ColorRed = 
        FILTER ( 
            ALL ( 'Product'[Color] ),
            'Product'[Color] = "Red"
        ) 
VAR BrandContoso = 
        FILTER ( 
            ALL ( 'Product'[Brand] ),
            'Product'[Brand] = "Contoso"
        )
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VAR SalesRedContoso =
    CALCULATE (
        [Sales Amount],
        ColorRed,
        KEEPFILTERS ( BrandContoso )
    )
RETURN
    SalesRedContoso

The version of Sales Red Contoso defi ned using variables is more verbose than the other versions, 
but you might want to use it in case the fi lters are complex expressions with explicit fi lters. This way, it is 
easier to understand that the fi lter is evaluated “before” CALCULATE.

This rule becomes more important in case of nested CALCULATE statements. In fact, the outermost 
fi lters are applied fi rst, and the innermost are applied later. Understanding the behavior of nested 
CALCULATE statements is important, because you encounter this situation every time you nest 
measures calls. For example, consider the following measures, where Sales Green calls Sales Red:

Sales Red :=
CALCULATE (
    [Sales Amount],
    'Product'[Color] = "Red"
)
 
Green calling Red :=
CALCULATE (
    [Sales Red],
    'Product'[Color] = "Green"
)

To make the nested measure call more evident, we can expand Sales Green this way:

Green calling Red Exp :=
CALCULATE (
    CALCULATE (
        [Sales Amount],
        'Product'[Color] = "Red"
    ),
    'Product'[Color] = "Green"
)

The order of evaluation is the following:

 1. First, the outer CALCULATE applies the fi lter, Product[Color] = “Green”.

 2. Second, the inner CALCULATE applies the fi lter, Product[Color] = “Red”. This fi lter overwrites 
the previous fi lter.

 3. Last, DAX computes [Sales Amount] with a fi lter for Product[Color] = “Red”.

Therefore, the result of both Red and Green calling Red is still Red, as shown in Figure 5-28.
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FIGURE 5-28 The last three measures return the same result, which is always the sales of red products.

 

Note The description we provided is for educational purposes only. In reality the engine 
uses lazy evaluation for the fi lter context. So, in the presence of fi lter argument overwrites 
such as the previous code, the outer fi lter might never be evaluated because it would have 
been useless. Nevertheless, this behavior is for optimization only. It does not change the 
semantics of CALCULATE in any way.

  

We can review the order of the evaluation and how the fi lter context is evaluated with another 
example. Consider the following measure:

Sales YB :=
CALCULATE (
    CALCULATE (
        [Sales Amount],
        'Product'[Color] IN { "Yellow", "Black" }
    ),
    'Product'[Color] IN { "Black", "Blue" }
)

The evaluation of the fi lter context produced by Sales YB is visible in Figure 5-29.

As seen before, the innermost fi lter over Product[Color] overwrites the outermost fi lters. Therefore, 
the result of the measure shows the sum of products that are Yellow or Black. By using KEEPFILTERS 
in the innermost CALCULATE, the fi lter context is built by keeping the two fi lters instead of overwriting 
the existing fi lter:

Sales YB KeepFilters :=
CALCULATE (
    CALCULATE (
        [Sales Amount],
        KEEPFILTERS ( 'Product'[Color] IN { "Yellow", "Black" } )
    ),
    'Product'[Color] IN { "Black", "Blue" }
)
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CALCULATE (
    CALCULATE (
        …,
        Product[Color] IN { "Yellow", "Black" }
    ),
    Product[Color] { "Black", "Blue" }
)

Color

Yellow

Black

Color

Black

Blue

Color

Yellow

Black

OVERWRITE

FIGURE 5-29 The innermost fi lter overwrites the outer fi lter.

The evaluation of the fi lter context produced by Sales YB KeepFilters is visible in Figure 5-30.

CALCULATE (
    CALCULATE (
        …,
        KEEPFILTERS ( Product[Color] IN { "Yellow", "Black" } )
    ),
    Product[Color] { "Black", "Blue" }
)

Color

Yellow

Black

Color

Black

Blue

Color

Yellow

Black

Color

Black

Blue

KEEPFILTERS

FIGURE 5-30 By using KEEPFILTERS, CALCULATE does not overwrite the previous fi lter context.

Because the two fi lters are kept together, they are intersected. Therefore, in the new fi lter context 
the only visible color is Black because it is the only value present in both fi lters.
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However, the order of the fi lter arguments within the same CALCULATE is irrelevant because they 
are applied to the fi lter context independently.

Understanding context transition

In Chapter 4, “Understanding evaluation contexts,” we evoked multiple times that the row context and 
the fi lter context are different concepts. This still holds true. However, there is one operation performed 
by CALCULATE that can transform a row context into a fi lter context. It is the operation of context tran-
sition, defi ned as follows:

CALCULATE invalidates any row context. It automatically adds as fi lter arguments all the 
columns that are currently being iterated in any row context—fi ltering their actual value in the 
row being iterated.

Context transition is hard to understand at the beginning, and even seasoned DAX coders fi nd it 
complex to follow all the implications of context transition. We are more than confi dent that the previ-
ous defi nition does not suffi ce to fully understand context transition.

Therefore, we are going to describe context transition through several examples of increasing com-
plexity. But before discussing such a delicate concept, let us make sure we thoroughly understand row 
context and fi lter context.

Row context and fi lter context recap
We can recap some important facts about row context and fi lter context with the aid of Figure 5-31, 
which shows a report with the Brand on the rows and a diagram describing the evaluation process. 
Products and Sales in the diagram are not displaying real data. They only contain a few rows to make 
the points clearer.

Sales Amount =
SUMX (

Sales,
Sales[Quantity] * Sales[Net Price]

)

Filter Context

Row Context

Product Brand

A

B

Contoso

Litware

A 1 11.00

B 2 25.00

A 2 10.99

1 11.00

2

1*11.00

21.98

Products
Sales

2*10.99

SUMX Iterations

Contoso

Brand

Product Quantity Net Price

Iteration Operation Result

FIGURE 5-31 The diagram depicts the full fl ow of execution of a simple iteration with SUMX.
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The following comments on Figure 5-31 are helpful to monitor your understanding of the whole 
process for evaluating the Sales Amount measure for the Contoso row:

 ■ The report creates a fi lter context containing a fi lter for Product[Brand] = “Contoso”.

 ■ The fi lter works on the entire model, fi ltering both the Product and the Sales tables.

 ■ The fi lter context reduces the number of rows iterated by SUMX while scanning Sales. SUMX 
only iterates the Sales rows that are related to a Contoso product.

 ■ In the fi gure there are two rows in Sales with product A, which is branded Contoso.

 ■ Consequently, SUMX iterates two rows. In the fi rst row it computes 1*11.00 with a partial result 
of 11.00. In the second row it computes 2*10.99 with a partial result of 21.98.

 ■ SUMX returns the sum of the partial results gathered during the iteration.

 ■ During the iteration of Sales, SUMX only scans the visible portion of the Sales table, generating 
a row context for each visible row.

 ■ When SUMX iterates the fi rst row, Sales[Quantity] equals 1, whereas Sales[Net Price] equals 11. 
On the second row, the values are different. Columns have a current value that depends on the 
iterated row. Potentially, each row iterated has a different value for all the columns.

 ■ During the iteration, there is a row context and a fi lter context. The fi lter context is still the same 
that fi lters Contoso because no CALCULATE has been executed to modify it.

Speaking about context transition, the last statement is the most important. During the iteration the 
fi lter context is still active, and it fi lters Contoso. The row context, on the other hand, is currently iterat-
ing the Sales table. Each column of Sales has a given value. The row context is providing the value via 
the current row. Remember that the row context iterates; the fi lter context does not.

This is an important detail. We invite you to double-check your understanding in the following 
scenario. Imagine you create a measure that simply counts the number of rows in the Sales table, with 
the following code:

NumOfSales := COUNTROWS ( Sales )

Once used in the report, the measure counts the number of Sales rows that are visible in the current 
fi lter context. The result shown in Figure 5-32 is as expected: a different number for each brand.
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FIGURE 5-32 NumOfSales counts the number of rows visible in the current fi lter context in the Sales table.

Because there are 37,984 rows in Sales for the Contoso brand, this means that an iteration over Sales 
for Contoso will iterate exactly 37,984 rows. The Sales Amount measure we used so far would complete 
its execution after 37,984 multiplications.

With the understanding you have obtained so far, can you guess the result of the following measure 
on the Contoso row?

Sum Num Of Sales := SUMX ( Sales, COUNTROWS ( Sales ) )

Do not rush in deciding your answer. Take your time, study this simple code carefully, and make an 
educated guess. In the following paragraph we provide the correct answer.

The fi lter context is fi ltering Contoso. From the previous examples, it is understood that SUMX 
iterates 37,984 times. For each of these 37,984 rows, SUMX computes the number of rows visible 
in Sales in the current fi lter context. The fi lter context is still the same, so for each row the result of 
COUNTROWS is always 37,984. Consequently, SUMX sums the value of 37,984 for 37,984 times. 
The result is 37,984 squared. You can confi rm this by looking at Figure 5-33, where the measure is 
displayed in the report.
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FIGURE 5-33 Sum Num Of Sales computes NumOfSales squared because it counts all the rows for each iteration.

Now that we have refreshed the main ideas about row context and fi lter context, we can further 
discuss the impact of context transition.

Introducing context transition
A row context exists whenever an iteration is happening on a table. Inside an iteration are expressions 
that depend on the row context itself. The following expression, which you have studied multiple times 
by now, comes in handy:

Sales Amount := 
SUMX (
    Sales,
    Sales[Quantity] * Sales[Unit Price] 
)

The two columns Quantity and Unit Price have a value in the current row context. In the previous 
section we showed that if the expression used inside an iteration is not strictly bound to the row con-
text, then it is evaluated in the fi lter context. As such the results are surprising, at least for beginners. 
Nevertheless, one is completely free to use any function inside a row context. Among the many func-
tions available, one appears to be more special: CALCULATE.

If executed in a row context, CALCULATE invalidates the row context before evaluating its expres-
sion. Inside the expression evaluated by CALCULATE, all the previous row contexts will no longer be 
valid. Thus, the following code produces a syntax error:

Sales Amount := 
SUMX (
    Sales,                                             
    CALCULATE ( Sales[Quantity] )   -- No row context inside CALCULATE, ERROR !
)
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The reason is that the value of the Sales[Quantity] column cannot be retrieved inside CALCULATE 
because CALCULATE invalidates the row context that exists outside of CALCULATE itself. Nevertheless, 
this is only part of what context transition performs. The second—and most relevant—operation is that 
CALCULATE adds as fi lter arguments all the columns of the current row context with their current value. 
For example, look at the following code:

Sales Amount := 
SUMX (
    Sales,                                             
    CALCULATE ( SUM ( Sales[Quantity] ) ) -- SUM does not require a row context 
)

There are no fi lter arguments in CALCULATE. The only CALCULATE argument is the expression to 
evaluate. Thus, it looks like CALCULATE will not overwrite the existing fi lter context. The point is that 
CALCULATE, because of context transition, is silently creating many fi lter arguments. It creates a fi lter 
for each column in the iterated table. You can use Figure 5-34 to obtain a fi rst look at the behavior of 
context transition. We used a reduced set of columns for visual purposes.

Test :=
SUMX (
     Sales,
     CALCULATE ( SUM ( Sales[Quantity] ) )
)

Row ContextA 1 11.00

B 2 25.00

A 2 10.99

Sales

SUMX Iteration

1 1

2

1

22

3 22

Row
Iterated

Product Quantity Net Price

Sales[Quantity]
Value

Row
Result The result of 

SUMX is 5

A

Product

1

Quantity

11.00

Net Price
Filter Context

FIGURE 5-34 When CALCULATE is executed in a row context, it creates a fi lter context with a fi lter for each of the 
columns in the currently iterated table.

During the iteration CALCULATE starts on the fi rst row, and it computes SUM ( Sales[Quantity] ). 
Even though there are no fi lter arguments, CALCULATE adds one fi lter argument for each of the 
columns of the iterated table. Namely, there are three columns in the example: Product, Quantity, and 
Net Price. As a result, the fi lter context generated by the context transition contains the current value 
(A, 1, 11.00) for each of the columns (Product, Quantity, Net Price). The process, of course, continues for 
each one of the three rows during the iteration made by SUMX.
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In other words, the execution of the previous SUMX results in these three CALCULATE executions:

CALCULATE ( 
    SUM ( Sales[Quantity] ),
    Sales[Product] = "A",
    Sales[Quantity] = 1,
    Sales[Net Price] = 11
) +
CALCULATE ( 
    SUM ( Sales[Quantity] ),
    Sales[Product] = "B",
    Sales[Quantity] = 2,
    Sales[Net Price] = 25
) +
CALCULATE ( 
    SUM ( Sales[Quantity] ),
    Sales[Product] = "A",
    Sales[Quantity] = 2,
    Sales[Net Price] = 10.99
)

These fi lter arguments are hidden. They are added by the engine automatically, and there is no way 
to avoid them. In the beginning, context transition seems very strange. Nevertheless, once one gets 
used to context transition, it is an extremely powerful feature. Hard to master, but extremely powerful.

We summarize the considerations presented earlier, before we further discuss a few of them 
specifi cally:

 ■ Context transition is expensive. If context transition is used during an iteration on a table 
with 10 columns and one million rows, then CALCULATE needs to apply 10 fi lters, one million 
times. No matter what, it will be a slow operation. This is not to say that relying on context tran-
sition should be avoided. However, it does make CALCULATE a feature that needs to be used 
carefully.

 ■ Context transition does not only fi lter one row. The original row context existing outside 
of CALCULATE always only points to one row. The row context iterates on a row-by-row basis. 
When the row context is moved to a fi lter context through context transition, the newly created 
fi lter context fi lters all the rows with the same set of values. Thus, you should not assume that 
the context transition creates a fi lter context with one row only. This is very important, and we 
will return to this topic in the next sections.

 ■ Context transition uses columns that are not present in the formula. Although the col-
umns used in the fi lter are hidden, they are part of the expression. This makes any formula with 
CALCULATE much more complex than it fi rst seems. If a context transition is used, then all the 
columns of the table are part of the expression as hidden fi lter arguments. This behavior might 
create unexpected dependencies. This topic is also described later in this section.
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 ■ Context transition creates a fi lter context out of a row context. You might remember the 
evaluation context mantra, “the row context iterates a table, whereas the fi lter context fi lters 
the model.” Once context transition transforms a row context into a fi lter context, it changes the 
nature of the fi lter. Instead of iterating a single row, DAX fi lters the whole model; relationships 
become part of the equation. In other words, context transition happening on one table might 
propagate its fi ltering effects far from the table the row context originated from.

 ■ Context transition is invoked whenever there is a row context. For example, if one uses 
CALCULATE in a calculated column, context transition occurs. There is an automatic row context 
inside a calculated column, and this is enough for context transition to occur.

 ■ Context transition transforms all the row contexts. When nested iterations are being 
performed on multiple tables, context transition considers all the row contexts. It invalidates all 
of them and adds fi lter arguments for all the columns that are currently being iterated by all the 
active row contexts.

 ■ Context transition invalidates the row contexts. Though we have repeated this concept 
multiple times, it is worth bringing to your attention again. None of the outer row contexts are 
valid inside the expression evaluated by CALCULATE. All the outer row contexts are transformed 
into equivalent fi lter contexts.

As anticipated earlier in this section, most of these considerations require further explanation. In 
the remaining part of this section about context transition, we provide a deeper analysis of these main 
points. Although all these considerations are shown as warnings, in reality they are important features. 
Being ignorant of certain behaviors can ensure surprising results. Nevertheless, once you master the 
behavior, you start leveraging it as you see fi t. The only difference between a strange behavior and a 
useful feature—at least in DAX—is your level of knowledge.

Context transition in calculated columns
A calculated column is evaluated in a row context. Therefore, using CALCULATE in a calculated column 
triggers a context transition. We use this feature to create a calculated column in Product that marks 
as “High Performance” all the products that—alone—sold more than 1% of the total sales of all the 
products.

To produce this calculated column, we need two values: the sales of the current product and the 
total sales of all the products. The former requires fi ltering the Sales table so that it only computes sales 
amount for the current product, whereas the latter requires scanning the Sales table with no active 
fi lters. Here is the code:

'Product'[Performance] =
VAR TotalSales =                               -- Sales of all the products
    SUMX (                                    
        Sales,                                 -- Sales is not filtered
        Sales[Quantity] * Sales[Net Price]     -- thus here we compute all sales
    )
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VAR CurrentSales =
    CALCULATE (                                -- Performs context transition
        SUMX (
            Sales,                             -- Sales of the current product only 
            Sales[Quantity] * Sales[Net Price] -- thus here we compute sales of the 
        )                                      -- current product only
    )
VAR Ratio = 0.01                               -- 1% expressed as a real number
VAR Result = 
    IF (
        CurrentSales >= TotalSales * Ratio,   
        "High Performance product",
        "Regular product"
    )
RETURN
    Result

You note that there is only one difference between the two variables: TotalSales is executed as a 
regular iteration, whereas CurrentSales computes the same DAX code within a CALCULATE function. 
Because this is a calculated column, the row context is transformed into a fi lter context. The fi lter con-
text propagates through the model and it reaches Sales, only fi ltering the sales of the current product.

Thus, even though the two variables look similar, their content is completely different. TotalSales 
computes the sales of all the products because the fi lter context in a calculated column is empty and 
does not fi lter anything. CurrentSales computes the sales of the current product only thanks to the 
context transition performed by CALCULATE.

The remaining part of the code is a simple IF statement that checks whether the condition is met 
and marks the product appropriately. One can use the resulting calculated column in a report like the 
one visible in Figure 5-35.

FIGURE 5-35 Only four products are marked High Performance.

In the code of the Performance calculated column, we used CALCULATE and context transition as a 
feature. Before moving on, we must check that we considered all the implications. The Product table is 
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small, containing just a few thousand rows. Thus, performance is not an issue. The fi lter context gener-
ated by CALCULATE fi lters all the columns. Do we have a guarantee that CurrentSales only contains the 
sales of the current product? In this special case, the answer is yes. The reason is that each row of Product 
is unique because Product contains a column with a different value for each row—ProductKey. Conse-
quently, the fi lter context generated by the context transition is guaranteed to only fi lter one product.

In this case, we could rely on context transition because each row of the iterated table is unique. 
Beware that this is not always true. We want to demonstrate that with an example that is purposely 
wrong. We create a calculated column, in Sales, containing this code:

Sales[Wrong Amt] =
CALCULATE (
    SUMX (
        Sales,
        Sales[Quantity] * Sales[Net Price]
    )
)

Being a calculated column, it runs in a row context. CALCULATE performs the context transition, 
so SUMX iterates all the rows in Sales with an identical set of values corresponding to the current row 
in Sales. The problem is that the Sales table does not have any column with unique values. Therefore, 
there is a chance that multiple identical rows exist and, if they exist, they will be fi ltered together. In 
other words, there is no guarantee that SUMX always iterates only one row in the Wrong Amt column.

If you are lucky, there are many duplicated rows, and the value computed by this calculated column 
is totally wrong. This way, the problem would be clearly visible and immediately recognized. In many 
real-world scenarios, the number of duplicated rows in tables is tiny, making these inaccurate calcula-
tions hard to spot and debug. The sample database we use in this book is no exception. Look at the 
report in Figure 5-36 showing the correct value for Sales Amount and the wrong value computed by 
summing the Wrong Amt calculated column.

FIGURE 5-36 Most results are correct; only two rows have different values.
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You can see that the difference only exists at the total level and for the Fabrikam brand. There are some 
duplicates in the Sales table—related to some Fabrikam product—that perform the calculation twice. The 
presence of these rows might be legitimate: The same customer bought the same product in the same store 
on the same day in the morning and in the afternoon, but the Sales table only stores the date and not the 
time of the transaction. Because the number of duplicates is small, most numbers look correct. However, 
the calculation is wrong because it depends on the content of the table. Inaccurate numbers might appear 
at any time because of duplicated rows. The more duplicates there are, the worse the result turns out.

In this case, relying on context transition is the wrong choice. Because the table is not guaranteed to 
only have unique rows, context transition is not safe to use. An expert DAX coder should know this in 
advance. Besides, the Sales table might contain millions of rows; thus, this calculated column is not only 
wrong, it is also very slow.

Context transition with measures
Understanding context transition is very important because of another important aspect of DAX.

Every measure reference always has an implicit CALCULATE surrounding it.

Because of CALCULATE, a measure reference generates an implicit context transition if executed in 
the presence of any row context. This is why in DAX, it is important to use the correct naming conven-
tion when writing column references (always including the table name) and measure references (always 
without the table name). You want to be aware of any implicit context transition writing and reading a 
DAX expression.

This simple initial defi nition deserves a longer explanation with several examples. The fi rst one is 
that translating a measure reference always requires wrapping the expression of the measure within a 
CALCULATE function. For example, consider the following defi nition of the Sales Amount measure and 
of the Product Sales calculated column in the Product table:

Sales Amount :=
SUMX (
    Sales, 
    Sales[Quantity] * Sales[Net Price] 
)
 
'Product'[Product Sales] = [Sales Amount]

The Product Sales column correctly computes the sum of Sales Amount only for the current product 
in the Product table. Indeed, expanding the Sales Amount measure in the defi nition of Product Sales 
requires the CALCULATE function that wraps the defi nition of Sales Amount:

'Product'[Product Sales] = 
CALCULATE
    SUMX (
        Sales, 
        Sales[Quantity] * Sales[Net Price] 
    )
)
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Without CALCULATE, the result of the calculated column would produce the same value for all the 
products. This would correspond to the sales amount of all the rows in Sales without any fi ltering by 
product. The presence of CALCULATE means that context transition occurs, producing in this case the 
desired result. A measure reference always calls CALCULATE. This is very important and can be used to 
write short and powerful DAX expressions. However, it could also lead to big mistakes if you forget that 
the context transition takes place every time the measure is called in a row context.

As a rule of thumb, you can always replace a measure reference with the expression that defi nes the 
measure wrapped inside CALCULATE. Consider the following defi nition of a measure called Max Daily 
Sales, which computes the maximum value of Sales Amount computed day by day:

Max Daily Sales := 
MAXX (
    'Date',
    [Sales Amount]
)

This formula is intuitive to read. However, Sales Amount must be computed for each date, only 
fi ltering the sales of that day. This is exactly what context transition performs. Internally, DAX replaced 
the Sales Amount measure reference with its defi nition wrapped by CALCULATE, as in the following 
example:

Max Daily Sales := 
MAXX (
    'Date',
    CALCULATE ( 
        SUMX ( 
            Sales,
            Sales[Quantity] * Sales[Net Price]
        )
    )
)

We will use this feature extensively in Chapter 7, “Working with iterators and CALCULATE,” when we 
start writing complex DAX code to solve specifi c scenarios. This initial description just completes the 
explanation of context transition, which happens in these cases:

 ■ When a CALCULATE or CALCULATETABLE function is called in the presence of any row context.

 ■ When there is a measure reference in the presence of any row context because the measure 
reference internally executes its DAX code within a CALCULATE function.

This powerful behavior might lead to mistakes, mainly due to the incorrect assumption that you 
can replace a measure reference with the DAX code of its defi nition. You cannot. This could work 
when there are no row contexts, like in a measure, but this is not possible when the measure reference 
appears within a row context. It is easy to forget this rule, so we provide an example of what could hap-
pen by making an incorrect assumption.
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You may have noticed that in the previous example, we wrote the code for a calculated column 
repeating the iteration over Sales twice. Here is the code we already presented in the previous example:

'Product'[Performance] =
VAR TotalSales =                               -- Sales of all the products
    SUMX (                                    
        Sales,                                 -- Sales is not filtered
        Sales[Quantity] * Sales[Net Price]     -- thus here we compute all sales
    )
VAR CurrentSales =
    CALCULATE (                                -- Performs the context transition
        SUMX (
            Sales,                             -- Sales of the current product only 
            Sales[Quantity] * Sales[Net Price] -- thus here we compute sales of the 
        )                                      -- current product only
    )
VAR Ratio = 0.01                               -- 1% expressed as a real number
VAR Result = 
    IF (
        CurrentSales >= TotalSales * Ratio,   
        "High Performance product",
        "Regular product"
    )
RETURN
    Result

The iteration executed by SUMX is the same code for the two variables: One is surrounded by CAL-
CULATE, whereas the other is not. It might seem like a good idea to rewrite the code and use a measure 
to host the code of the iteration. This could be even more relevant in case the expression is not a simple 
SUMX but, rather, some more complex code. Unfortunately, this approach will not work because the 
measure reference will always include a CALCULATE around the expression that the measure replaced.

Imagine creating a measure, Sales Amount, and then a calculated column that calls the measure sur-
rounding it—once with CALCULATE and once without CALCULATE.

Sales Amount :=
SUMX (
    Sales,
    Sales[Quantity] * Sales[Net Price] 
) 
 
'Product'[Performance] =
VAR TotalSales = [Sales Amount]
VAR CurrentSales = CALCULATE ( [Sales Amount] ) 
VAR Ratio = 0.01 
VAR Result = 
    IF (
        CurrentSales >= TotalSales * Ratio,   
        "High Performance product",
        "Regular product"
    )
RETURN
    Result
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Though it looked like a good idea, this calculated column does not compute the expected result. 
The reason is that both measure references will have their own implicit CALCULATE around them. Thus, 
TotalSales does not compute the sales of all the products. Instead, it only computes the sales of the 
current product because the hidden CALCULATE performs a context transition. CurrentSales computes 
the same value. In CurrentSales, the extra CALCULATE is redundant. Indeed, CALCULATE is already 
there, only because it is referencing a measure. This is more evident by looking at the code resulting by 
expanding the Sales Amount measure:

'Product'[Performance] =
VAR TotalSales = 
CALCULATE ( 
    SUMX (
        Sales,
        Sales[Quantity] * Sales[Net Price] 
    ) 
)
VAR CurrentSales = 
CALCULATE (
    CALCULATE ( 
        SUMX (
             Sales,
            Sales[Quantity] * Sales[Net Price] 
        ) 
    )
)
VAR Ratio = 0.01 
VAR Result = 
    IF (
        CurrentSales >= TotalSales * Ratio,   
        "High Performance product",
        "Regular product"
    )
RETURN
    Result

Whenever you read a measure call in DAX, you should always read it as if CALCULATE were there. 
Because it is there. We introduced a rule in Chapter 2, “Introducing DAX,” where we said that it is a best 
practice to always use the table name in front of columns, and never use the table name in front of 
measures. The reason is what we are discussing now.

When reading DAX code, it is of paramount importance that the user be immediately able to under-
stand whether the code is referencing a measure or a column. The de facto standard that nearly every 
DAX coder adopts is to omit the table name in front of measures.

The automatic CALCULATE makes it easy to author formulas that perform complex calculations with 
iterations. We will use this feature extensively in Chapter 7 when we start writing complex DAX code to 
solve specifi c scenarios.
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Understanding circular dependencies

When you design a data model, you should pay attention to the complex topic of circular dependen-
cies in formulas. In this section, you learn what circular dependencies are and how to avoid them in 
your model. Before introducing circular dependencies, it is worth discussing simple, linear dependen-
cies with the aid of an example. Look at the following calculated column:

Sales[Margin] = Sales[Net Price] - Sales[Unit Cost]

The new calculated column depends on two columns: Net Price and Unit Cost. This means that to 
compute the value of Margin, DAX needs to know in advance the values of the two other columns. 
Dependencies are an important part of the DAX model because they drive the order in which 
calculated columns and calculated tables are processed. In the example, Margin can only be 
computed after Net Price and Unit Cost already have a value. The coder does not need to worry 
about dependencies. Indeed, DAX handles them gracefully, building a complex graph that drives the 
order of evaluation of all its internal objects. However, it is possible to write code in such a way that 
circular dependencies appear in the graph. Circular dependencies happen when DAX cannot 
determine the order of evaluation of an expression because there is a loop in the chain of 
dependencies.

For example, consider two calculated columns with the following formulas:

Sales[MarginPct] = DIVIDE ( Sales[Margin], Sales[Unit Cost] )
Sales[Margin] = Sales[MarginPct] * Sales[Unit Cost]

In this code, MarginPct depends on Margin and, at the same time, Margin depends on MarginPct. 
There is a loop in the chain of dependencies. In that scenario, DAX refuses to accept the last formula 
and raises the error, “A circular dependency was detected.”

Circular dependencies do not happen frequently because as humans we understand the problem 
well. B cannot depend on A if, at the same time, A depends on B. Nevertheless, there is a scenario 
where circular dependency occurs—not because it is one’s intention to do so, but only because 
one does not consider certain implications by reading DAX code. This scenario includes the use of 
CALCULATE.

Imagine a calculated column in Sales with the following code:

Sales[AllSalesQty] = CALCULATE ( SUM ( Sales[Quantity] ) )

The interesting question is, which columns does AllSalesQty depend on? Intuitively, one would 
answer that the new column depends solely on Sales[Quantity] because it is the only column used 
in the expression. However, it is all too easy to forget the real semantics of CALCULATE and context 
transition. Because CALCULATE runs in a row context, all current values of all the columns of the 
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table are included in the expression, though hidden. Thus, the real expression evaluated by DAX is 
the following:

Sales[AllSalesQty] = 
CALCULATE ( 
    SUM ( Sales[Quantity] ),
    Sales[ProductKey] = <CurrentValueOfProductKey>,
    Sales[StoreKey] = <CurrentValueOfStoreKey>,
    ...,
    Sales[Margin] = <CurrentValueOfMargin>
)

As you see, the list of columns AllSalesQty depends on is actually the full set of columns of the table. 
Once CALCULATE is being used in a row context, the calculation suddenly depends on all the columns 
of the iterated table. This is much more evident in calculated columns, where the row context is present 
by default.

If one authors a single calculated column using CALCULATE, everything still works fi ne. The problem 
appears if one tries to author two separate calculated columns in a table, with both columns using 
CALCULATE, thus fi ring context transition in both cases. In fact, the following new calculated column will fail:

Sales[NewAllSalesQty] = CALCULATE ( SUM ( Sales[Quantity] ) )

The reason for this is that CALCULATE adds all the columns of the table as fi lter arguments. 
Adding a new column to a table changes the defi nition of existing columns too. If one were able to 
create NewAllSalesQty, the code of the two calculated columns would look like this:

Sales[AllSalesQty] = 
CALCULATE ( 
    SUM ( Sales[Quantity] ),
    Sales[ProductKey] = <CurrentValueOfProductKey>,
    ...,
    Sales[Margin] = <CurrentValueOfMargin>,
    Sales[NewAllSalesQty] = <CurrentValueOfNewAllSalesQty>
)
 
Sales[NewAllSalesQty] = 
CALCULATE ( 
    SUM ( Sales[Quantity] ),
    Sales[ProductKey] = <CurrentValueOfProductKey>,
    ...,
    Sales[Margin] = <CurrentValueOfMargin>,
    Sales[AllSalesQty] = <CurrentValueOfAllSalesQty>
)

You can see that the two highlighted rows reference each other. AllSalesQty depends on the value of 
NewAllSalesQty and, at the same time, NewAllSalesQty depends on the value of AllSalesQty. Although 
very well hidden, a circular dependency does exist. DAX detects the circular dependency, preventing 
the code from being accepted.
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The problem, although somewhat complex to detect, has a simple solution. If the table on which 
CALCULATE performs the context transition contains one column with unique values and DAX is aware 
of that, then the context transition only fi lters that column from a dependency point of view.

For example, consider a calculated column in the Product table with the following code:

'Product'[ProductSales] = CALCULATE ( SUM ( Sales[Quantity] ) )

In this case, there is no need to add all the columns as fi lter arguments. In fact, Product contains 
one column that has a unique value for each row of the Product table—that is ProductKey. This is 
well-known by the DAX engine because that column is on the one-side of a one-to-many relationship. 
Consequently, when the context transition occurs, the engine knows that it would be pointless to add a 
fi lter to each column. The code would be translated into the following:

'Product'[ProductSales] = 
CALCULATE ( 
    SUM ( Sales[Quantity] ),
    'Product'[ProductKey] = <CurrentValueOfProductKey>
)

As you can see, the ProductSales calculated column in the Product table depends solely on Product-
Key. Therefore, one could create many calculated columns using CALCULATE because all of them would 
only depend on the column with unique values.

 

Note The last CALCULATE equivalent statement for the context transition is not totally 
accurate. We used it for educational purposes only. CALCULATE adds all the columns of the 
table as fi lter arguments, even if a row identifi er is present. Nevertheless, the internal depen-
dency is only created on the unique column. The presence of the unique column lets DAX 
evaluate multiple columns with CALCULATE. Still, the semantics of CALCULATE is the same 
with or without the unique column: All the columns of the iterated table are added as fi lter 
arguments.

  

We already discussed the fact that relying on context transition on a table that contains duplicates is 
a serious problem. The presence of circular dependencies is another very good reason why one should 
avoid using CALCULATE and context transition whenever the uniqueness of rows is not guaranteed.

Resorting to a column with unique values for each row is not enough to ensure that CALCULATE 
only depends on it for the context transition. The data model must be aware of that. How does DAX 
know that a column contains unique values? There are multiple ways to provide this information to the 
engine:

 ■ When a table is the target (one-side) of a relationship, then the column used to build the rela-
tionship is marked as unique. This technique works in any tool.

 ■ When a column is selected in the Mark As Date Table setting, then the column is implicitly 
unique—more on this in Chapter 8, “Time intelligence calculations.”
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 ■ You can manually set the property of a row identifi er for the unique column by using the Table 
Behavior properties. This technique only works in Power Pivot for Excel and Analysis Services 
Tabular; it is not available in Power BI at the time of writing.

Any one of these operations informs the DAX engine that the table has a row identifi er, stopping the 
process of a table that does not respect that constraint. When a table has a row identifi er, you can use 
CALCULATE without worrying about circular dependencies. The reason is that the context transition 
depends on the key column only.

 

Note Though described as a feature, this behavior is actually a side effect of an optimiza-
tion. The semantics of DAX require the dependency from all the columns. A specifi c opti-
mization introduced very early in the engine only creates the dependency on the primary 
key of the table. Because many users rely on this behavior today, it has become part of the 
language. Still, it remains an optimization. In borderline scenarios—for example when using 
USERELATIONSHIP as part of the formula—the optimization does not kick in, thus recreat-
ing the circular dependency error.

  

CALCULATE modifi ers

As you have learned in this chapter, CALCULATE is extremely powerful and produces complex DAX 
code. So far, we have only covered fi lter arguments and context transition. There is still one concept 
required to provide the set of rules to fully understand CALCULATE. It is the concept of CALCULATE 
modifi er.

We introduced two modifi ers earlier, when we talked about ALL and KEEPFILTERS. While ALL can 
be both a modifi er and a table function, KEEPFILTERS is always a fi lter argument modifi er—meaning 
that it changes the way one fi lter is merged with the original fi lter context. CALCULATE accepts several 
different modifi ers that change how the new fi lter context is prepared. However, the most important 
of all these modifi ers is a function that you already know very well: ALL. When ALL is directly used in a 
CALCULATE fi lter argument, it acts as a CALCULATE modifi er instead of being a table function. Other 
important modifi ers include USERELATIONSHIP, CROSSFILTER, and ALLSELECTED, which have separate 
descriptions. The ALLEXCEPT, ALLSELECTED, ALLCROSSFILTERED and ALLNOBLANKROW modifi ers 
have the same precedence rules of ALL.

In this section we introduce these modifi ers; then we will discuss the order of precedence of the 
different CALCULATE modifi ers and fi lter arguments. At the end, we will present the fi nal schema of 
CALCULATE rules.

Understanding USERELATIONSHIP
The fi rst CALCULATE modifi er you learn is USERELATIONSHIP. CALCULATE can activate a relationship 
during the evaluation of its expression by using this modifi er. A data model might contain both active 
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and inactive relationships. One might have inactive relationships in the model because there are sev-
eral relationships between two tables, and only one of them can be active.

As an example, one might have order date and delivery date stored in the Sales table for each order. 
Typically, the requirement is to perform sales analysis based on the order date, but one might need to 
consider the delivery date for some specifi c measures. In that scenario, an option is to create two rela-
tionships between Sales and Date: one based on Order Date and another one based on Delivery Date. 
The model looks like the one in Figure 5-37.

FIGURE 5-37 Sales and Date are linked through two relationships, although only one can be active.

Only one of the two relationships can be active at a time. For example, in this demo model the rela-
tionship with Order Date is active, whereas the one linked to Delivery Date is kept inactive. To author 
a measure that shows the delivered value in a given time period, the relationship with Delivery Date 
needs to be activated for the duration of the calculation. In this scenario, USERELATIONSHIP is of great 
help as in the following code:

Delivered Amount:=
CALCULATE (
    [Sales Amount],
    USERELATIONSHIP ( Sales[Delivery Date], 'Date'[Date] )
)

The relationship between Delivery Date and Date is activated during the evaluation of Sales Amount. 
In the meantime, the relationship with Order Date is deactivated. Keep in mind that at a given point in 
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time, only one relationship can be active between any two tables. Thus, USERELATIONSHIP temporarily 
activates one relationship, deactivating the one active outside of CALCULATE.

Figure 5-38 shows the difference between Sales Amount based on the Order Date, and the new 
Delivered Amount measure.

FIGURE 5-38 The fi gure illustrates the difference between ordered and delivered sales.

When using USERELATIONSHIP to activate a relationship, you need to be aware of an important 
aspect: Relationships are defi ned when a table reference is used, not when RELATED or other relational 
functions are invoked. We will cover the details of this in Chapter 14 by using expanded tables. For 
now, an example should suffi ce. To compute all amounts delivered in 2007, the following formula will 
not work:

Delivered Amount 2007 v1 :=
CALCULATE (
    [Sales Amount],
    FILTER (
        Sales,
        CALCULATE (
            RELATED ( 'Date'[Calendar Year] ),
            USERELATIONSHIP ( Sales[Delivery Date], 'Date'[Date] )
        ) = "CY 2007"
    )
)
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In fact, CALCULATE would inactivate the row context generated by the FILTER iteration. Thus, inside 
the CALCULATE expression, one cannot use the RELATED function at all. One option to author the code 
would be the following:

Delivered Amount 2007 v2 :=
CALCULATE (
    [Sales Amount],
    CALCULATETABLE (
        FILTER ( 
            Sales, 
            RELATED ( 'Date'[Calendar Year] ) = "CY 2007"
        ),
        USERELATIONSHIP ( 
            Sales[Delivery Date], 
            'Date'[Date] 
        )
    )
)

In this latter formulation, Sales is referenced after CALCULATE has activated the required relation-
ship. Therefore, the use of RELATED inside FILTER happens with the relationship with Delivery Date 
active. The Delivered Amount 2007 v2 measure works, but a much better formulation of the same mea-
sure relies on default fi lter context propagation rather than relying on RELATED:

Delivered Amount 2007 v3 :=
CALCULATE (
    [Sales Amount],
    'Date'[Calendar Year] = "CY 2007", 
    USERELATIONSHIP ( 
        Sales[Delivery Date], 
        'Date'[Date] 
    )
)

When you use USERELATIONSHIP in a CALCULATE statement, all the fi lter arguments are evaluated 
using the relationship modifi ers that appear in the same CALCULATE statement—regardless of their 
order. For example, in the Delivered Amount 2007 v3 measure, the USERELATIONSHIP modifi er affects 
the predicate fi ltering Calendar Year, although it is the previous parameter within the same CALCULATE 
function call.

This behavior makes the use of nondefault relationships a complex operation in calculated col-
umn expressions. The invocation of the table is implicit in a calculated column defi nition. Therefore, 
you do not have control over it, and you cannot change that behavior by using CALCULATE and 
USERELATIONSHIP.

One important note is the fact that USERELATIONSHIP does not introduce any fi lter by itself. Indeed, 
USERELATIONSHIP is not a fi lter argument. It is a CALCULATE modifi er. It only changes the way other 
fi lters are applied to the model. If you carefully look at the defi nition of Delivered Amount in 2007 v3, 
you might notice that the fi lter argument applies a fi lter on the year 2007, but it does not indicate 
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which relationship to use. Is it using Order Date or Delivery Date? The relationship to use is defi ned by 
USERELATIONSHIP.

Thus, CALCULATE fi rst modifi es the structure of the model by activating the relationship, and only 
later does it apply the fi lter argument. If that were not the case—that is, if the fi lter argument were 
always evaluated on the current relationship architecture—then the calculation would not work.

There are precedence rules in the application of fi lter arguments and of CALCULATE modifi ers. The 
fi rst rule is that CALCULATE modifi ers are always applied before any fi lter argument, so that the effect 
of fi lter arguments is applied on the modifi ed version of the model. We discuss precedence of CALCU-
LATE arguments in more detail later.

Understanding CROSSFILTER
The next CALCULATE modifi er you learn is CROSSFILTER. CROSSFILTER is somewhat similar to 
USERELATIONSHIP because it manipulates the architecture of the relationships in the model. 
Nevertheless, CROSSFILTER can perform two different operations:

 ■ It can change the cross-fi lter direction of a relationship.

 ■ It can disable a relationship.

USERELATIONSHIP lets you activate a relationship while disabling the active relationship, but it can-
not disable a relationship without activating another one between the same tables. CROSSFILTER works 
in a different way. CROSSFILTER accepts two parameters, which are the columns involved in the rela-
tionship, and a third parameter that can be either NONE, ONEWAY, or BOTH. For example, the follow-
ing measure computes the distinct count of product colors after activating the relationship between 
Sales and Product as a bidirectional one:

NumOfColors :=
CALCULATE (
    DISTINCTCOUNT ( 'Product'[Color] ),
    CROSSFILTER ( Sales[ProductKey], 'Product'[ProductKey], BOTH )
)

As is the case with USERELATIONSHIP, CROSSFILTER does not introduce fi lters by itself. It only 
changes the structure of the relationships, leaving to other fi lter arguments the task of applying fi lters. 
In the previous example, the effect of the relationship only affects the DISTINCTCOUNT function 
because CALCULATE has no further fi lter arguments.

Understanding KEEPFILTERS
We introduced KEEPFILTERS earlier in this chapter as a CALCULATE modifi er. Technically, KEEPFILTERS is 
not a CALCULATE modifi er, it is a fi lter argument modifi er. Indeed, it does not change the entire evalu-
ation of CALCULATE. Instead, it changes the way one individual fi lter argument is applied to the fi nal 
fi lter context generated by CALCULATE.
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We already discussed in depth the behavior of CALCULATE in the presence of calculations like the 
following one:

Contoso Sales :=
CALCULATE (
    [Sales Amount],
    KEEPFILTERS ( 'Product'[Brand] = "Contoso" )
)

The presence of KEEPFILTERS means that the fi lter on Brand does not overwrite a previously existing 
fi lter on the same column. Instead, the new fi lter is added to the fi lter context, leaving the previous one 
intact. KEEPFILTERS is applied to the individual fi lter argument where it is used, and it does not change 
the semantic of the whole CALCULATE function.

There is another way to use KEEPFILTERS that is less obvious. One can use KEEPFILTERS as a modifi er 
for the table used for an iteration, like in the following code:

ColorBrandSales :=
SUMX ( 
    KEEPFILTERS ( ALL ( 'Product'[Color], 'Product'[Brand] ) ),
    [Sales Amount]
)

The presence of KEEPFILTERS as the top-level function used in an iteration forces DAX to use 
KEEPFILTERS on the implicit fi lter arguments added by CALCULATE during a context transition. In fact, 
during the iteration over the values of Product[Color] and Product[Brand], SUMX invokes CALCULATE 
as part of the evaluation of the Sales Amount measure. At that point, the context transition occurs, and 
the row context becomes a fi lter context by adding a fi lter argument for Color and Brand.

Because the iteration started with KEEPFILTERS, context transition will not overwrite existing fi lters. 
It will intersect the existing fi lters instead. It is uncommon to use KEEPFILTERS as the top-level function 
in an iteration. We will cover some examples of this advanced use later in Chapter 10.

Understanding ALL in CALCULATE
ALL is a table function, as you learned in Chapter 3. Nevertheless, ALL acts as a CALCULATE modifi er 
when used as a fi lter argument in CALCULATE. The function name is the same, but the semantics of ALL 
as a CALCULATE modifi er is slightly different than what one would expect.

Looking at the following code, one might think that ALL returns all the years, and that it changes the 
fi lter context making all years visible:

All Years Sales :=
CALCULATE (
    [Sales Amount],
    ALL ( 'Date'[Year] )
)

However, this is not true. When used as a top-level function in a fi lter argument of CALCULATE, 
ALL removes an existing fi lter instead of creating a new one. A proper name for ALL would have been 
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REMOVEFILTER. For historical reasons, the name remained ALL and it is a good idea to know exactly 
how the function behaves.

If one considers ALL as a table function, they would interpret the CALCULATE behavior like in Figure 5-39.

CALCULATE (
CALCULATE (

…
ALL ( 'Date'[Year] )

)

),

'Date'[Year] = 2007

Year

2005

2006

2007

Year

2007

Year

2005

2006

2007

OVERWRITE

FIGURE 5-39 It looks like ALL returns all the years and uses the list to overwrite the previous fi lter context.

The innermost ALL over Date[Year] is a top-level ALL function call in CALCULATE. As such, it does 
not behave as a table function. It should really be read as REMOVEFILTER. In fact, instead of returning 
all the years, in that case ALL acts as a CALCULATE modifi er that removes any fi lter from its argument. 
What really happens inside CALCULATE is the diagram of Figure 5-40.

CALCULATE (
CALCULATE (

…
ALL ( 'Date'[Year] )

)

),

'Date'[Year] = 2007

Year
Year

2007

Empty

filter

Removes Year from the filter

REMOVE

FIGURE 5-40 ALL removes a previously existing fi lter from the context, when used as REMOVEFILTER.
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The difference between the two behaviors is subtle. In most calculations, the slight difference in 
semantics will go unnoticed. Nevertheless, when we start authoring more advanced code, this small 
difference will make a big impact. For now, the important detail is that when ALL is used as REMOVE-
FILTER, it acts as a CALCULATE modifi er instead of acting as a table function.

This is important because of the order of precedence of fi lters in CALCULATE. The CALCULATE 
modifi ers are applied to the fi nal fi lter context before explicit fi lter arguments. Thus, consider the pres-
ence of ALL on a column where KEEPFILTERS is being used on another explicit fi lter over that column; it 
produces the same result as a fi lter applied to that same column without KEEPFILTERS. In other words, 
the following defi nitions of the Sales Red measure produce the same result:

Sales Red :=
CALCULATE (
    [Sales Amount],
    'Product'[Color] = "Red"
)
 
Sales Red :=
CALCULATE (
    [Sales Amount],
    KEEPFILTERS ( 'Product'[Color] = "Red" ),
    ALL ( 'Product'[Color] )
)

The reason is that ALL is a CALCULATE modifi er. Therefore, ALL is applied before KEEPFILTERS. 
Moreover, the same precedence rule of ALL is shared by other functions with the same ALL prefi x: 
These are ALL, ALLSELECTED, ALLNOBLANKROW, ALLCROSSFILTERED, and ALLEXCEPT. We generally 
refer to these functions as the ALL* functions. As a rule, ALL* functions are CALCULATE modifi ers when 
used as top-level functions in CALCULATE fi lter arguments.

Introducing ALL and ALLSELECTED with no parameters
We introduced ALLSELECTED in Chapter 3. We introduced it early on, mainly because of how useful 
it is. Like all the ALL* functions, ALLSELECTED acts as a CALCULATE modifi er when used as a top-level 
function in CALCULATE. Moreover, when introducing ALLSELECTED, we described it as a table function 
that can return the values of either a column or a table.

The following code computes a percentage over the total number of colors selected outside of the 
current visual. The reason is that ALLSELECTED restores the fi lter context outside of the current visual 
on the Product[Color] column.

SalesPct :=
DIVIDE (
    [Sales],
    CALCULATE (
        [Sales],
        ALLSELECTED ( 'Product'[Color] )
    )
)
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One achieves a similar result using ALLSELECTED ( Product ), which executes ALLSELECTED on top of 
a whole table. Nevertheless, when used as a CALCULATE modifi er, both ALL and ALLSELECTED can also 
work without any parameter.

Thus, the following is a valid syntax:

SalesPct :=
DIVIDE (
    [Sales],
    CALCULATE (
        [Sales],
        ALLSELECTED ( )
    )
)

As you can easily notice, in this case ALLSELECTED cannot be a table function. It is a CALCULATE 
modifi er that instructs CALCULATE to restore the fi lter context that was active outside of the current 
visual. The way this whole calculation works is rather complex. We will take the behavior of ALL-
SELECTED to the next level in Chapter 14. Similarly, ALL with no parameters clears the fi lter context from 
all the tables in the model, restoring a fi lter context with no fi lters active.

Now that we have completed the overall structure of CALCULATE, we can fi nally discuss in detail the 
order of evaluation of all the elements involving CALCULATE.

CALCULATE rules

In this fi nal section of a long and diffi cult chapter, we are now able to provide the defi nitive guide to 
CALCULATE. You might want to reference this section multiple times, while reading the remaining 
part of the book. Whenever you need to recall the complex behavior of CALCULATE, you will fi nd the 
answer in this section.

Do not fear coming back here multiple times. We started working with DAX many years ago, and we 
must still remind ourselves of these rules for complex formulas. DAX is a clean and powerful language, 
but it is easy to forget small details here and there that are actually crucial in determining the calcula-
tion outcome of particular scenarios.

To recap, this is the overall picture of CALCULATE:

 ■ CALCULATE is executed in an evaluation context, which contains a fi lter context and might con-
tain one or more row contexts. This is the original context.

 ■ CALCULATE creates a new fi lter context, in which it evaluates its fi rst argument. This is the new 
fi lter context. The new fi lter context only contains a fi lter context. All the row contexts disappear 
in the new fi lter context because of the context transition.
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 ■ CALCULATE accepts three kinds of parameters:

• One expression that will be evaluated in the new fi lter context. This is always the fi rst 
argument.

• A set of explicit fi lter arguments that manipulate the original fi lter context. Each fi lter argu-
ment might have a modifi er, such as KEEPFILTERS.

• A set of CALCULATE modifi ers that can change the model and/or the structure of the origi-
nal fi lter context, by removing some fi lters or by altering the relationships architecture.

 ■ When the original context includes one or more row contexts, CALCULATE performs a context 
transition adding implicit and hidden fi lter arguments. The implicit fi lter arguments obtained 
by row contexts iterating table expressions marked as KEEPFILTERS are also modifi ed by 
KEEPFILTERS.

When using all these parameters, CALCULATE follows a very precise algorithm. It needs to be well 
understood if the developer hopes to be able to make sense of certain complex calculations.

 1. CALCULATE evaluates all the explicit fi lter arguments in the original evaluation context. This 
includes both the original row contexts (if any) and the original fi lter context. All explicit fi lter 
arguments are evaluated independently in the original evaluation context. Once this evalua-
tion is fi nished, CALCULATE starts building the new fi lter context.

 2. CALCULATE makes a copy of the original fi lter context to prepare the new fi lter context. It discards 
the original row contexts because the new evaluation context will not contain any row context.

 3. CALCULATE performs the context transition. It uses the current value of columns in the origi-
nal row contexts to provide a fi lter with a unique value for all the columns currently being 
iterated in the original row contexts. This fi lter may or may not contain one individual row. 
There is no guarantee that the new fi lter context contains a single row at this point. If there 
are no row contexts active, this step is skipped. Once all implicit fi lters created by the context 
transition are applied to the new fi lter context, CALCULATE moves on to the next step.

 4. CALCULATE evaluates the CALCULATE modifi ers USERELATIONSHIP, CROSSFILTER, and ALL*. 
This step happens after step 3. This is very important because it means that one can remove the 
effects of the context transition by using ALL, as described in Chapter 10. The CALCULATE modifi -
ers are applied after the context transition, so they can alter the effects of the context transition.

 5. CALCULATE evaluates all the explicit fi lter arguments in the original fi lter context. It applies 
their result to the new fi lter context generated after step 4. These fi lter arguments are applied 
to the new fi lter context once the context transition has happened so they can overwrite it, 
after fi lter removal—their fi lter is not removed by any ALL* modifi er—and after the relation-
ship architecture has been updated. However, the evaluation of fi lter arguments happens in 
the original fi lter context, and it is not affected by any other modifi er or fi lter within the same 
CALCULATE function.

The fi lter context generated after point (5) is the new fi lter context used by CALCULATE in the evalu-
ation of its expression.
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C H A P T E R  6

Variables

Variables are important for at least two reasons: code readability and performance. In this chapter, we 
provide detailed information about variables and their usage, whereas considerations about perfor-
mance and readability are found all around the book. Indeed, we use variables in almost all the code 
examples, sometimes showing the version with and without variables to let you appreciate how using 
variables improves readability.

Later in Chapter 20, “Optimizing DAX,” we will also show how the use of variables can dramatically 
improve the performance of your code. In this chapter, we are mainly interested in providing all the 
useful information about variables in a single place.

Introducing VAR syntax

What introduces variables in an expression is fi rst the keyword VAR, which defi nes the variable, 
followed by the RETURN part, which defi nes the result. You can see a typical expression containing a 
variable in the following code:

VAR SalesAmt =
    SUMX (
        Sales,
        Sales[Quantity] * Sales[Net Price]
    )
RETURN
    IF (
        SalesAmt > 100000,
        SalesAmt,
        SalesAmt * 1.2
    )

Adding more VAR defi nitions within the same block allows for the defi nition of multiple variables, 
whereas the RETURN block needs to be unique. It is important to note that the VAR/RETURN block is, 
indeed, an expression. As such, a variable defi nition makes sense wherever an expression can be used. 
This makes it possible to defi ne variables during an iteration, or as part of more complex expressions, 
like in the following example:

VAR SalesAmt =
    SUMX (
        Sales,
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        VAR Quantity = Sales[Quantity]
        VAR Price = Sales[Price]
        RETURN
            Quantity * Price
    )
RETURN 
    ...

Variables are commonly defi ned at the beginning of a measure defi nition and then used through-
out the measure code. Nevertheless, this is only a writing habit. In complex expressions, defi ning local 
variables deeply nested inside other function calls is common practice. In the previous code example, 
the Quantity and Price variables are assigned for every row of the Sales table iterated by SUMX. These 
variables are not available outside of the expression executed by SUMX for each row.

A variable can store either a scalar value or a table. The variables can be—and often are—of a dif-
ferent type than the expression returned after RETURN. Multiple variables in the same VAR/RETURN 
block can be of different types too—scalar values or tables.

A very frequent usage of variables is to divide the calculation of a complex formula into logical 
steps, by assigning the result of each step to a variable. For example, in the following code variables are 
used to store partial results of the calculation:

Margin% :=
VAR SalesAmount =
    SUMX ( Sales, Sales[Quantity] * Sales[Net Price] )
VAR TotalCost =
    SUMX ( Sales, Sales[Quantity] * Sales[Unit Cost] )
VAR Margin = 
    SalesAmount - TotalCost
VAR MarginPerc =
    DIVIDE ( Margin, TotalCost )
RETURN
    MarginPerc

The same expression without variables takes a lot more attention to read:

Margin% :=
DIVIDE (
    SUMX (
        Sales,
        Sales[Quantity] * Sales[Net Price]
    ) - SUMX (
            Sales,
            Sales[Quantity] * Sales[Unit Cost]
        ),
    SUMX (
        Sales,
        Sales[Quantity] * Sales[Unit Cost]
    )
)
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Moreover, the version with variables has the advantage that each variable is only evaluated once. 
For example, TotalCost is used in two different parts of the code but, because it is defi ned as a variable, 
DAX guarantees that its evaluation only happens once.

You can write any expression after RETURN. However, using a single variable for the RETURN part 
is considered best practice. For example, in the previous code, it would be possible to remove the 
MarginPerc variable defi nition by writing DIVIDE right after RETURN. However, using RETURN fol-
lowed by a single variable (like in the example) allows for an easy change of the value returned by the 
measure. This is useful when inspecting the value of intermediate steps. In our example, if the total is 
not correct, it would be a good idea to check the value returned in each step, by using a report that 
includes the measure. This means replacing MarginPerc with Margin, then with TotalCost, and then with 
SalesAmount in the fi nal RETURN. You would execute the report each time to see the result produced 
in the intermediate steps.

Understanding that variables are constant

Despite its name, a DAX variable is a constant. Once assigned a value, the variable cannot be modifi ed. 
For example, if a variable is assigned within an iterator, it is created and assigned for every row iterated. 
Moreover, the value of the variable is only available within the expression of the iterator it is defi ned in.

Amount at Current Price :=
SUMX (
    Sales,
    VAR Quantity = Sales[Quantity]
    VAR CurrentPrice = RELATED ( 'Product'[Unit Price] )
    VAR AmountAtCurrentPrice = Quantity * CurrentPrice
    RETURN
        AmountAtCurrentPrice
)
-- Any reference to Quantity, CurrentPrice, or AmountAtCurrentPrice 
-- would be invalid outside of SUMX

Variables are evaluated once in the scope of the defi nition (VAR) and not when their value is used. 
For example, the following measure always returns 100% because the SalesAmount variable is not 
affected by CALCULATE. Its value is only computed once. Any reference to the variable name returns 
the same value regardless of the fi lter context where the variable value is used.

% of Product :=
VAR SalesAmount = SUMX ( Sales, Sales[Quantity] * Sales[Net Price] )
RETURN
    DIVIDE (
        SalesAmount,
        CALCULATE (
            SalesAmount,
            ALL ( 'Product' )
        )
    )
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In this latter example, we used a variable where we should have used a measure. Indeed, if the goal 
is to avoid the duplication of the code of SalesAmount in two parts of the expression, the right solution 
requires using a measure instead of a variable to obtain the expected result. In the following code, the 
correct percentage is obtained by defi ning two measures:

Sales Amount := 
SUMX ( Sales, Sales[Quantity] * Sales[Net Price] )
 
% of Product :=
DIVIDE (
    [Sales Amount],
    CALCULATE (
        [Sales Amount],
        ALL ( 'Product' )
    )
)

In this case the Sales Amount measure is evaluated twice, in two different fi lter contexts—leading as 
expected to two different results.

Understanding the scope of variables

Each variable defi nition can reference the variables previously defi ned within the same VAR/RETURN 
statement. All the variables already defi ned in outer VAR statements are also available.

A variable defi nition can access the variables defi ned in previous VAR statements, but not the 
variables defi ned in following statements. Thus, this code works fi ne:

Margin :=
VAR SalesAmount =
    SUMX ( Sales, Sales[Quantity] * Sales[Net Price] )
VAR TotalCost =
    SUMX ( Sales, Sales[Quantity] * Sales[Unit Cost] )
VAR Margin = SalesAmount - TotalCost
RETURN
    Margin

Whereas if one moves the defi nition of Margin at the beginning of the list, as in the following 
example, DAX will not accept the syntax. Indeed, Margin references two variables that are not yet 
defi ned—SalesAmount and TotalCost:

Margin :=
VAR Margin = SalesAmount - TotalCost -- Error: SalesAmount and TotalCost are not defined
VAR SalesAmount =
    SUMX ( Sales, Sales[Quantity] * Sales[Net Price] )
VAR TotalCost =
    SUMX ( Sales, Sales[Quantity] * Sales[Unit Cost] )
RETURN
    Margin
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Because it is not possible to reference a variable before its defi nition, it is also impossible to create 
either a circular dependency between variables, or any sort of recursive defi nition.

It is possible to nest VAR/RETURN statements inside each other, or to have multiple VAR/RETURN 
blocks in the same expression. The scope of variables differs in the two scenarios. For example, in the 
following measure the two variables LineAmount and LineCost are defi ned in two different scopes that 
are not nested. Thus, at no point in the code can LineAmount and LineCost both be accessed within the 
same expression:

Margin :=
SUMX (
    Sales,
    (
        VAR LineAmount = Sales[Quantity] * Sales[Net Price]
        RETURN 
            LineAmount
    ) -- The parenthesis closes the scope of LineAmount
      -- The LineAmount variable is not accessible from here on in
    - 
    (
        VAR LineCost = Sales[Quantity] * Sales[Unit Cost]
        RETURN
            LineCost 
    )
)

Clearly, this example is only for educational purposes. A better way of defi ning the two variables and 
of using them is the following defi nition of Margin:

Margin :=
SUMX (
    Sales,
    VAR LineAmount = Sales[Quantity] * Sales[Net Price]
    VAR LineCost = Sales[Quantity] * Sales[Unit Cost]
    RETURN 
        LineAmount - LineCost
)

As a further educational example, it is interesting to consider the real scope where a variable is 
accessible when the parentheses are not used and an expression defi nes and reads several variables in 
separate VAR/RETURN statements. For example, consider the following code:

Margin :=
SUMX (
    Sales,
    VAR LineAmount = Sales[Quantity] * Sales[Net Price]
    RETURN LineAmount
        - 
          VAR LineCost = Sales[Quantity] * Sales[Unit Cost]
          RETURN LineCost -- Here LineAmount is still accessible
)
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The entire expression after the fi rst RETURN is part of a single expression. Thus, the LineCost defi ni-
tion is nested within the LineAmount defi nition. Using the parentheses to delimit each RETURN 
expression and indenting the code appropriately makes this concept more visible:

Margin :=
SUMX (
    Sales,
    VAR LineAmount = Sales[Quantity] * Sales[Net Price]
    RETURN (
        LineAmount
        - VAR LineCost = Sales[Quantity] * Sales[Unit Cost]
          RETURN (
              LineCost 
              -- Here LineAmount is still accessible
          )
    )
)

As shown in the previous example, because a variable can be defi ned for any expression, a variable 
can also be defi ned within the expression assigned to another variable. In other words, it is possible to 
defi ne nested variables. Consider the following example:

Amount at Current Price :=
SUMX ( 
    'Product',
    VAR CurrentPrice = 'Product'[Unit Price]
    RETURN -- CurrentPrice is available within the inner SUMX
        SUMX (
            RELATEDTABLE ( Sales ),
            VAR Quantity = Sales[Quantity] 
            VAR AmountAtCurrentPrice = Quantity * CurrentPrice
            RETURN
                AmountAtCurrentPrice
        )
        -- Any reference to Quantity, or AmountAtCurrentPrice
        -- would be invalid outside of the innermost SUMX
)
-- Any reference to CurrentPrice 
-- would be invalid outside of the outermost SUMX

The rules pertaining to the scope of variables are the following:

 ■ A variable is available in the RETURN part of its VAR/RETURN block. It is also available in all the 
variables defi ned after the variable itself, within that VAR/RETURN block. The VAR/RETURN 
block replaces any DAX expression, and in such expression the variable can be read. In other 
words, the variable is accessible from its declaration point until the end of the expression 
following the RETURN statement that is part of the same VAR/RETURN block.

 ■ A variable is never available outside of its own VAR/RETURN block defi nition. After the expres-
sion following the RETURN statement, the variables declared within the VAR/RETURN block are 
no longer visible. Referencing them generates a syntax error.
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Using table variables

A variable can store either a table or a scalar value. The type of the variable depends on its defi nition; 
for instance, if the expression used to defi ne the variable is a table expression, then the variable con-
tains a table. Consider the following code:

Amount :=
IF ( 
    HASONEVALUE ( Slicer[Factor] ),
    VAR 
        Factor = VALUES ( Slicer[Factor] )
    RETURN 
        DIVIDE (
            [Sales Amount],
            Factor
        )
)

If Slicer[Factor] is a column with a single value in the current fi lter context, then it can be used as a 
scalar expression. The Factor variable stores a table because it contains the result of VALUES, which is 
a table function. If the user does not check for the presence of a single row with HASONEVALUE, the 
variable assignment works fi ne; the line raising an error is the second parameter of DIVIDE, where the 
variable is used, and conversion fails.

When a variable contains a table, it is likely because one wants to iterate on it. It is important to note 
that, during such iteration, one should access the columns of a table variable by using their original 
names. In other words, a variable name is not an alias of the underlying table in column references:

Filtered Amount :=
VAR 
    MultiSales = FILTER ( Sales, Sales[Quantity] > 1 )
RETURN 
    SUMX ( 
        MultiSales,
        -- MultiSales is not a table name for column references
        -- Trying to access MultiSales[Quantity] would generate an error
        Sales[Quantity] * Sales[Net Price] 
    )

Although SUMX iterates over MultiSales, you must use the Sales table name to access the Quantity 
and Net Price columns. A column reference such as MultiSales[Quantity] is invalid.

One current DAX limitation is that a variable cannot have the same name as any table in the data 
model. This prevents the possible confusion between a table reference and a variable reference. 
Consider the following code:

SUMX ( 
    LargeSales, 
    Sales[Quantity] * Sales[NetPrice]
)
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A human reader immediately understands that LargeSales should be a variable because the column 
references in the iterator reference another table name: Sales. However, DAX disambiguates at the lan-
guage level through the distinctiveness of the name. A certain name can be either a table or a variable, 
but not both at the same time.

Although this looks like a convenient limitation because it reduces confusion, it might be problem-
atic in the long run. Indeed, whenever you defi ne the name of a variable, you should use a name that 
will never be used as a table name in the future. Otherwise, if at some point you create a new table 
whose name confl icts with variables used in any measure, you will obtain an error. Any syntax limitation 
that requires you to predict what will happen in the future—like choosing the name of a table—is an 
issue to say the least.

For this reason, when Power BI generates DAX queries, it uses variable names adopting a prefi x with 
two underscores (__). The rationale is that a user is unlikely to use the same name in a data model.

 

Note This behavior could change in the future, thus enabling a variable name to override 
the name of an existing table. When this change is implemented, there will no longer be a 
risk of breaking an existing DAX expression by giving a new table the name of a variable. 
When a variable name overrides a table name, the disambiguation will be possible by using 
the single quote to delimit the table identifi er using the following syntax:

variableName
'tableName'

Should a developer design a DAX code generator to be injected in existing expressions, 
they can use the single quote to disambiguate table identifi ers. This is not required in regu-
lar DAX code, if the code does not include ambiguous names between variables and tables.

 

Understanding lazy evaluation

As you have learned, DAX evaluates the variable within the evaluation context where it is defi ned, and 
not where it is being used. Still, the evaluation of the variable itself is delayed until its fi rst use. This 
technique is known as lazy evaluation. Lazy evaluation is important for performance reasons: a variable 
that is never used in an expression will never be evaluated. Moreover, once a variable is computed for 
the fi rst time, it will never be computed again in the same scope.

For example, consider the following code:

Sales Amount :=
VAR SalesAmount = 
    SUMX ( Sales, Sales[Quantity] * Sales[Net Price] )
VAR DummyError = 
    ERROR ( "This error will never be displayed" )
RETURN 
    SalesAmount
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The variable DummyError is never used, so its expression is never executed. Therefore, the error 
never happens and the measure works correctly.

Obviously, nobody would ever write code like this. The goal of the example is to show that DAX does 
not spend precious CPU time evaluating a variable if it is not useful to do so, and you can rely on this 
behavior when writing code.

If a sub-expression is used multiple times in a complex expression, then creating a variable to store 
its value is always a best practice. This guarantees that evaluation only happens once. Performance-
wise, this is more important than you might think. We will discuss this in more detail in Chapter 20, but 
we cover the general idea here.

The DAX optimizer features a process called sub-formula detection. In a complex piece of code, 
sub-formula detection checks for repeating sub-expressions that should only be computed once. 
For example, look at the following code:

SalesAmount := SUMX ( Sales, Sales[Quantity] * Sales[Net Price] )
TotalCost   := SUMX ( Sales, Sales[Quantity] * Sales[Unit Cost] )
Margin      := [SalesAmount] – [TotalCost]
Margin%     := DIVIDE ( [Margin], [TotalCost] )

The TotalCost measure is called twice—once in Margin and once in Margin%. Depending on the 
quality of the optimizer, it might be able to detect that both measure calls refer to the same value, so it 
might be able to compute TotalCost only once. Nevertheless, the optimizer is not always able to detect 
that a sub-formula exists and that it can be evaluated only once. As a human, and being the author of 
your own code, you always have a much better understanding of when part of the code can be used in 
multiple parts of your formula.

If you get used to using variables whenever you can, defi ning sub-formulas as variables will come 
naturally. When you use their value multiple times, you will greatly help the optimizer in fi nding the 
best execution path for your code.

Common patterns using variables

In this section, you fi nd practical uses of variables. It is not an exhaustive list of scenarios where vari-
ables become useful, and although there are many other situations where a variable would be a good 
fi t, these are relevant and frequent uses.

The fi rst and most relevant reason to use variables is to provide documentation in your code. 
A good example is when you need to use complex fi lters in a CALCULATE function. Using variables 
as CALCULATE fi lters only improves readability. It does not change semantics or performance. Filters 
would be executed outside of the context transition triggered by CALCULATE in any case, and DAX also 
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uses lazy evaluation for fi lter contexts. Nevertheless, improving readability is an important task for any 
DAX developer. For example, consider the following measure defi nition:

Sales Large Customers :=
VAR LargeCustomers =
    FILTER ( 
        Customer,
        [Sales Amount] > 10000
    )
VAR WorkingDaysIn2008 = 
    CALCULATETABLE ( 
        ALL ( 'Date'[IsWorkingDay], 'Date'[Calendar Year] ),
        'Date'[IsWorkingDay] = TRUE (),
        'Date'[Calendar Year] = "CY 2008"
    )
RETURN 
    CALCULATE (
        [Sales Amount],
        LargeCustomers,
        WorkingDaysIn2008
    )

Using the two variables for the fi ltered customers and the fi ltered dates splits the full execution fl ow 
into three distinct parts: the defi nition of what a large customer is, the defi nition of the period one 
wants to consider, and the actual calculation of the measure with the two fi lters applied.

Although it might look like we are only talking about style, you should never forget that a more 
elegant and simple formula is more likely to also be an accurate formula. Writing a simpler formula, the 
author is more likely to have understood the code and fi xed any possible fl aws. Whenever an expres-
sion takes more than 10 lines of code, it is time to split its execution path with multiple variables. 
This allows the author to focus on smaller fragments of the full formula.

Another scenario where variables are important is when nesting multiple row contexts on the same 
table. In this scenario, variables let you save data from hidden row contexts and avoid the use of the 
EARLIER function:

'Product'[RankPrice] =
VAR CurrentProductPrice = 'Product'[Unit Price]
VAR MoreExpensiveProducts = 
    FILTER (
        'Product',
        'Product'[Unit Price] > CurrentProductPrice
    )
RETURN 
    COUNTROWS ( MoreExpensiveProducts ) + 1

Filter contexts can be nested too. Nesting multiple fi lter contexts does not create syntax problems 
as it does with multiple row contexts. One frequent scenario with nested fi lter contexts is needing to 
save the result of a calculation to use it later in the code when the fi lter context changes.
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For example, if one needs to search for the customers who bought more than the average customer, 
this code is not going to work:

AverageSalesPerCustomer := 
AVERAGEX ( Customer, [Sales Amount] )
 
CustomersBuyingMoreThanAverage :=
COUNTROWS (
    FILTER (
        Customer, 
        [Sales Amount] > [AverageSalesPerCustomer]
    )
)

The reason is that the AverageSalesPerCustomer measure is evaluated inside an iteration over 
Customer. As such, there is a hidden CALCULATE around the measure that performs a context transi-
tion. Thus, AverageSalesPerCustomer evaluates the sales of the current customer inside the iteration 
every time, instead of the average over all the customers in the fi lter context. There is no customer 
whose sales amount is strictly greater than the sales amount itself. The measure always returns blank.

To obtain the correct behavior, one needs to evaluate AverageSalesPerCustomer outside of the 
iteration. A variable fi ts this requirement perfectly:

AverageSalesPerCustomer := 
AVERAGEX ( Customer, [Sales Amount] )
 
CustomersBuyingMoreThanAverage :=
VAR AverageSales = [AverageSalesPerCustomer]
RETURN
    COUNTROWS (
        FILTER (
            Customer, 
            [Sales Amount] > AverageSales
        )
    )

In this example DAX evaluates the variable outside of the iteration, computing the correct average 
sales for all the selected customers. Moreover, the optimizer knows that the variable can (and must) be 
evaluated only once, outside of the iteration. Thus, the code is likely to be faster than any other possible 
implementation.

Conclusions

Variables are useful for multiple reasons: readability, performance, and elegance of the code. When-
ever you need to write a complex formula, split it into multiple variables. You will appreciate having 
done so the next time you review your code.
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It is true that expressions using variables tend to be longer than the same expressions without 
variables. A longer expression is not a bad thing if it means that each part is easier to understand. 
Unfortunately, in several tools the user interface to author DAX code makes it hard to write expres-
sions over 10 lines long. You might think that a shorter formulation of the same code without variables 
is preferable because it is easier to author in a specifi c tool—for example Power BI. That is incorrect.

We certainly need better tools to author longer DAX code that includes comments and many 
variables. These tools will come eventually. In the meantime, rather than authoring shorter and 
confusing code directly into a small text box, it is wiser to use external tools like DAX Studio to author 
longer DAX code. You would then copy and paste the resulting code into Power BI or Visual Studio.
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C H A P T E R  7

Working with iterators and with 
CALCULATE

In previous chapters we provided the theoretical foundations of DAX: row context, fi lter context, and 
context transition. These are the pillars any DAX expression is built on. We already introduced iterators, 
and we used them in many different formulas. However, the real power of iterators starts to show when 
they are being used in conjunction with evaluation contexts and context transition.

In this chapter we take iterators to the next level, by describing the most common uses of iterators 
and by introducing many new iterators. Learning how to leverage iterators in your code is an important 
skill to acquire. Indeed, using iterators and context transition together is a feature that is unique to the 
DAX language. In our teaching experience, students usually struggle with learning the power of itera-
tors. But that does not mean that the use of iterators is diffi cult to understand. The concept of iteration 
is simple, as is the usage of iterators in conjunction with context transition. What is hard is realizing that 
the solution to a complex calculation is resorting to an iteration. For this reason, we provide several 
examples of calculations that are simple to create with the help of iterators.

Using iterators

Most iterators accept at least two parameters: the table to iterate and an expression that the iterator 
evaluates on a row-by-row basis, in the row context generated during the iteration. A simple expres-
sion using SUMX will support our explanation:

Sales Amount :=
SUMX ( 
    Sales,                               -- Table to iterate
    Sales[Quantity] * Sales[Net Price]   -- Expression to evaluate row by row
)

SUMX iterates the Sales table, and for each row it computes the expression by multiplying quantity 
by net price. Iterators differ from one another in the use they make of the partial results gathered dur-
ing the iteration. SUMX is a simple iterator that aggregates these results using sum.

It is important to understand the difference between the two parameters. The fi rst argument is the 
value resulting from a table expression to iterate. Being a value parameter, it is evaluated before the 
iteration starts. The second parameter, on the other hand, is an expression that is not evaluated before 
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the execution of SUMX. Instead, the iterator evaluates the expression in the row context of the itera-
tion. The offi cial Microsoft documentation does not provide an accurate classifi cation of the iterator 
functions. More specifi cally, it does not indicate which parameters represent a value and which param-
eters represent an expression evaluated during the iteration. On https://dax.guide all the functions that 
evaluate an expression in a row context have a special marker (ROW CONTEXT) to identify the argu-
ment executed in a row context. Any function that has an argument marked with ROW CONTEXT is an 
iterator.

Several iterators accept additional arguments after the fi rst two. For example, RANKX is an 
 iterator that accepts many arguments, whereas SUMX, AVERAGEX and simple iterators only use two 
 arguments. In this chapter we describe many iterators individually. But fi rst, we go deeper on a few 
important aspects of iterators.

Understanding iterator cardinality
The fi rst important concept to understand about iterators is the iterator cardinality. The cardinality of 
an iterator is the number of rows being iterated. For example, in the following iteration if Sales has one 
million rows, then the cardinality is one million:

Sales Amount :=
SUMX ( 
    Sales,                              -- Sales has 1M rows, as a consequence
    Sales[Quantity] * Sales[Net Price]  -- the expression is evaluated one million times
)

When speaking about cardinality, we seldom use numbers. In fact, the cardinality of the previous 
example depends on the number of rows of the Sales table. Thus, we prefer to say that the cardinality 
of the iterator is the same as the cardinality of Sales. The more rows in Sales, the higher the number of 
iterated rows.

In the presence of nested iterators, the resulting cardinality is a combination of the cardinality of 
the two iterators—up to the product of the two original tables. For example, consider the following 
formula:

Sales at List Price 1 := 
SUMX ( 
    'Product',
    SUMX (
        RELATEDTABLE ( Sales ),
        'Product'[Unit Price] * Sales[Quantity]
    )
)

In this example there are two iterators. The outer iterates Product. As such, its cardinality is the cardi-
nality of Product. Then for each product the inner iteration scans the Sales table, limiting its iteration 
to the rows in Sales that have a relationship with the given product. In this case, because each row in 
Sales is pertinent to only one product, the full cardinality is the cardinality of Sales. If the inner table 
expression is not related to the outer table expression, then the cardinality becomes much higher. 

https://dax.guide
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For example, consider the following code. It computes the same value as the previous code, but instead 
of relying on relationships, it uses an IF function to fi lter the sales of the current product:

Sales at List Price High Cardinality := 
SUMX ( 
    VALUES ( 'Product' ),
    SUMX (
        Sales,
        IF (
             Sales[ProductKey] = 'Product'[ProductKey],
             'Product'[Unit Price] * Sales[Quantity],
             0
        )
    )
)

In this example the inner SUMX always iterates over the whole Sales table, relying on the internal IF 
statement to check whether the product should be considered or not for the calculation. In this case, 
the outer SUMX has the cardinality of Product, whereas the inner SUMX has the cardinality of Sales. The 
cardinality of the whole expression is Product times Sales; much higher than the fi rst example. Be mind-
ful that this example is for educational purposes only. It would result in bad performance if one ever 
used such a pattern in a DAX expression.

A better way to express this code is the following:

Sales at List Price 2 := 
SUMX ( 
    Sales,
    RELATED ( 'Product'[Unit Price] ) * Sales[Quantity]
)

The cardinality of the entire expression is the same as in the Sales at List Price 1 measure, but the 
latter has a better execution plan. Indeed, it avoids nested iterators. Nested iterations mostly happen 
because of context transition. In fact, by looking at the following code, one might think that there are 
no nested iterators:

Sales at List Price 3 := 
SUMX ( 
    'Product',
    'Product'[Unit Price] * [Total Quantity] 
)

However, inside the iteration there is a reference to a measure (Total Quantity) which we need to 
consider. In fact, here is the expanded defi nition of Total Quantity:

Total Quantity := 
SUM ( Sales[Quantity] )    -- Internally translated into SUMX ( Sales, Sales[Quantity] )
 
Sales at List Price 4 := 
SUMX ( 
    'Product',
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    'Product'[Unit Price] *
        CALCULATE (
            SUMX (
                Sales, 
                Sales[Quantity]
            )
        )
)

You can now see that there is a nested iteration—that is, a SUMX inside another SUMX. Moreover, 
the presence of CALCULATE, which performs a context transition, is also made visible.

From a performance point of view, when there are nested iterators, only the innermost iterator can 
be optimized with the more effi cient query plan. The presence of outer iterators requires the creation 
of temporary tables in memory. These temporary tables store the intermediate result produced by the 
innermost iterator. This results in slower performance and higher memory consumption. As a conse-
quence, nested iterators should be avoided if the cardinality of the outer iterators is very large—in the 
order of several million rows.

Please note that in the presence of context transition, unfolding nested iterations is not as easy as it 
might seem. In fact, a typical mistake is to obtain nested iterators by writing a measure that is supposed 
to reuse an existing measure. This could be dangerous when the existing logic of a measure is reused 
within an iterator. For example, consider the following calculation:

Sales at List Price 5 := 
SUMX ( 
    'Sales',
    RELATED ( 'Product'[Unit Price] ) * [Total Quantity] 
)

The Sales at List Price 5 measure seems identical to Sales at List Price 3. Unfortunately, Sales at 
List Price 5 violates several of the rules of context transition outlined in Chapter 5, “Understanding 
 CALCULATE and CALCULATETABLE”: It performs context transition on a large table (Sales), and worse, it 
performs context transition on a table where the rows are not guaranteed to be unique. Consequently, 
the formula is slow and likely to produce incorrect results.

This is not to say that nested iterations are always bad. There are various scenarios where the use of 
nested iterations is convenient. In fact, in the rest of this chapter we show many examples where nested 
iterators are a powerful tool to use.

Leveraging context transition in iterators
A calculation might require nested iterators, usually when it needs to compute a measure in different 
contexts. These are the scenarios where using context transition is powerful and allows for the concise, 
effi cient writing of complex calculations.

For example, consider a measure that computes the maximum daily sales in a time period. The defi -
nition of the measure is important because it defi nes the granularity right away. Indeed, one needs to 
fi rst compute the daily sales in the given period, then fi nd the maximum value in the list of computed 
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values. Even though it would seem intuitive to create a table containing daily sales and then use MAX 
on it, in DAX you are not required to build such a table. Instead, iterators are a convenient way of 
obtaining the desired result without any additional table.

The idea of the algorithm is the following:

 ■ Iterate over the Date table.

 ■ Compute the sales amount for each day.

 ■ Find the maximum of all the values computed in the previous step.

You can write this measure by using the following approach:

Max Daily Sales 1 :=
MAXX (
    'Date',
    VAR DailyTransactions =
        RELATEDTABLE ( Sales )
    VAR DailySales =
        SUMX (
            DailyTransactions,
            Sales[Quantity] * Sales[Net Price]
        )
    RETURN
        DailySales
)

However, a simpler approach is the following, which leverages the implicit context transition of the 
measure Sales Amount:

Sales Amount :=
SUMX ( 
    Sales, 
    Sales[Quantity] * Sales[Net Price] 
)
 
Max Daily Sales 2 := 
MAXX ( 
    'Date', 
    [Sales Amount] 
)

In both cases there are two nested iterators. The outer iteration happens on the Date table, which is 
expected to contain a few hundred rows. Moreover, each row in Date is unique. Thus, both calculations 
are safe and quick. The former version is more complete, as it outlines the full algorithm. On the other 
hand, the second version of Max Daily Sales hides many details and makes the code more readable, 
leveraging context transition to move the fi lter from Date over to Sales.

You can view the result of this measure in Figure 7-1 that shows the maximum daily sales for each 
month.
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FIGURE 7-1 The report shows the Max Daily Sales measure computed by month and year.

By leveraging context transition and an iteration, the code is usually more elegant and intuitive to 
write. The only issue you should be aware of is the cost involved in context transition: it is a good idea 
to avoid measure references in large iterators.

By looking at the report in Figure 7-1, a logical question is: When did sales hit their maximum? For 
example, the report is indicating that in one certain day in January 2007, Contoso sold 92,244.07 USD. 
But in which day did it happen? Iterators and context transition are powerful tools to answer this 
question. Look at the following code:

Date of Max = 
VAR MaxDailySales = [Max Daily Sales]
VAR DatesWithMax = 
    FILTER ( 
        VALUES ( 'Date'[Date] ), 
        [Sales Amount] = MaxDailySales 
    )
VAR Result = 
    IF ( 
        COUNTROWS ( DatesWithMax ) = 1,
        DatesWithMax,
        BLANK ()
    )
RETURN
    Result

The formula fi rst stores the value of the Max Daily Sales measure into a variable. Then, it creates a 
temporary table containing the dates where sales equals MaxDailySales. If there is only one date when 
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this happened, then the result is the only row which passed the fi lter. If there are multiple dates, then 
the formula blanks its result, showing that a single date cannot be determined. You can look at the 
result of this code in Figure 7-2.

FIGURE 7-2 The Date of Max measures make it clear which unique date generated the maximum sales.

The use of iterators in DAX requires you to always defi ne, in this order:

 ■ The granularity at which you want the calculation to happen,

 ■ The expression to evaluate at the given granularity,

 ■ The kind of aggregation to use.

In the previous example (Max Daily Sales 2) the granularity is the date, the expression is the amount 
of sales, and the aggregation to use is MAX. The result is the maximum daily sales.

There are several scenarios where the same pattern can be useful. Another example could be 
displaying the average customer sales. If you think about it in terms of iterators using the pattern 
described above, you obtain the following: Granularity is the individual customer, the expression to use 
is sales amount, and the aggregation is AVERAGE.

Once you follow this mental process, the formula is short and easy:

Avg Sales by Customer :=
AVERAGEX ( Customer, [Sales Amount] )

With this simple formula, one can easily build powerful reports like the one in Figure 7-3 that shows 
the average sales per customer by continent and year.
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FIGURE 7-3 The Avg Sales by Customer measure computed by year and by continent.

Context transition in iterators is a powerful tool. It can also be expensive, so always checking the 
cardinality of the outer iterator is a good practice. This will result in more effi cient DAX code.

Using CONCATENATEX
In this section, we show a convenient usage of CONCATENATEX to display the fi lters applied to a report 
in a user-friendly way. Suppose you build a simple visual that shows sales sliced by year and continent, 
and you put it in a more complex report where the user has the option of fi ltering colors using a slicer. 
The slicer might be near the visual or it might be in a different page.

If the slicer is in a different page, then looking at the visual, it is not clear whether the numbers 
displayed are a subset of the whole dataset or not. In that case it would be useful to add a label to the 
report, showing the selection made by the user in textual form as in Figure 7-4.

FIGURE 7-4 The label at the bottom of the visual indicates which fi lters are being applied.

One can inspect the values of the selected colors by querying the VALUES function. Nevertheless, 
CONCATENATEX is required to convert the resulting table into a string. Look at the defi nition of the 
Selected Colors measure, which we used to show the colors in Figure 7-4:

Selected Colors := 
"Showing " &  
CONCATENATEX (
    VALUES ( 'Product'[Color] ),
    'Product'[Color], 
    ", ",
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    'Product'[Color],
    ASC
) & " colors."

CONCATENATEX iterates over the values of product color and creates a string containing the list 
of these colors separated by a comma. As you can see, CONCATENATEX accepts multiple parameters. 
As usual, the fi rst two are the table to scan and the expression to evaluate. The third parameter is the 
string to use as the separator between expressions. The fourth and the fi fth parameters indicate the 
sort order and its direction (ASC or DESC).

The only drawback of this measure is that if there is no selection on the color, it produces a long list 
with all the colors. Moreover, in the case where there are more than fi ve colors, the list would be too 
long anyway and the user experience sub-optimal. Nevertheless, it is easy to fi x both problems by mak-
ing the code slightly more complex to detect these situations:

Selected Colors :=
VAR Colors =
    VALUES ( 'Product'[Color] )
VAR NumOfColors =
    COUNTROWS ( Colors )
VAR NumOfAllColors =
    COUNTROWS (
        ALL ( 'Product'[Color] )
    )
VAR AllColorsSelected = NumOfColors = NumOfAllColors
VAR SelectedColors =
    CONCATENATEX (
        Colors,
        'Product'[Color],
        ", ",
        'Product'[Color], ASC
    )
VAR Result =
    IF (
        AllColorsSelected,
        "Showing all colors.",
        IF (
            NumOfColors > 5,
            "More than 5 colors selected, see slicer page for details.",
            "Showing " & SelectedColors & " colors."
        )
    )
RETURN
    Result

In Figure 7-5 you can see two results for the same visual, with different selections for the colors. 
With this latter version, it is much clearer whether the user needs to look at more details or not about 
the color selection.
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FIGURE 7-5 Depending on the fi lters, the label now shows user-friendly descriptions of the fi ltering.

This latter version of the measure is not perfect yet. In the case where the user selects fi ve colors, but 
only four are present in the current selection because other fi lters hide some colors, then the measure 
does not report the complete list of colors. It only reports the existing list. In Chapter 10, “Working with 
the fi lter context,” we describe a different version of this measure that addresses this last detail. In fact, 
to author the fi nal version, we fi rst need to describe a set of new functions that aim at investigating the 
content of the current fi lter context.

Iterators returning tables
So far, we have described iterators that aggregate an expression. There are also iterators that return a 
table produced by merging a source table with one or more expressions evaluated in the row context 
of the iteration. ADDCOLUMNS and SELECTCOLUMNS are the most interesting and useful. They are 
the topic of this section.

As its name implies, ADDCOLUMNS adds new columns to the table expression provided as the 
fi rst parameter. For each added column, ADDCOLUMNS requires knowing the column name and the 
expression that defi nes it.

For example, you can add two columns to the list of colors, including for each color the number of 
products and the value of Sales Amount in two new columns: 

Colors =
ADDCOLUMNS (
    VALUES ( 'Product'[Color] ),
    "Products", CALCULATE ( COUNTROWS ( 'Product' ) ),
    "Sales Amount", [Sales Amount]
)
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The result of this code is a table with three columns: the product color, which is coming from the val-
ues of Product[Color], and the two new columns added by ADDCOLUMNS as you can see in Figure 7-6.

FIGURE 7-6 The Sales Amount and Products columns are computed by ADDCOLUMNS.

ADDCOLUMNS returns all the columns of the table expression it iterates, adding the requested 
 columns. To keep only a subset of the columns of the original table expression, an option is to use 
SELECTCOLUMNS, which only returns the requested columns. For instance, you can rewrite the 
 previous example of ADDCOLUMNS by using the following query:

Colors =
SELECTCOLUMNS (
    VALUES ( 'Product'[Color] ),
    "Color", 'Product'[Color],
    "Products", CALCULATE ( COUNTROWS ( 'Product' ) ),
    "Sales Amount", [Sales Amount]
) 

The result is the same, but you need to explicitly include the Color column of the original table 
to obtain the same result. SELECTCOLUMNS is useful whenever you need to reduce the number of 
 columns of a table, oftentimes resulting from some partial calculations.
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ADDCOLUMNS and SELECTCOLUMNS are useful to create new tables, as you have seen in this fi rst 
example. These functions are also often used when authoring measures to make the code easier and 
faster. As an example, look at the measure, defi ned earlier in this chapter, that aims at fi nding the date 
with the maximum daily sales:

Max Daily Sales := 
MAXX ( 
    'Date', 
    [Sales Amount] 
)
 
Date of Max := 
VAR MaxDailySales = [Max Daily Sales]
VAR DatesWithMax = 
    FILTER ( 
        VALUES ( 'Date'[Date] ), 
        [Sales Amount] = MaxDailySales 
    )
VAR Result = 
    IF ( 
        COUNTROWS ( DatesWithMax ) = 1,
        DatesWithMax,
        BLANK ()
    )
RETURN
    Result

If you look carefully at the code, you will notice that it is not optimal in terms of performance. In 
fact, as part of the calculation of the variable MaxDailySales, the engine needs to compute the daily 
sales to fi nd the maximum value. Then, as part of the second variable evaluation, it needs to compute 
the daily sales again to fi nd the dates when the maximum sales happened. Thus, the engine performs 
two iterations on the Date table, and each time it computes the sales amount for each date. The DAX 
optimizer might be smart enough to understand that it can compute the daily sales only once, and then 
use the previous result the second time you need it, but this is not guaranteed to happen. Nevertheless, 
by refactoring the code leveraging ADDCOLUMNS, one can write a faster version of the same measure. 
This is achieved by fi rst preparing a table with the daily sales and storing it into a variable, then using this 
fi rst—partial—result to compute both the maximum daily sales and the date with the maximum sales:

Date of Max := 
VAR DailySales = 
    ADDCOLUMNS ( 
        VALUES ( 'Date'[Date] ),
        "Daily Sales", [Sales Amount] 
    ) 
VAR MaxDailySales = MAXX ( DailySales, [Daily Sales] )
VAR DatesWithMax =
    SELECTCOLUMNS (  
        FILTER ( 
            DailySales, 
            [Daily Sales] = MaxDailySales
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        ),
        "Date", 'Date'[Date] 
    )
VAR Result = 
IF ( 
    COUNTROWS ( DatesWithMax ) = 1,
    DatesWithMax,
    BLANK ()
)
RETURN
    Result

The algorithm is close to the previous one, with some noticeable differences:

 ■ The DailySales variable contains a table with date, and sales amount on each given date. This 
table is created by using ADDCOLUMNS.

 ■ MaxDailySales no longer computes the daily sales. It scans the precomputed DailySales vari-
able, resulting in faster execution time.

 ■ The same happens with DatesWithMax, which scans the DailySales variable. Because after that 
point the code only needs the date and no longer the daily sales, we used SELECTCOLUMNS to 
remove the daily sales from the result.

This latter version of the code is more complex than the original version. This is often the price to 
pay when optimizing code: Worrying about performance means having to write more complex code.

You will see ADDCOLUMNS and SELECTCOLUMNS in more detail in Chapter 12, “Working with 
tables,” and in Chapter 13, “Authoring queries.” There are many details that are important there, 
especially if you want to use the result of SELECTCOLUMNS in other iterators that perform context 
transition.

Solving common scenarios with iterators

In this section we continue to show examples of known iterators and we also introduce a common 
and useful one: RANKX. You start learning how to compute moving averages and the difference 
between using an iterator or a straight calculation for the average. Later in this section, we provide a 
complete description of the RANKX function, which is extremely useful to compute ranking based on 
expressions.

Computing averages and moving averages
You can calculate the mean (arithmetic average) of a set of values by using one of the following DAX 
functions:

 ■ AVERAGE: returns the average of all the numbers in a numeric column.

 ■ AVERAGEX: calculates the average on an expression evaluated over a table.
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Note DAX also provides the AVERAGEA function, which returns the average of all the 
numbers in a text column. However, you should not use it. AVERAGEA only exists in DAX 
for Excel compatibility. The main issue of AVERAGEA is that when you use a text column as 
an argument, it does not try to convert each text row to a number as Excel does. Instead, if 
you pass a string column as an argument, you always obtain 0 as a result. That is quite use-
less. On the other hand, AVERAGE would return an error, clearly indicating that it cannot 
average strings.

 

We discussed how to compute regular averages over a table earlier in this chapter. Here we want 
to show a more advanced usage, that is a moving average. For example, imagine that you want to 
analyze the daily sales of Contoso. If you just build a report that plots the sales amount sliced by 
day, the result is hard to analyze. As you can see in Figure 7-7, the value obtained has strong daily 
variations.

FIGURE 7-7 Plotting the sales amount on a daily basis is a hard report to read.

To smooth out the chart, a common technique is to compute the average over a certain period 
greater than just the day level. In our example, we decided to use 30 days as our period. Thus, on each 
day the chart shows the average over the last 30 days. This technique helps in removing peaks from the 
chart, making it easier to detect a trend.
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The following calculation provides the average at the date cardinality, over the last 30 days:

AvgXSales30 := 
VAR LastVisibleDate = MAX ( 'Date'[Date] )
VAR NumberOfDays = 30
VAR PeriodToUse =
    FILTER ( 
        ALL ( 'Date' ),
        AND ( 
            'Date'[Date] > LastVisibleDate - NumberOfDays,
            'Date'[Date] <= LastVisibleDate
        )
    )
VAR Result = 
    CALCULATE (
        AVERAGEX ( 'Date', [Sales Amount] ) ,
        PeriodToUse
    )
RETURN
    Result

The formula fi rst determines the last visible date; in the chart, because the fi lter context set by the visual 
is at the date level, it returns the selected date. The formula then creates a set of all the dates between the 
last date and the last date minus 30 days. Finally, the last step is to use this period as a fi lter in CALCULATE 
so that the fi nal AVERAGEX iterates over the 30-day period, computing the average of the daily sales.

The result of this calculation is visible in Figure 7-8. As you can see, the line is much smoother than 
the daily sales, making it possible to analyze trends.

FIGURE 7-8 The moving average over 30 days results in a much smoother chart.



202 CHAPTER 7 Working with iterators and with CALCULATE

When the user relies on average functions like AVERAGEX, they need to pay special attention to the 
desired result. In fact, when computing an average, DAX ignores blank values. If on a given day there 
are no sales, then that day will not be considered as part of the average. Beware that this is a correct 
behavior. AVERAGEX cannot assume that if there are no sales in a day then we might want to use zero 
instead. This behavior might not be desirable when averaging over dates.

If the requirement is to compute the average over dates counting days with no sales as zeroes, then 
the formula to use is almost always a simple division instead of AVERAGEX. A simple division is also 
faster because the context transition within AVERAGEX requires more memory and increased execu-
tion time. Look at the following variation of the moving average, where the only difference from the 
previous formula is the expression inside CALCULATE:

AvgSales30 := 
VAR LastVisibleDate = MAX ( 'Date'[Date] )
VAR NumberOfDays = 30
VAR PeriodToUse =
    FILTER ( 
        ALL ( 'Date' ),
        'Date'[Date] > LastVisibleDate - NumberOfDays &&
        'Date'[Date] <= LastVisibleDate
    )
VAR Result =
CALCULATE (
    DIVIDE ( [Sales Amount], COUNTROWS ( 'Date' ) ),
    PeriodToUse
)
RETURN
    Result

Not leveraging AVERAGEX, this latter version of the code considers a day with no sales as a 
zero. This is reflected in the resulting value whose behavior is similar to the previous one, though 
slightly different. Moreover, the result of this latter calculation is always a bit smaller than the 
previous one because the denominator is nearly always a higher value, as you can appreciate in 
Figure 7-9.

As is often the case with business calculations, it is not that one is better than the other. It all 
depends on your specifi c requirements. DAX offers different ways of obtaining the result. It is up to 
you to choose the right one. For example, by using COUNTROWS the formula now accounts for days 
with no sales considering them as zeroes, but it also counts holidays and weekends as days with no 
sales. Whether this is correct or not depends on the specifi c requirements and the formula needs to 
be updated in order to refl ect the correct average.
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FIGURE 7-9 Different moving average calculations lead to slightly different results.

Using RANKX
The RANKX function is used to show the ranking value of an element according to a specifi c sort order. 
For example, a typical use of RANKX is to provide a ranking of products or customers based on their 
sales volumes. RANKX accepts several parameters, though most frequently only the fi rst two are used. 
All the others are optional and seldom used.

For example, imagine wanting to build the report in Figure 7-10 that shows the ranking of a category 
against all others based on respective sales amounts.

FIGURE 7-10 Rank Cat on Sales provides the ranking of the category based on the sales amount.



204 CHAPTER 7 Working with iterators and with CALCULATE

In this scenario, RANKX is the function to use. RANKX is an iterator and it is a simple function. Nev-
ertheless, its use hides some complexities that are worth a deeper explanation.

The code of Rank Cat on Sales is the following:

Rank Cat on Sales := 
RANKX ( 
    ALL ( 'Product'[Category] ),
    [Sales Amount]
)

RANKX operates in three steps:

 1. RANKX builds a lookup table by iterating over the table provided as the fi rst parameter. Dur-
ing the iteration it evaluates its second parameter in the row context of the iteration. At the 
end, it sorts the lookup table.

 2. RANKX evaluates its second parameter in the original evaluation context.

 3. RANKX returns the position of the value computed in the second step by searching its place in 
the sorted lookup table.

The algorithm is outlined in Figure 7-11, where we show the steps needed to compute the value of 2, 
the ranking of Cameras and camcorders according to Sales Amount.

FIGURE 7-11 RANKX requires three steps to determine the ranking of Cameras and camcorders.

Here is a more detailed description of the behavior of RANKX in our example:

 ■ The lookup table is built during the iteration. In the code, we had to use ALL on the product cat-
egory to ignore the current fi lter context that would otherwise fi lter the only category visible, 
producing a lookup table with only one row.

 ■ The value of Sales Amount is a different one for each category because of context transition. 
Indeed, during the iteration there is a row context. Because the expression to evaluate is a 
measure that contains a hidden CALCULATE, context transition makes DAX compute the value 
of Sales Amount only for the given category.
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 ■ The lookup table only contains values. Any reference to the category is lost: Ranking takes place 
only on values, once they are sorted correctly.

 ■ The value determined in step 2 comes from the evaluation of the Sales Amount measure outside 
of the iteration, in the original evaluation context. The original fi lter context is fi ltering Cameras 
and camcorders. Therefore, the result is the amount of sales of cameras and camcorders.

 ■ The value of 2 is the result of fi nding the place of Sales Amount of cameras and camcorders in 
the sorted lookup table.

You might have noticed that at the grand total, RANKX shows 1. This value does not make any sense 
from a human point of view because a ranking should not have any total at all. Nevertheless, this value 
is the result of the same process of evaluation, which at the grand total always shows a meaningless 
value. In Figure 7-12 you can see the evaluation process at the grand total.

FIGURE 7-12 The grand total always shows 1 if sorting of the lookup table is descending.

The value computed during step 2 is the grand total of sales, which is always greater than the sum of 
individual categories. Thus, the value shown at the grand total is not a bug or a defect; it is the standard 
RANKX behavior that loses its intended meaning at the grand total level. The correct way of handling 
the total is to hide it by using DAX code. Indeed, the ranking of a category against all other categories 
has meaning if (and only if) the current fi lter context only fi lters one category. Consequently, a better 
formulation of the measure relies on HASONEVALUE in order to avoid computing the ranking in a fi lter 
context that produces a meaningless result:

Rank Cat on Sales := 
IF (
    HASONEVALUE ( 'Product'[Category] ),
    RANKX ( 
        ALL ( 'Product'[Category] ),
        [Sales Amount]
    )
)
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This code produces a blank whenever there are multiple categories in the current fi lter context, 
removing the total row. Whenever one uses RANKX or, in more general terms, whenever the measure 
computed depends on specifi c characteristics of the fi lter context, one should protect the measure with 
a conditional expression that ensures that the calculation only happens when it should, providing a 
blank or an error message in any other case. This is exactly what the previous measure does.

As we mentioned earlier RANKX accepts many arguments, not only the fi rst two. There are three 
remaining arguments, which we introduce here. We describe them later in this section.

 ■ The third parameter is the value expression, which might be useful when different expressions 
are being used to evaluate respectively the lookup table and the value to use for the ranking.

 ■ The fourth parameter is the sort order of the lookup table. It can be ASC or DESC. The default is 
DESC, with the highest values on top—that is, higher value results in lower ranking.

 ■ The fi fth parameter defi nes how to compute values in case of ties. It can be DENSE or SKIP. If it is 
DENSE, then ties are removed from the lookup table; otherwise they are kept.

Let us describe the remaining parameters with some examples.

The third parameter is useful whenever one needs to use a different expression respectively to build 
the lookup table and to compute the value to rank. For example, consider the requirement of a custom 
table for the ranking, like the one depicted in Figure 7-13.

FIGURE 7-13 Instead of building a dynamic lookup table, one might need to use a fi xed lookup table.

If one wants to use this table to compute the lookup table, then the expression used to build it 
should be different from the Sales Amount measure. In such a case, the third parameter becomes use-
ful. To rank the sales amount against this specifi c lookup table—which is named Sales Ranking—the 
code is the following:

Rank On Fixed Table := 
RANKX ( 
    'Sales Ranking',
    'Sales Ranking'[Sales],
    [Sales Amount]
)
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In this case, the lookup table is built by getting the value of 'Sales Ranking'[Sale] in the row context of Sales 
Ranking. Once the lookup table is built, RANKX evaluates [Sales Amount] in the original evaluation context.

The result of this calculation is visible in Figure 7-14.

FIGURE 7-14 Rank On Fixed Table ranks Sales Amount against the fi xed Sales Ranking table.

The full process is depicted in Figure 7-15, where you can also appreciate that the lookup table is 
sorted before being used.

FIGURE 7-15 When using a fi xed lookup table, the expression used to build the lookup table is different from the 
expression used for step 2.

The fourth parameter can be ASC or DESC. It changes the sort order of the lookup table. By default 
it is DESC, meaning that a lower ranking is assigned to the highest value. If one uses ASC, then the 
lower value will be assigned the lower ranking because the lookup table is sorted the opposite way.

The fi fth parameter, on the other hand, is useful in the presence of ties. To introduce ties in the 
calculation, we use a different measure—Rounded Sales. Rounded Sales rounds values to the nearest 
multiple of one million, and we will slice it by brand:

Rounded Sales := MROUND ( [Sales Amount], 1000000 )
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Then, we defi ne two different rankings: One uses the default ranking (which is SKIP), whereas the 
other one uses DENSE for the ranking:

Rank On Rounded Sales := 
RANKX ( 
    ALL ( 'Product'[Brand] ),
    [Rounded Sales]
)
 
Rank On Rounded Sales Dense := 
RANKX ( 
    ALL ( 'Product'[Brand] ),
    [Rounded Sales],
    ,
    ,
    DENSE
)

The result of the two measures is different. In fact, the default behavior considers the number of ties 
and it increases the ranking accordingly. When using DENSE, the ranking increases by one regardless of 
ties. You can appreciate the different result in Figure 7-16.

FIGURE 7-16 Using DENSE or SKIP produces different ranking values in the presence of ties in the lookup table.

Basically, DENSE performs a DISTINCT on the lookup table before using it. SKIP does not, and it uses 
the lookup table as it is generated during the iteration.

When using RANKX, it is important to consider which table to use as the fi rst parameter to obtain 
the desired result. In the previous queries, it was necessary to specify ALL ( Product[Brand] ) because we 
wanted to obtain the ranking of each brand. For brevity, we omitted the usual test with HASONEVALUE. 
In practice you should never skip it; otherwise the measure is at risk of computing unexpected results. For 
example, a measure like the following one produces an error if not used in a report that slices by Brand:



 CHAPTER 7 Working with iterators and with CALCULATE 209

Rank On Sales := 
RANKX ( 
    ALL ( 'Product'[Brand] ),
    [Sales Amount]
)

In Figure 7-17 we slice the measure by product color and the result is always 1.

FIGURE 7-17 A ranking by brand produces unexpected results if sliced by Color.

The reason is that the lookup table contains the sales amount sliced by brand and by color, whereas 
the values to search in the lookup table contain the total only by color. As such, the total by color will 
always be larger than any of its subsets by brand, resulting in a ranking of 1. Adding the protection code 
with IF HASONEVALUE ensures that—if the evaluation context does not fi lter a single brand—the result 
will be blank.

Finally, ALLSELECTED is oftentimes used with RANKX. If a user performs a selection of some brands 
out of the entire set of brands, ranking over ALL might produce gaps in the ranking. This is because ALL 
returns all the brands, regardless of the fi lter coming from the slicer. For example, consider the follow-
ing measures:

Rank On Selected Brands := 
RANKX ( 
    ALLSELECTED ( 'Product'[Brand] ),
    [Sales Amount]
)
 
Rank On All Brands := 
RANKX ( 
    ALL ( 'Product'[Brand] ),
    [Sales Amount]
)

In Figure 7-18, you can see the comparison between the two measures in the presence of a slicer 
fi ltering certain brands.
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FIGURE 7-18 Using ALLSELECTED removes gaps in the ranking generated by using ALL.

 

Using RANK.EQ

The RANK.EQ function in DAX is like the Excel function of the same name. It returns the 
ranking of a number within a list of numbers, offering a subset of the features available 
with RANKX. You rarely use it in DAX unless you are migrating an Excel formula. It has the 
following syntax:

RANK.EQ ( <value>, <column> [, <order>] )

The <value> argument can be a DAX expression that has to be evaluated, and 
 <column> is the name of an existing column against which rank will be determined. The 
order is optional and can be 0 for descending order and 1 for ascending order. In Excel, 
the same function can accept a range of cells as a column argument. However, in DAX, of-
ten the same column is used for value expression, meaning that you want to calculate the 
ranking of a column over itself. One scenario in which you might want to use a different 
column is when you have two tables: one table with elements that you want to rank, for 
example a specifi c group of products; and another table with the entire set of elements to 
use for ranking, for example the list of all the products. However, because of the limita-
tions applied to the column parameter (it cannot be an expression or a column created by 
using ADDCOLUMNS, SELECTCOLUMNS, or other table functions), RANK.EQ is commonly 
used by passing the same column for value and column parameters in a calculated 
column expression, referring to columns of the same table as in the following example:

Product[Price Rank] = 
RANK.EQ ( Product[Unit Price], Product[Unit Price] )

RANKX is much more powerful than RANK.EQ. Thus, once you learn RANKX, it is likely you 
will not spend too much time learning a less powerful version of the same function.
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Changing calculation granularity
There are several scenarios where a formula cannot be easily computed at the total level. Instead, the 
same calculation could be performed at a higher granularity and then aggregated later.

Imagine needing to compute the sales amount per working day. The number of working days in 
every month is different because of the number of Saturdays and Sundays or because of the holidays 
in a month. For the sake of simplicity, in this example we only consider Saturdays and Sundays, but our 
readers can easily extend the concept to also considering holidays.

The Date table contains an IsWorkingDay column that contains 1 or 0 depending on whether that 
day is a working day or not. It is useful to store the information as an integer because it makes the 
calculation of days and working days very simple. Indeed, the two following measures compute the 
number of days in the current fi lter context and the corresponding number of working days:

NumOfDays := COUNTROWS ( 'Date' )
NumOfWorkingDays := SUM ( 'Date'[IsWorkingDay] )

In Figure 7-19 you can see a report with the two measures.

FIGURE 7-19 The number of working days is different in each month, depending on weekends.

Based on these measures, we might want to compute the sales per working day. That is a simple 
division of the sales amount by the number of working days. This calculation is useful to produce a 
performance indicator for each month, considering both the gross amount of sales and the number of 
days in which sales were possible. Though the calculation looks simple, it hides some complexity that 
we solve by leveraging iterators. As we sometimes do in this book, we show this solution step-by-step, 
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highlighting possible errors in the writing process. The goal of this demo is not to show a pattern. 
Instead, it is a showcase of different mistakes that a developer might make when authoring a DAX 
expression.

As anticipated, a simple division of Sales Amount by the number of working days produces correct 
results only at the month level. At the grand total, the result is surprisingly lower than any other month:

SalesPerWorkingDay := DIVIDE ( [Sales Amount], [NumOfWorkingDays] )

In Figure 7-20 you can look at the result.

FIGURE 7-20 Although monthly values look fi ne, the annual subtotal is defi nitely wrong.

If you focus your attention to the total of 2007, it shows 17,985.16. It is surprisingly low considering 
that all monthly values are above 37,000.00. The reason is that the number of working days at the year 
level is 261, including the months where there are no sales at all. In this model, sales started in August 
2007 so it would be wrong to consider previous months where there cannot be other sales. The same 
issue also happens in the period containing the last day with data. For example, the total of the working 
days in the current year will likely consider future months as working days.

There are multiple ways of fi xing the formula. We choose a simple one: if there are no sales in a 
month, then the formula should not consider the days in that month. This formula assumes that all the 
months between the oldest transaction and the last transaction available have transactions associated.

Because the calculation must work on a month-by-month basis, it needs to iterate over months and 
check if there are sales in each month. If there are sales, then it adds the number of working days. If 
there are no sales in the given month, then it skips it. SUMX can implement this algorithm:
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SalesPerWorkingDay := 
VAR WorkingDays =
    SUMX ( 
        VALUES ( 'Date'[Month] ),
        IF ( 
            [Sales Amount] > 0,
            [NumOfWorkingDays]
        )
    ) 
VAR Result = 
    DIVIDE ( 
        [Sales Amount], 
        WorkingDays
    )
RETURN 
    Result

This new version of the code provides an accurate result at the year level, as shown in Figure 7-21, 
though it is still not perfect.

FIGURE 7-21 Using an iterator the total at the year level is now accurate.

When performing the calculation at a different granularity, one needs to ensure the correct level of 
granularity. The iteration started by SUMX iterates the values of the month column, which are January 
through December. At the year level everything is working correctly, but the value is still incorrect at 
the grand total. You can observe this behavior in Figure 7-22.
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FIGURE 7-22 Every yearly total is above 35,000 and the grand total is—again—surprisingly low.

When the fi lter context contains the year, an iteration of months works fi ne because—after the 
context transition—the new fi lter context contains both a year and a month. However, at the grand 
total level, the year is no longer part of the fi lter context. Consequently, the fi lter context only contains 
the currently iterated month, and the formula does not check if there are sales in that year and month. 
Instead, it checks if there are sales in that month for any year.

The problem of this formula is the iteration over the month column. The correct granularity of the 
iteration is not the month; it is the pair of year and month together. The best solution is to iterate over 
a column containing a different value for each year and month. It turns out that we have such a column 
in the data model: the Calendar Year Month column. To fi x the code, it is enough to iterate over the 
Calendar Year Month column instead of over Month:

SalesPerWorkingDay := 
VAR WorkingDays =
    SUMX ( 
        VALUES ( 'Date'[Calendar Year Month] ),
        IF ( 
            [Sales Amount] > 0,
            [NumOfWorkingDays]
        )
    ) 
VAR Result = 
    DIVIDE ( 
        [Sales Amount], 
        WorkingDays
    )
RETURN 
    Result

This fi nal version of the code works fi ne because it computes the total using an iteration at the 
correct level of granularity. You can see the result in Figure 7-23.

FIGURE 7-23 Applying the calculation at the correct level of granularity returns accurate values also at the 
Total level.
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Conclusions

As usual, let us conclude this chapter with a recap of the important concepts you learned here:

 ■ Iterators are an important part of DAX, and you will fi nd yourself using them more, the more 
you use DAX.

 ■ There are mainly two kinds of iterations in DAX: iterations to perform simple calculations on a 
row-by-row basis and iterations that leverage context transition. The defi nition of Sales Amount 
we used so far in the book uses an iteration to compute the quantity multiplied by the net price, 
on a row-by-row basis. In this chapter, we introduced iterators with a context transition, a pow-
erful tool to compute more complex expressions.

 ■ Whenever using an iterator with context transition, you must check the cardinality the iteration 
should happen at—it should be quite small. You also need to check that the rows in the table 
are guaranteed to be unique. Otherwise, the code is at risk of being slow or of computing bad 
results.

 ■ When computing averages over time, you always should check whether an iterator is the cor-
rect solution or not. AVERAGEX does not consider blanks as part of its calculation and, when 
using time, this could be wrong. Nevertheless, always double-check the formula requirements; 
each scenario is unique.

 ■ Iterators are useful to compute values at a different granularity, as you learned in the last 
example. When dealing with calculations at different granularities, it is of paramount 
importance to check the correct granularity to avoid errors in the code.

You will see many more examples of iterators in the remaining part of the book. Starting from the 
next chapter, when dealing with time intelligence calculations, you will see different calculations, most 
of which rely on iterations.
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Time intelligence calculations

Almost any data model includes some sort of calculation related to dates. DAX offers several functions 
to simplify these calculations, which are useful if the underlying data model follows certain specifi c 
requirements. On the other hand, if the model contains peculiarities in the handling of time that would 
prevent the use of standard time intelligence functions, then writing custom calculations is always 
an option.

In this chapter, you learn how to implement common date-related calculations such as year-to-date, 
year-over-year, and other calculations over time including nonadditive and semi-additive measures. 
You learn both how to use specifi c time intelligence functions and how to rely on custom DAX code for 
nonstandard calendars and week-based calculations.

Introducing time intelligence

Typically, a data model contains a date table. In fact, when slicing data by year and month, it is prefer-
able to use the columns of a table specifi cally designed to slice dates. Extracting the date parts from a 
single column of type Date or DateTime in calculated columns is a less desirable approach.

There are several reasons for this choice. By using a date table, the model becomes easier to browse, 
and you can use specifi c DAX functions that perform time intelligence calculations. In fact, in order to 
work properly, most of the time intelligence functions in DAX require a separate date table.

If a model contains multiple dates, like the order date and the delivery date, then one can either 
create multiple relationships with a single date table or duplicate the date table. The resulting models 
are different, and so are the calculations. Later in this chapter, we will discuss these two alternatives in 
more detail.

In any case, one should always create at least one date table whenever there are one or more date 
columns in the data. Power BI and Power Pivot for Excel offer embedded features to automatically cre-
ate tables or columns to manage dates in the model, whereas Analysis Services has no specifi c feature 
for the handling of time intelligence. However, the implementation of these features does not always 
follow the best practice of keeping a single date table in the data model. Also, because these features 
come with several restrictions, it is usually better to use your own date table. The next sections expand 
on this last statement.
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Automatic Date/Time in Power BI
Power BI has a feature called Auto Date/Time, which can be confi gured through the options in the Data 
Load section (see Figure 8-1).

FIGURE 8-1 The Auto Date/Time setting is enabled by default in a new model.

When the setting is enabled—it is by default—Power BI automatically creates a date table for each 
Date or DateTime column in the model. We will call it a “date column” from here on. This makes it pos-
sible to slice each date by year, quarter, month, and day. These automatically created tables are hidden 
to the user and cannot be modifi ed. Connecting to the Power BI Desktop fi le with DAX Studio makes 
them visible to any developers curious about their structure.

The Auto Date/Time feature comes with two major drawbacks:

 ■ Power BI Desktop generates one table per date column. This creates an unnecessarily high 
number of date tables in the model, unrelated to one another. Building a simple report present-
ing the amount ordered and the amount sold in the same matrix proves to be a real challenge.

 ■ The tables are hidden and cannot be modifi ed by the developer. Consequently, if one needs to 
add a column for the weekday, they cannot.
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Building a proper date table for complete freedom is a skill that you learn in the next few pages, and 
it only requires a few lines of DAX code. Forcing your model to follow bad practices in data modeling 
just to save a couple of minutes when building the model for the fi rst time is defi nitely a bad choice.

Automatic date columns in Power Pivot for Excel
Power Pivot for Excel also has a feature to handle the automatic creation of data structures, making it 
easier to browse dates. However, it uses a different technique that is even worse than that of Power BI. 
In fact, when one uses a date column in a pivot table, Power Pivot automatically creates a set of calcu-
lated columns in the same table that contains the date column. Thus, it creates one calculated column 
for the year, one for the month name, one for the quarter, and one for the month number—required 
for sorting. In total, it adds four columns to your table.

As a bad practice, it shares all the bad features of Power BI and it adds a new one. In fact, if there 
are multiple date columns in a single table, then the number of these calculated columns will start 
to increase. There is no way to use the same set of columns to slice different dates, as is the case with 
Power BI. Finally, if the date column is in a table with millions of rows—as is often the case—these cal-
culated columns increase the fi le size and the memory footprint of the model.

This feature can be disabled in the Excel options, as you can see in Figure 8-2.

FIGURE 8-2 The Excel options contain a setting to disable automatic grouping of DateTime columns.
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Date table template in Power Pivot for Excel
Excel offers another feature that works much better than the previous feature. Indeed, since 2017 there 
is an option in Power Pivot for Excel to create a date table, which can be activated through the Power 
Pivot window, as shown in Figure 8-3.

FIGURE 8-3 Power Pivot for Excel lets you create a new date table through a menu option.

In Power Pivot, clicking on New creates a new table in the model with a set of calculated columns 
that include year, month, and weekday. It is up to the developer to create the correct set of relation-
ships in the model. Also, if needed, one has the option to modify the names and the formulas of the 
calculated columns, as well as adding new ones.

There is also the option of saving the current table as a new template, which will be used in the 
future for newly created date tables. Overall, this technique works well. The table generated by Power 
Pivot is a regular date table that fulfi lls all the requirements of a good date table. This, in conjunction 
with the fact that Power Pivot for Excel does not support calculated tables, makes the feature useful.

Building a date table

As you have learned, the fi rst step for handling date calculations in DAX is to create a date table. 
Because of its relevance, one should pay attention to some details when creating the date table. In this 
section, we provide the best practices regarding the creation of a date table. There are two different 
aspects to consider: a technical aspect and a data modeling aspect.

From a technical point of view, the date table must follow these guidelines:

 ■ The date table contains all dates included in the period to analyze. For example, if the minimum 
and maximum dates contained in Sales are July 3, 2016, and July 27, 2019, respectively, the range 
of dates of the table is between January 1, 2016, and December 31, 2019. In other words, the date 
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table needs to contain all the days for all the years containing sales data. There can be no gaps 
in the sequence of dates. All dates need to be present, regardless of whether there are transac-
tions or not on each date.

 ■ The date table contains one column of DateTime type, with unique values. The Date data type 
is a better choice because it guarantees that the time part is empty. If the DateTime column also 
contains a time part, then all the times of the day need to be identical throughout the table.

 ■ It is not necessary that the relationship between Sales and the date table be based on the Date-
Time column. One can use an integer to relate the two tables, yet the DateTime column needs 
to be present.

 ■ The table should be marked as a Date table. Though this is not a strictly mandatory step, it 
greatly helps in writing correct code. We will cover the details of this feature later in this chapter.

Important It is common for newbies to create a huge date table with many more years than 
needed. That is a mistake. For example, one might create a date table with two hundred 
years ranging from 1900 to 2100, just in case. Technically the date table works fi ne, but there 
will be serious performance issues whenever it is used in calculations. Using a table with only 
the relevant years is a best practice.

 

From the technical point of view, a table containing a single date column with all the required dates 
is enough. Nevertheless, a user typically wants to analyze information slicing by year, month, quarter, 
weekday, and many other attributes. Consequently, a good date table should include a rich set of col-
umns that—although not used by the engine—greatly improve the user experience.

If you are loading the date table from an existing data source, then it is likely that all the columns 
describing a date are already present in the source date table. If necessary, additional columns can be 
created as calculated columns or by changing the source query. Performing simple calculations in the 
data source is preferable whenever possible—reducing the use of calculated columns to when they 
are strictly required. Alternatively, you can create the date table by using a DAX calculated table. We 
describe the calculated table technique along with the CALENDAR and CALENDARAUTO functions in 
the next sections.

 

Note The term “Date” is a reserved keyword in DAX; it corresponds to the DATE function. 
Therefore, you should embed the Date name in quotes when referring to the table name, 
despite the fact that there are no spaces or special characters in that name. You might prefer 
using Dates instead of Date as the name of the table to avoid this requirement. However, it is 
better to be consistent in table names, so if you use the singular form for all the other table 
names, it is better to keep it singular for the date table too.
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Using CALENDAR and CALENDARAUTO
If you do not have a date table in your data source, you can create the date table by using either 
CALENDAR or CALENDARAUTO. These functions return a table of one column, of DateTime data type. 
CALENDAR requires you to provide the upper and lower boundaries of the set of dates. CALENDAR-
AUTO scans all the date columns across the entire data model, fi nds the minimum and maximum years 
referenced, and fi nally generates the set of dates between these years.

For example, a simple calendar table containing all the dates in the Sales table can be created using 
the following code:

Date = 
CALENDAR (
    DATE ( YEAR ( MIN ( Sales[Order Date] ) ), 1, 1 ),
    DATE ( YEAR ( MAX ( Sales[Order Date] ) ), 12, 31 )
)

In order to force all dates from the fi rst of January up to the end of December, the code only extracts 
the minimum and maximum years, forcing day and month to be the fi rst and last of the year. A similar 
result can be obtained by using the simpler CALENDARAUTO:

Date = CALENDARAUTO ( )

CALENDARAUTO scans all the date columns, except for calculated columns. For example, if one 
uses CALENDARAUTO to create a Date table in a model that contains sales between 2007 and 2011 and 
has an AvailableForSaleDate column in the Product table starting in 2004, the result is the set of all the 
days between January 1, 2004, and December 31, 2011. However, if the data model contains other date 
columns, they affect the date range considered by CALENDARAUTO. Storing dates that are not useful 
to slice and dice is very common. For example, if among the many dates a model also contains the 
customers’ birthdates, then the result of CALENDARAUTO starts from the oldest year of birth of any 
customer. This produces a large date table, which in turn negatively affects performance.

CALENDARAUTO accepts an optional parameter that represents the fi nal month number of a fi scal 
year. If provided, CALENDARAUTO generates dates from the fi rst day of the following month to the 
last day of the month indicated as an argument. This is useful when you have a fi scal year that ends in 
a month other than December. For example, the following expression generates a Date table for fi scal 
years starting on July 1 and ending on June 30:

Date = CALENDARAUTO ( 6 )

CALENDARAUTO is slightly easier to use than CALENDAR because it automatically determines the 
boundaries of the set of dates. However, it might extend this set by considering unwanted columns. 
One can obtain the best of both worlds by restricting the result of CALENDARAUTO to only the desired 
set of dates, as follows:

Date = 
VAR MinYear = YEAR ( MIN ( Sales[Order Date] ) )
VAR MaxYear = YEAR ( MAX ( Sales[Order Date] ) )
RETURN
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FILTER (
    CALENDARAUTO ( ),
    YEAR ( [Date] ) >= MinYear &&
    YEAR ( [Date] ) <= MaxYear
)

The resulting table only contains the useful dates. Finding the fi rst and last day of the year is not that 
important because CALENDARAUTO handles this internally.

Once the developer has obtained the correct list of dates, they still must create additional columns 
using DAX expressions. Following is a list of commonly used expressions for this scope, with an example 
of their results in Figure 8-4:

Date = 
VAR MinYear = YEAR ( MIN ( Sales[Order Date] ) )
VAR MaxYear = YEAR ( MAX ( Sales[Order Date] ) )
RETURN
ADDCOLUMNS (
   FILTER (
       CALENDARAUTO ( ),
       YEAR ( [Date] ) >= MinYear &&
       YEAR ( [Date] ) <= MaxYear
   ),
    "Year", YEAR ( [Date] ),
    "Quarter Number", INT ( FORMAT ( [Date], "q" ) ),
    "Quarter", "Q" & INT ( FORMAT ( [Date], "q" ) ),
    "Month Number", MONTH ( [Date] ),
    "Month", FORMAT ( [Date], "mmmm" ),
    "Week Day Number", WEEKDAY ( [Date] ),
    "Week Day", FORMAT ( [Date], "dddd" ),
    "Year Month Number", YEAR ( [Date] ) * 100 + MONTH ( [Date] ),
    "Year Month", FORMAT ( [Date], "mmmm" ) & " " & YEAR ( [Date] ),
    "Year Quarter Number", YEAR ( [Date] ) * 100 + INT ( FORMAT ( [Date], "q" ) ),
    "Year Quarter", "Q" & FORMAT ( [Date], "q" ) & "-" & YEAR ( [Date] )
)

FIGURE 8-4 Using ADDCOLUMNS allows for the creation of a complete date table with a single expression.
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Instead of using a single ADDCOLUMNS function, one could achieve the same result by creating 
several calculated columns through the user interface. The main advantage of using ADDCOLUMNS is 
the ability to reuse the same DAX expression to create a date table in other projects.

 

Using DAX Date Template

The code provided is an example for educational purposes, where we limited the number of 
columns in the date table to make the code fi t the book. There are several examples of date 
templates available on the web. For example, we created a date table template as a Power 
BI template fi le, available at https://www.sqlbi.com/tools/dax-date-template/. You can also 
extract the same DAX code and implement it in an Analysis Services project.

 

Working with multiple dates
When there are multiple date columns in the model, you should consider two design options: creat-
ing multiple relationships to the same date table or creating multiple date tables. Choosing between 
the two options is an important decision because it affects the required DAX code and also the kind of 
analysis that is possible later on.

Consider a Sales table with the following three dates for every sales transaction:

 ■ Order Date: the date when an order was received.

 ■ Due Date: the date when the order is expected to be delivered.

 ■ Delivery Date: the actual delivery date.

The developer can relate the three dates to the same date table, knowing that only one of the three 
relationships can be active. Or, they can create three date tables in order to be able to slice by any of 
the three freely. Besides, it is likely that other tables contain other dates. For example, a Purchase table 
might contain other dates about the purchase process, a Budget table contains other dates in turn, and 
so on. In the end, every data model typically contains several dates, and one needs to understand the 
best way to handle all these dates.

In the next sections, we show two design options to handle this scenario and how this affects the 
DAX code.

Handling multiple relationships to the Date table
One can create multiple relationships between two tables. Nevertheless, only one relationship can 
be active. The other relationships need to be kept inactive. Inactive relationships can be activated 
in  CALCULATE through the USERELATIONSHIP modifi er introduced in Chapter 5, “Understanding 
 CALCULATE and CALCULATETABLE.”

https://www.sqlbi.com/tools/dax-date-template/
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For example, consider the data model shown in Figure 8-5. There are two different relationships 
between Sales and Date, but only one can be active. In the example, the active relationship is the one 
between Sales[Order Date] and Date[Date].

FIGURE 8-5 The active relationship connects Sales[Order Date] to Date[Date].

You can create two measures for the sales amount based on a different relationship to the Date 
table:

Ordered Amount :=
SUMX ( Sales, Sales[Net Price] * Sales[Quantity] )
 
Delivered Amount :=
CALCULATE (
    SUMX ( Sales, Sales[Net Price] * Sales[Quantity] ), 
    USERELATIONSHIP ( Sales[Delivery Date], 'Date'[Date] )
)

The fi rst measure, Ordered Amount, uses the active relationship between Sales and Date, based 
on Sales[Order Date]. The second measure, Delivered Amount, executes the same DAX expression 
using the relationship based on Sales[Delivery Date]. USERELATIONSHIP changes the active relation-
ship between Sales and Date in the fi lter context defi ned by CALCULATE. You can see in Figure 8-6 an 
example of a report using these measures.
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FIGURE 8-6 The Ordered Amount and Delivered Amount measures are different for each month because the date 
of delivery might be in the following month.

Using multiple relationships with a single date table increases the number of measures in the data 
model. Generally, one only defi nes the measures that are meaningful with certain dates. If you do not 
want to handle a large number of measures, or if you want complete freedom of using any measure with 
any date, then you might consider implementing calculation groups as explained in the following chapter.

Handling multiple date tables
Instead of duplicating every measure, an alternative approach is to create different date tables—one 
for each date in the model—so that every measure aggregates data according to the date selected in 
the report. From a maintenance point of view, this might seem like a better solution because it lowers 
the number of measures, and it allows for the selecting of sales that intersect between two months, but 
it produces a model that is harder to use. For example, one can easily produce a report with the total 
number of orders received in January and delivered in February of the same year—but it is harder to 
show in the same chart the amounts ordered and delivered by month.

This approach is also known as the role-playing dimension approach. The date table is a dimension 
that you duplicate once for each relationship—that is, once for each of its roles. These two options 
(using inactive relationships and duplicating the date table) are complementary to each other.

To create a Delivery Date table and an Order Date table, you add the same table twice in the data 
model. You must at least modify the table name when doing so. You can see in Figure 8-7 the data 
model containing two different date tables related to Sales.
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FIGURE 8-7 Each date column in Sales has a relationship with a different date table.

 

Important You must physically duplicate the Date table. Therefore, it is a best practice to 
create different views in the data source, one for each role dimension, so that each date table 
has different column names and different content. For example, instead of having the same 
Year column in all the date tables, it is better if you use Order Year and Delivery Year. Navigat-
ing the report will be easier this way. This is also visible in Figure 8-7. Furthermore, it is also a 
good practice to change the content of columns; for instance, by placing a prefi x for the year 
depending on the role of the date. As an example, one might use the CY prefi x for the con-
tent of the Order Year column and the DY prefi x for the content of the Delivery Year column.

 

Figure 8-8 shows an example of a matrix using multiple date tables. Such a report cannot be cre-
ated using multiple relationships with a single Date table. You can see that renaming column names 
and content is important to produce a readable result. In order to avoid confusion between order and 
delivery dates, we used CY as a prefi x for order years and DY as a prefi x for delivery years.

FIGURE 8-8 The different prefi xes for Year help the user see which is the order year (CY ) and which is the delivery 
year (DY ).

Using multiple date tables, the same measure displays different results depending on the columns 
used to slice and dice. However, it would be wrong to choose multiple date tables just to reduce the 
number of measures because this makes it impossible to create a report with the same measures 
grouped by two dates. For example, consider a single line chart showing Sales Amount by Order 
Date and Delivery Date. One needs a single Date table in the date axis of the chart, and this would be 
extremely complex to achieve with the multiple date tables pattern.
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If your fi rst priority is to reduce the number of measures in a model, enabling the user to browse 
any measure by any date, you should consider using the calculation groups described in Chapter 9, 
“Calculation groups,” implementing a single date table in the model. The main scenario where multiple 
date tables are useful is to intersect the same measure by different dates in the same visualization, as 
demonstrated in Figure 8-8. In most other scenarios, a single date table with multiple relationships is a 
better choice.

Understanding basic time intelligence calculations

In the previous sections you learned how to correctly build a date table. The date table is useful to per-
form any time intelligence calculation. DAX provides several time intelligence functions that simplify 
such calculations. It is easy to use those functions and build useful calculations. Nevertheless, it is all too 
easy to start using those functions without a good understanding of their inner details. For educational 
purposes, in this section we demonstrate how to author any time intelligence calculation by using 
standard DAX functions such as CALCULATE, CALCULATETABLE, FILTER, and VALUES. Then, later in this 
chapter, you learn how the time intelligence functions in DAX help you shorten your code and make it 
more readable.

There are multiple reasons why we decided to use this approach. The main driver is that, when it 
comes to time intelligence, there are many different calculations that cannot be expressed by simply 
using standard DAX functions. At some point in your DAX career, you will need to author a measure 
more complex than a simple year-to-date (YTD) discovering that DAX has no predefi ned functions for 
your requirements. If you learned to code time intelligence the hard way, this will not be a problem. 
You will roll up your sleeves and write the correct fi lter function without the help of DAX predefi ned 
calculations. If, on the other hand, you simply leverage standard DAX functions, then complex time 
intelligence will be problematic to solve.

Here is a general explanation of how time intelligence calculations work. Consider a simple measure; 
its evaluation happens in the current fi lter context:

Sales Amount :=
SUMX ( Sales, Sales[Net Price] * Sales[Quantity] )

Because Sales has a relationship with Date, the current selection on Date determines the fi lter over 
Sales. To perform the calculation over Sales in a different period, the programmer needs to modify the 
existing fi lter on Date. For example, to compute a YTD when the fi lter context is fi ltering February 2007, 
they would need to change the fi lter context to include January and February 2007, before performing 
the iteration over Sales.

A solution for this is to use a fi lter argument in a CALCULATE function, which returns the year-to-
date up to February 2007:

Sales Amount Jan-Feb 2007 := 
CALCULATE ( 
    SUMX ( Sales, Sales[Net Price]  * Sales[Quantity] ),
    FILTER (
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        ALL ( 'Date' ), 
        AND ( 
            'Date'[Date] >= DATE ( 2007, 1, 1 ),
            'Date'[Date] <= DATE ( 2007, 2, 28 )
        )
    )
)

The result is visible in Figure 8-9.

FIGURE 8-9 The result is the sum of January and February 2007, regardless of the date range selection on rows.

The FILTER function used as a fi lter argument of CALCULATE returns a set of dates that replaces the 
selection of the Date table. In other words, even though the original fi lter context coming from the 
rows of the matrix fi lters an individual month, the measure computes the value on a different set of 
dates.

Obviously, a measure that returns the sum of two months is not useful. Nevertheless, once you 
understand the basic mechanism, you can use it to write a different calculation that computes the year-
to-date such as the following code:

Sales Amount YTD := 
VAR LastVisibleDate = MAX ( 'Date'[Date] )
VAR CurrentYear = YEAR ( LastVisibleDate )
VAR SetOfDatesYtd =
    FILTER ( 
        ALL ( 'Date' ), 
        AND ( 
            'Date'[Date] <= LastVisibleDate,
            YEAR ( 'Date'[Date] ) = CurrentYear
        )
    )
VAR Result =
    CALCULATE ( 
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        SUMX ( Sales, Sales[Net Price]  * Sales[Quantity] ),
        SetOfDatesYtd 
    )
RETURN
    Result

Though this code is a bit more complex than the previous code, the pattern is the same. In fact, 
this measure first retrieves in LastVisibleDate the last date selected in the current filter context. 
Once the date is known, it extracts its year and saves it in the CurrentYear variable. The third vari-
able SetOfDatesYtd contains all the dates in the current year, before the end of the current period. 
This set is used to replace the filter context on the date to compute the year-to-date, as you can 
see in Figure 8-10.

FIGURE 8-10 Sales Amount YTD computes the year-to-date with a simple FILTER function.

As explained earlier, one could write a time intelligence calculation without using time intelligence 
functions. The important concept here is that time intelligence calculations are not different from any 
other calculation involving fi lter context manipulation. Because the measure needs to aggregate values 
from a different set of dates, the calculation happens in two steps. First, it determines the new fi lter for 
the date. Second, it applies the new fi lter context before computing the actual measure. All time intel-
ligence calculations behave the same way. Once you understand the basic concept, then time intelli-
gence calculations will have no secrets for you.

Before moving further with more time intelligence calculations, it is important to describe a 
special behavior of DAX when handling relationships that are based on a date. Look at this slightly 
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different formulation of the same code, where instead of filtering the entire date table, we only 
filter the Date[Date] column:

Sales Amount YTD := 
VAR LastVisibleDate = MAX ( 'Date'[Date] )
VAR CurrentYear = YEAR ( LastVisibleDate )
VAR SetOfDatesYtd =
    FILTER ( 
        ALL ( 'Date'[Date] ), 
        AND ( 
            'Date'[Date] <= LastVisibleDate,
            YEAR ( 'Date'[Date] ) = CurrentYear
        )
    )
VAR Result
    CALCULATE ( 
        SUMX ( Sales, Sales[Net Price]  * Sales[Quantity] ),
        SetOfDatesYtd 
    )
RETURN 
    Result

If someone uses this measure in a report instead of the previous measure, they will see no changes. 
In fact, the two versions of this measure compute exactly the same value, but they should not. Let us 
examine in detail one specifi c cell—for example, April 2007.

The fi lter context of the cell is Year 2007, Month April. As a consequence, LastVisibleDate contains the 
30th of April 2007, whereas CurrentYear contains 2007. Then because of its formulation, SetOfDatesYtd 
contains all the dates between January 1, 2007, up to April 30, 2007. In other words, in the cell of April 
2007, the code executed is equivalent to this:

CALCULATE ( 
    CALCULATE ( 
        [Sales Amount],                         
        AND (                                       -- This filter is equivalent
            'Date'[Date] >= DATE ( 2007, 1, 1),     -- to the result of the FILTER
            'Date'[Date] <= DATE ( 2007, 04, 30 )   -- function
        )
    ),
    'Date'[Year] = 2007,                            -- These are coming from the rows
    'Date'[Month] = "April"                         -- of the matrix in April 2007
)

If you recall what you learned about fi lter contexts and the CALCULATE behavior, you should verify that 
this code should not compute a correct year-to-date. Indeed, the inner CALCULATE fi lter argument returns a 
table containing the Date[Date] column. As such, it should overwrite any existing fi lter on Date[Date], keep-
ing other fi lters on other columns untouched. Because the outer CALCULATE applies a fi lter to Date[Year] 
and to Date[Month], the fi nal fi lter context where [Sales Amount] is computed should only contain April 2007. 
Nevertheless, the measure actually computes a correct result including the other months since January 2007.

The reason is a special behavior of DAX when the relationship between two tables is based on a date 
column, as it happens for the relationship with Date in the demo model we are using here. Whenever a 
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fi lter is applied to a column of type Date or DateTime that is used in a relationship between two tables, 
DAX automatically adds an ALL to the entire Date table as an additional fi lter argument to CALCULATE. 
In other words, the previous code should read this way:

CALCULATE ( 
    CALCULATE ( 
        [Sales Amount],                         
        AND (                                       -- This filter is equivalent
            'Date'[Date] >= DATE ( 2007, 1, 1),     -- to the result of the FILTER
            'Date'[Date] <= DATE ( 2007, 04, 30 )   -- function
        ),
        ALL ( 'Date' )    -- This is automatically added by the engine
    ),
    'Date'[Year] = 2007,                            -- These are coming from the rows
    'Date'[Month] = "April"                         -- of the matrix in April 2007
)

Every time a fi lter is applied on the column that defi nes a one-to-many relationship with another 
table, and the column has a Date or DateTime data type, DAX automatically propagates the fi lter to the 
other table and overrides any other fi lter on other columns of the same lookup table.

The reason for this behavior is to make time intelligence calculations work more simply in the case 
where the relationship between the date table and the sales table is based on a date column. In the 
next section, we describe the behavior of the Mark as Date Table feature, which introduces a similar 
behavior for relationships not based on a date column.

Using Mark as Date Table
Applying a fi lter on the date column of a calendar table works fi ne if the date column also defi nes the 
relationship. However, one might have a relationship based on another column. Many existing date tables 
use an integer column—typically in the format YYYYMMDD—to create the relationship with other tables.

In order to demonstrate the behavior, we created the DateKey column in both the Date and Sales 
tables. We then linked the two using the DateKey column instead of the date column. The resulting 
model is visible in Figure 8-11.

FIGURE 8-11 The relationship between Sales and Date uses the DateKey column, with an Integer data type.
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Using the same code that worked in previous examples to compute the YTD in Figure 8-11 would 
result in an incorrect calculation. You see this in Figure 8-12.

FIGURE 8-12 Using an integer for the relationship makes the previous code stop working.

As you can see, now the report shows the same value for Sales Amount and for Sales Amount YTD. 
Indeed, since the relationship is no longer based on a DateTime column, DAX does not add the auto-
matic ALL function to the date table. As such, the fi lter with the date is intersecting with the previous 
fi lter, vanishing the effect of the measure.

In such cases there are two possible solutions: one is to manually add ALL to all the time intelligence 
calculations. This solution is somewhat cumbersome because it requires the DAX coder to always 
remember to add ALL to all of the calculations. The other possible solution is much more convenient: 
mark the Date table as a date table.

If the date table is marked as such, then DAX will automatically add ALL to the table even if the 
relationship was not based on a date column. Be mindful that once the table is marked as a date table, 
the automatic ALL on the table is always added whenever one modifi es the fi lter context on the date 
column. There are scenarios where this effect is undesirable, and in such cases, one would need to write 
complex code to build the correct fi lter. We cover this later in this chapter.

Introducing basic time intelligence functions

Now that you have learned the basic mechanism that runs time intelligence calculations, it is time to 
simplify the code. Indeed, if DAX developers had to write complex FILTER expressions every time they 
need a simple year-to-date calculation, their life would be troublesome.
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To simplify the authoring of time intelligence calculations, DAX offers a rich set of functions that 
automatically perform the same fi ltering we wrote manually in the previous examples. For example, 
this is the version of Sales Amount YTD measure we wrote earlier:

Sales Amount YTD := 
VAR LastVisibleDate = MAX ( 'Date'[Date] )
VAR CurrentYear = YEAR ( LastVisibleDate )
VAR SetOfDatesYTD =
    FILTER ( 
        ALL ( 'Date'[Date] ), 
        AND ( 
            'Date'[Date] <= LastVisibleDate,
            YEAR ( 'Date'[Date] ) = CurrentYear
        )
    )
VAR Result =
    CALCULATE ( 
        SUMX ( Sales, Sales[Net Price]  * Sales[Quantity] ),
        SetOfDatesYTD 
    )
RETURN
    Result

The same behavior can be expressed by a much simpler code using the DATESYTD function:

Sales Amount YTD := 
CALCULATE ( 
    SUMX ( Sales, Sales[Net Price]  * Sales[Quantity] ),
    DATESYTD ( 'Date'[Date] )
)

Be mindful that DATESYTD does exactly what the more complex code performs. The gain is neither 
in performance nor in behavior of the code. However, because it is so much easier to write, you see that 
learning the many time intelligence functions in DAX is worth your time.

Simple calculations like year-to-date, quarter-to-date, month-to-date, or the comparison of sales 
in the current year versus the previous year can be authored with simpler code as they all rely on 
basic time intelligence functions. More complex calculations can oftentimes be expressed by mixing 
standard time intelligence functions. The only scenario where the developer will really need to author 
complex code is when they need nonstandard calendars, like a weekly calendar, or for complex time 
intelligence calculations when the standard functions will not meet the requirements.

 

Note All time intelligence functions in DAX apply a fi lter condition on the date column of 
a Date table. You can fi nd some examples of how to write these calculations in DAX later in 
this book and a complete list of all the time intelligence features rewritten in plain DAX at 
http://www.daxpatterns.com/time-patterns/.

 

http://www.daxpatterns.com/time-patterns/
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In the next sections, we introduce the basic time intelligence calculations authored with the stan-
dard time intelligence functions in DAX. Later in this chapter, we will cover more advanced calculations.

Using year-to-date, quarter-to-date, and month-to-date
The calculations of year-to-date (YTD), quarter-to-date (QTD), and month-to-date (MTD) are all very 
similar. Month-to-date is meaningful only when you are looking at data at the day level, whereas year-
to-date and quarter-to-date calculations are often used to look at data at the month level.

You can calculate the year-to-date value of sales for each month by modifying the fi lter context on 
dates for a range that starts on January 1 and ends on the month corresponding to the calculated cell. 
You see this in the following DAX formula:

Sales Amount YTD := 
CALCULATE ( 
    [Sales Amount], 
    DATESYTD ( 'Date'[Date] ) 
)

DATESYTD is a function that returns a table with all the dates from the beginning of the year until 
the last date included in the current fi lter context. This table is used as a fi lter argument in CALCULATE 
to set the new fi lter for the Sales Amount calculation. Similar to DATESYTD, there are another two func-
tions that return the month-to-date (DATESMTD) and quarter-to-date (DATESQTD) sets. For example, 
you can see measures based on DATESYTD and DATESQTD in Figure 8-13.

FIGURE 8-13 The Sales Amount YTD and Sales Amount QTD measures are side by side with the regular Sales 
Amount measure.
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This approach requires the use of CALCULATE. DAX also offers a set of functions to simplify the 
syntax of to-date calculations: TOTALYTD, TOTALQTD, and TOTALMTD. In the following code, you can 
see the year-to-date calculation expressed using TOTALYTD:

YTD Sales := 
TOTALYTD ( 
    [Sales Amount], 
    'Date'[Date] 
)

The syntax is somewhat different, as TOTALYTD requires the expression to aggregate as its fi rst 
parameter and the date column as its second parameter. Nevertheless, the behavior is identical to the 
original measure. The name TOTALYTD hides the underlying CALCULATE function, which is a good 
reason to limit its use. In fact, whenever CALCULATE is present in the code, making it evident is always a 
good practice—for example, for the context transition it implies.

Similar to year-to-date, you can also defi ne quarter-to-date and month-to-date with built-in func-
tions, as in these measures:

QTD Sales := TOTALQTD ( [Sales Amount], 'Date'[Date] )
QTD Sales := CALCULATE ( [Sales Amount], DATESQTD ( 'Date'[Date] ) )
MTD Sales := TOTALMTD ( [Sales Amount], 'Date'[Date] )
MTD Sales := CALCULATE ( [Sales Amount], DATESMTD ( 'Date'[Date] ) )

Calculating a year-to-date measure over a fi scal year that does not end on December 31 requires an 
optional third parameter that specifi es the end day of the fi scal year. For example, both the following 
measures calculate the fi scal year-to-date for Sales:

Fiscal YTD Sales := TOTALYTD ( [Sales Amount], 'Date'[Date], "06-30" )
Fiscal YTD Sales := CALCULATE ( [Sales Amount], DATESYTD ( 'Date'Date], "06-30" ) )

The last parameter corresponds to June 30—that is, the end of the fi scal year. There are several time 
intelligence functions that have a last, optional year-end date parameter for this purpose: STARTOF-
YEAR, ENDOFYEAR, PREVIOUSYEAR, NEXTYEAR, DATESYTD, TOTALYTD, OPENINGBALANCEYEAR, and 
CLOSINGBALANCEYEAR.

Important Depending on the culture settings, you might have to use the day number fi rst. 
You can also consider using a string with the format YYYY-MM-DD to avoid any ambiguity 
caused by culture settings; in that case, the year does not matter for the purpose of deter-
mining the last day of the year to use for year-to-date calculation:

Fiscal YTD Sales := TOTALYTD ( [Sales Amount], 'Date'[Date], "30-06" )
Fiscal YTD Sales := CALCULATE ( [Sales Amount], DATESYTD ( 'Date'[Date], "30-06" ) )
Fiscal YTD Sales := CALCULATE ( [Sales Amount], DATESYTD ( 'Date'[Date], "2018-06-30" ) ) 

However, consider that as of June 2018 there is a bug in case the fi scal year starts in March 
and ends in February. More details and a workaround are described later in the “Advanced 
time intelligence” section of this chapter.
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Computing time periods from prior periods
Several calculations are required to get a value from the same period in the prior year (PY). This can be 
useful for making comparisons of trends during a time period this year to the same time period last 
year. In that case SAMEPERIODLASTYEAR comes in handy:

PY Sales := CALCULATE ( [Sales Amount], SAMEPERIODLASTYEAR ( 'Date'[Date] ) )

SAMEPERIODLASTYEAR returns a set of dates shifted one year back in time. SAMEPERIODLAST-
YEAR is a specialized version of the more generic DATEADD function, which accepts the number 
and type of period to shift. The types of periods supported are YEAR, QUARTER, MONTH, and DAY. 
For example, you can defi ne the same PY Sales measure using this equivalent expression, which uses 
DATEADD to shift the current fi lter context one year back in time:

PY Sales := CALCULATE( [Sales Amount], DATEADD ( 'Date'[Date], -1, YEAR ) )

DATEADD is more powerful than SAMEPERIODLASTYEAR because, in a similar way, DATEADD can 
compute the value from a previous quarter (PQ), month (PM), or day (PD):

PQ Sales := CALCULATE ( [Sales Amount], DATEADD ( 'Date'[Date], -1, QUARTER ) )
PM Sales := CALCULATE ( [Sales Amount], DATEADD ( 'Date'[Date], -1, MONTH ) )
PD Sales := CALCULATE ( [Sales Amount], DATEADD ( 'Date'[Date], -1, DAY ) )

In Figure 8-14 you can see the result of some of these measures.

FIGURE 8-14 DATEADD lets you shift the current fi lter context to different periods.
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Another useful function is PARALLELPERIOD, which is similar to DATEADD, but returns the full 
period specifi ed in the third parameter instead of the partial period returned by DATEADD. Thus, 
although a single month is selected in the current fi lter context, the following measure using 
 PARALLEPERIOD calculates the amount of sales for the whole previous year:

PY Total Sales :=
CALCULATE ( [Sales Amount], PARALLELPERIOD ( 'Date'[Date], -1, YEAR ) )

In a similar way, using different parameters, one can obtain different periods:

PQ Total Sales :=
CALCULATE ( [Sales Amount], PARALLELPERIOD ( 'Date'[Date], -1, QUARTER ) )

In Figure 8-15 you can see PARALLELPERIOD used to compute the previous year and quarter.

FIGURE 8-15 PARALLELPERIOD returns the full period instead of the current period shifted in time.

There are functions similar but not identical to PARALLELPERIOD, which are PREVIOUSYEAR, 
PREVIOUSQUARTER, PREVIOUSMONTH, PREVIOUSDAY, NEXTYEAR, NEXTQUARTER, NEXTMONTH, 
and NEXTDAY. These functions behave like PARALLELPERIOD when the selection has a single element 
selected corresponding to the function name—year, quarter, month, and day. If multiple periods are 
selected, then PARALLELPERIOD returns a shifted result of all of them. On the other hand, the specifi c 
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functions (year, quarter, month, and day, respectively) return a single element that is contiguous to the 
selected period regardless of length. For example, the following code returns March, April, and May 
2008 in case the second quarter of 2008 (April, May, and June) is selected:

PM Total Sales := 
CALCULATE ( [Sales Amount], PARALLELPERIOD ( 'Date'[Date], -1, MONTH ) )

Conversely, the following code only returns March 2008 in case the second quarter of 2008 (April, 
May, and June) is selected.

Last PM Sales := 
CALCULATE ( [Sales Amount], PREVIOUSMONTH( 'Date'[Date] ) )

The difference between the two measures is visible in Figure 8-16. The Last PM Sales measure 
returns the value of December 2007 for both 2008 and Q1 2008, whereas PM Total Sales always returns 
the value for the number of months of the selection—three for a quarter and twelve for a year. This 
occurs even though the initial selection is shifted back one month.

FIGURE 8-16 PREVIOUSMONTH returns a single month even when the selection includes a quarter or a year.

Mixing time intelligence functions
One useful feature of time intelligence functions is the capability of composing more complex formulas 
by using time intelligence functions together. The fi rst parameter of most time intelligence functions 
is the date column in the date table. However, this is just syntax sugar for the complete syntax. In fact, 
the full syntax of time intelligence functions requires a table as its fi rst parameter, as you can see in the 
following two equivalent versions of the same measure. When used, the date column referenced is 
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translated into a table with the unique values active in the fi lter context after a context transition, if a 
row context exists:

PY Sales :=
CALCULATE (
    [Sales Amount],
    DATESYTD ( 'Date'[Date] )
)
 
-- is equivalent to
 
PY Sales :=
CALCULATE (
    [Sales Amount],
    DATESYTD ( CALCULATETABLE ( DISTINCT ( 'Date'[Date] ) ) )
)

Time intelligence functions accept a table as their fi rst parameter, and they act as time shifters. These 
functions take the content of the table, and they shift it back and forth over time by any number of 
years, quarters, months, or days. Because time intelligence functions accept a table, any table expres-
sion can be used in place of the table—including another time intelligence function. This makes it pos-
sible to combine multiple time intelligence functions, by cascading their results one into the other.

For example, the following code compares the year-to-date with the corresponding value in the 
previous year. It does so by combining SAMEPERIODLASTYEAR and DATESYTD. It is interesting to note 
that exchanging the order of the function calls does not change the result:

PY YTD Sales :=
CALCULATE (
    [Sales Amount],
    SAMEPERIODLASTYEAR ( DATESYTD ( 'Date'[Date] ) )
)
 
-- is equivalent to
 
PY YTD Sales :=
CALCULATE (
    [Sales Amount],
    DATESYTD ( SAMEPERIODLASTYEAR ( 'Date'[Date] ) )
)

It is also possible to use CALCULATE to move the current fi lter context to a different time period and 
then invoke a function that, in turn, analyzes the fi lter context and moves it to a different time period. 
The following two defi nitions of PY YTD Sales are equivalent to the previous two; YTD Sales and PY 
Sales measures are defi ned earlier in this chapter:

PY YTD Sales :=
CALCULATE (
    [YTD Sales],
    SAMEPERIODLASTYEAR ( 'Date'[Date] )
)
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-- is equivalent to
 
PY YTD Sales :=
CALCULATE (
    [PY Sales],
    DATESYTD ( 'Date'[Date] )
)

You can see the results of PY YTD Sales in Figure 8-17. The values of YTD Sales are reported for PY 
YTD Sales, shifted one year ahead.

FIGURE 8-17 The prior year year-to-date calculation can be computed by composing time intelligence functions.

All the examples seen in this section can operate at the year, quarter, month, and day levels, but not 
at the week level. Time intelligence functions are not available for week-based calculations because 
there are too many variations of years/quarters/months based on weeks. For this reason, you must 
implement DAX expressions to handle week-based calculations. You can fi nd more details and an 
example of this approach in the “Working with custom calendars” section, later in this chapter.

Computing a difference over previous periods
A common operation is calculating the difference between a measure and its value in the prior year. 
You can express that difference as an absolute value or as a percentage. You have already seen how to 
obtain the value for the prior year with the PY Sales measure:

PY Sales := CALCULATE ( [Sales Amount], SAMEPERIODLASTYEAR ( 'Date'[Date] ) )

For Sales Amount, the absolute difference over the previous year (year-over-year or YOY) is a simple 
subtraction. However, you need to add a failsafe if you want to only show the difference when both 
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values are available. In that case, variables are important to avoid calculating the same measure twice. 
You can defi ne a YOY Sales measure with the following expression:

YOY Sales := 
VAR CySales = [Sales Amount]
VAR PySales = [PY Sales]
VAR YoySales = 
    IF ( 
        NOT ISBLANK ( CySales ) && NOT ISBLANK ( PySales ),
        CySales - PySales
    )
RETURN 
    YoySales

The equivalent calculation for comparing the year-to-date measure with a corresponding value in 
the prior year is a simple subtraction of two measures, YTD Sales and PY YTD Sales. You learned those 
in the previous section:

YTD Sales := TOTALYTD ( [Sales Amount], 'Date'[Date] )
 
PY YTD Sales :=
CALCULATE (
    [Sales Amount],
    DATESYTD ( SAMEPERIODLASTYEAR ( 'Date'[Date] ) )
)
 
YOY YTD Sales := 
VAR CyYtdSales = [YTD Sales]
VAR PyYtdSales = [PY YTD Sales]
VAR YoyYtdSales = 
    IF ( 
        NOT ISBLANK ( CyYtdSales ) && NOT ISBLANK ( PyYtdSales ),
        CyYtdSales - PyYtdSales
    )
RETURN
    YoyYtdSales

Often, the year-over-year difference is better expressed as a percentage in a report. You can defi ne 
this calculation by dividing YOY Sales by PY Sales; this way, the difference uses the previous year value 
as a reference for the percentage difference (100 percent corresponds to a value that is doubled in one 
year). In the following expressions that defi ne the YOY Sales% measure, the DIVIDE function avoids a 
divide-by-zero error if there is no corresponding data in the prior year:

YOY Sales% := DIVIDE ( [YOY Sales], [PY Sales] )

A similar calculation displays the percentage difference of a year-over-year comparison for the 
year-to-date aggregation. The following defi nition of YOY YTD Sales% implements this calculation:

YOY YTD Sales% := DIVIDE ( [YOY YTD Sales], [PY YTD Sales] )

In Figure 8-18, you can see the results of these measures in a report.
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FIGURE 8-18 The report shows all the year-over-year (YOY) measures used in the same matrix.

Computing a moving annual total
Another common calculation that eliminates seasonal changes in sales is the moving annual total 
(MAT), which considers the sales aggregation over the past 12 months. You learned a technique to 
compute a moving average in Chapter 7, “Working with iterators and with CALCULATE.” Here we want 
to describe a formula to compute a similar average by using time intelligence functions.

For example, summing the range of dates from April 2007 to March 2008 calculates the value of MAT 
Sales for March 2008. The easiest approach is to use the DATESINPERIOD function. DATESINPERIOD 
returns all the dates included within a period that can be a number of years, quarters, months, or days.

MAT Sales :=
CALCULATE (                           -- Compute the sales amount in a new filter
    [Sales Amount],                   -- context modified by the next argument.
    DATESINPERIOD (                   -- Returns a table containing
        'Date'[Date],                 -- Date[Date] values,
        MAX ( 'Date'[Date] ),         -- starting from the last visible date
       -1,                            -- and going back 1
       YEAR                           -- year.
    ) 
)

Using DATESINPERIOD is usually the best option for the moving annual total calculation. For edu-
cational purposes, it is useful to see other techniques to obtain the same fi lter. Consider this alternative 
MAT Sales defi nition, which calculates the moving annual total for sales:

MAT Sales :=
CALCULATE (
    [Sales Amount],
    DATESBETWEEN (
        'Date'[Date],
        NEXTDAY ( SAMEPERIODLASTYEAR ( LASTDATE ( 'Date'[Date] ) ) ),  
        LASTDATE ( 'Date'[Date] )
    )
)



244 CHAPTER 8 Time intelligence calculations

The implementation of this measure requires some attention. The formula uses the DATESBETWEEN 
function, which returns the dates from a column included between two specifi ed dates. Because 
DATESBETWEEN works at the day level, even if the report is querying data at the month level, the code 
must calculate the fi rst day and the last day of the required interval. A way to obtain the last day is by 
using the LASTDATE function. LASTDATE is like MAX, but instead of returning a value, it returns a table. 
Being a table, it can be used as a parameter to other time intelligence functions. Starting from that 
date, the fi rst day of the interval is computed by requesting the following day (by calling NEXTDAY ) of 
the corresponding date one year before (by using SAMEPERIODLASTYEAR).

One problem with moving annual totals is that they compute the aggregated value—the sum. 
Dividing this value by the number of months included in the period averages it over the time frame. 
This gives you a moving annual average (MAA):

MAA Sales :=
CALCULATE (
    DIVIDE ( [Sales Amount], DISTINCTCOUNT ( 'Date'[Year Month] ) ),
    DATESINPERIOD (
        'Date'[Date], 
        MAX ( 'Date'[Date] ), 
       -1, 
       YEAR
    ) 
)

As you have seen, using time intelligence functions results in powerful measures. In Figure 8-19, you 
can see a report that includes the moving annual total and average calculations.

FIGURE 8-19 The MAT Sales and MAA Sales measures are simple to author by using time intelligence 
functions.
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Using the right call order for nested time intelligence 
functions
When nesting time intelligence functions, it is important to pay attention to the order used in the 
nesting. In the previous example, we used the following DAX expression to retrieve the fi rst day of the 
moving annual total:

NEXTDAY ( SAMEPERIODLASTYEAR ( LASTDATE ( 'Date'[Date] ) ) )

You would obtain the same behavior by inverting the call order between NEXTDAY and SAMEPERIOD-
LASTYEAR, as in the following code:

SAMEPERIODLASTYEAR ( NEXTDAY ( LASTDATE ( 'Date'[Date] ) ) )

The result is almost always the same, but this order of evaluation presents a risk of producing incor-
rect results at the end of the period. In fact, authoring the MAT code using this order would result in 
this version, which is wrong:

MAT Sales Wrong := 
CALCULATE (
    [Sales Amount],
    DATESBETWEEN (
        'Date'[Date],
        SAMEPERIODLASTYEAR ( NEXTDAY ( LASTDATE ( 'Date'[Date] ) ) ),
        LASTDATE ( 'Date'[Date] )
    )
)

This version of the formula computes the wrong result at the upper boundary of the date range. You 
can see this happening in a report like the one in Figure 8-20.

FIGURE 8-20 The MAT Sales Wrong measure shows an incorrect result at the end of 2009.
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The measure computes the correct value up to December 30, 2009. Then, on December 31 the result 
is surprisingly high. The reason for this is that on December 31, 2009 NEXTDAY should return a table 
containing January 1, 2010. Unfortunately, the date table does not contain a row with January 1, 2010; 
thus, NEXTDAY cannot build its result. Consequently, not being able to return a valid result, NEXTDAY 
returns an empty table. A similar behavior happens with the following function: SAMEPERIODLAST-
YEAR. It receives an empty table, and as the result, it returns an empty table too. Because DATESBE-
TWEEN requires a scalar value, the empty result of SAMEPERIODLASTYEAR is considered as a blank 
value. Blank—as a DateTime value—equals zero, which is December 30, 1899. Thus, on December 31, 
2009, DATESBETWEEN returns the whole set of dates in the Date table; indeed, the blank as a starting 
date defi nes no boundaries for the initial date, and this results in an incorrect result.

The solution is straightforward. It simply involves using the correct order of evaluation. If SAMEPERI-
ODLASTYEAR is the fi rst function called, then on December 31, 2009, it will return a valid date, which is 
December 31, 2008. Then, NEXTDAY returns January 1, 2009, that this time does exist in the Date table.

In general, all time intelligence functions return sets of existing dates. If a date does not belong to 
the Date table, then these functions return an empty table that corresponds to a blank scalar value. In 
some scenarios this behavior might produce unexpected results, as explained in this section. For the 
specifi c example of the moving annual total, using DATESINPERIOD is simpler and safer, but this con-
cept is important in case time intelligence functions are combined for other custom calculations.

Understanding semi-additive calculations

The techniques you have learned so far to aggregate values from different time periods work fi ne with 
regular additive measures. An additive measure is a calculation that aggregates values using a regular 
sum when sliced by any attribute. As an example, think about the sales amount. The sales amount of all 
the customers is the sum of the sales amount of each individual customer. At the same time, the sales 
amount of a full year is the sum of the sales amount of all the days in the year. There is nothing special 
about additive measures; they are intuitive and easy to use and to understand.

However, not all calculations are additive. Some measures are non-additive. An example would be 
a distinct count of the gender of the customers. For each individual customer, the result is 1. But when 
computed over a set of customers including different genders, the result will never be greater than the 
number of genders (three in case of Contoso—blank, M, and F). Thus, the result over a set of custom-
ers, dates, or any other column cannot be computed by summing individual values. Nonadditive 
measures are frequent in reports, oftentimes associated with distinct counts calculations. Nonadditive 
measures are more diffi cult to use and to understand than regular additive measures. However, regard-
ing additivity, they are not the hardest ones. Indeed, there is a third kind of measure, the semi-additive 
measure, that proves to be challenging.

A semi-additive measure uses one kind of aggregation (typically a sum) when sliced by certain 
columns and a different kind of aggregation (usually the last date) when sliced by other columns. A 
great example is the balance of a bank account. The balance of all the customers is the sum of each 
individual balance. However, the balance over a full year is not the sum of monthly balances. Instead it 
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is the balance on the last date of the year. Slicing the balance by customer results in a regular calcula-
tion, whereas slicing by date means the calculation follows a different path. As an example, look at the 
data in Figure 8-21.

FIGURE 8-21 The fi gure shows an excerpt of the sample data used for semi-additive calculations.

The sample data shows that the balance of Katie Jordan at the end of January was 1,687.00, whereas 
at the end of February the balance was 2,812.00. When we look at January and February together, her 
balance is not the sum of the two values. Instead, it is the last balance available. On the other hand, the 
overall balance of all customers in January is the sum of the three customers together.

If one uses a simple sum to aggregate values, the result of the calculation would be a sum over all 
the attributes as you can see in Figure 8-22.

FIGURE 8-22 The fi gure shows two types of totals; totals over time for each customer and totals over all customers 
for different time periods.
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As you can note, the individual month values are correct. But at the aggregated levels—both at the 
quarter level and at the year level—the result is still a sum, making no sense. The correct result is visible 
in Figure 8-23, where—at each aggregate level—the report shows the last known value.

FIGURE 8-23 The fi gure shows the numbers one would expect to see.

The handling of semi-additive measures is a complex topic, both because of the different pos-
sible calculations and because of the need to pay attention to several details. In the next sections we 
describe the basic techniques to handle semi-additive calculations.

Using LASTDATE and LASTNONBLANK
DAX offers several functions to handle semi-additive calculations. However, writing the correct code 
to handle semi-additive calculations is not just a matter of fi nding the correct function to use. Many 
subtle details might break a calculation if the author is not paying attention. In this section, we dem-
onstrate different versions of the same code, which will or will not work depending on the data. The 
purpose of showing “wrong” solutions is educational because the “right” solution depends on the data 
present in the data model. Also, the solution of more complex scenarios requires some step-by-step 
reasoning.

The fi rst function we describe is LASTDATE. We used the LASTDATE function earlier, when describ-
ing how to compute the moving annual total. LASTDATE returns a table only containing one row, which 
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represents the last date visible in the current fi lter context. When used as a fi lter argument of CALCU-
LATE, LASTDATE overrides the fi lter context on the date table so that only the last day of the selected 
period remains visible. The following code computes the last balance by using LASTDATE to overwrite 
the fi lter context on Date:

LastBalance := 
CALCULATE (
    SUM ( Balances[Balance] ), 
    LASTDATE ( 'Date'[Date] ) 
)

LASTDATE is simple to use; unfortunately, LASTDATE is not the correct solution for many semi-
additive calculations. In fact, LASTDATE scans the date table always returning the last date in the date 
table. For example, at the month level it always returns the last day of the month, and at the quarter 
level it returns the last date of the quarter. If the data is not available on the specifi c date returned by 
LASTDATE, the result of the calculation is blank. You see this in Figure 8-24 where the total of Q3 and 
the grand total are not visible. Because the total of Q3 is empty, the report does not even show Q3, 
resulting in a confusing result.

FIGURE 8-24 The result, with LASTDATE, is confusing if data is not available on the last date of the month.

If, instead of using the month to slice data at the lowest level, we use the date, then the problem of 
LASTDATE becomes even more evident, as you can see in Figure 8-25. The Q3 row now is visible, even 
though its result is still blank.
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FIGURE 8-25 Slicing by date, you can appreciate that data is available at the day level but not at the aggregate level.

If there are values on dates prior to the last day of the Date table, and that last day has no data avail-
able, then a better solution is to use the LASTNONBLANK function. LASTNONBLANK is an iterator that 
scans a table and returns the last value of the table for which the second parameter does not evaluate 
to BLANK. In our example, we use LASTNONBLANK to scan the Date table searching for the last date 
for which there are rows in the Balances table:

LastBalanceNonBlank := 
CALCULATE (
    SUM ( Balances[Balance] ), 
    LASTNONBLANK (
        'Date'[Date], 
        COUNTROWS ( RELATEDTABLE ( Balances ) ) 
    )
)

When used at the month level, LASTNONBLANK iterates over each date in the month, and for each 
date it checks whether the related table with the balances is empty. The innermost RELATEDTABLE 
function is executed in the row context of the LASTNONBLANK iterator, so that RELATEDTABLE only 
returns the balances of the given date. If there is no data, then RELATEDTABLE returns an empty table 
and COUNTROWS returns a blank. At the end of the iteration, LASTNONBLANK returns the last date 
that computed a nonblank result.

If all customer balances are gathered on the same date, then LASTNONBLANK solves the problem. 
In our example, we have different dates for different customers within the same month and this creates 
another issue. As we anticipated at the beginning of this section, with semi-additive calculations the devil is 
in the details. With our sample data LASTNONBLANK works much better than LASTDATE because it actively 
searches for the last date. However, it fails in computing correct totals, as you can see in Figure 8-26.
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FIGURE 8-26 This report is almost correct. The only unexpected results are at the year level and at the quarter level for Q3.

The result for each individual customer looks correct. Indeed, the last known balance for Katie 
Jordan is 2,531.00, which the formula correctly reports as her total. The same behavior produces correct 
results for Luis Bonifaz and Maurizio Macagno. Nevertheless, the grand total seems wrong. Indeed, the 
grand total is 1,950.00, which is the value of Maurizio Macagno only. It is confusing for a report to show 
a total composed in theory of three values (2,531.00, 2,205.00, 1,950.00) that only sums up the last value.

The reason is not hard to explain. When the fi lter context fi lters Katie Jordan, the last date with 
some values is July 15. When the fi lter context fi lters Maurizio Macagno, the last date becomes July 18. 
Nevertheless, when the fi lter context no longer fi lters the customer name, then the last date is Maurizio 
Macagno’s, which is July 18. Neither Katie Jordan nor Luis Bonifaz have any data on July 18. Therefore, 
for the month of July the formula only reports the value of Maurizio Macagno.

As it often happens, there is nothing wrong with the behavior of DAX. The problem is that our code 
is not complete yet because it does not consider the fact that different customers might have different 
last dates in our data model.

Depending on the requirements, the formula can be corrected in different ways. Indeed, one needs 
to defi ne exactly what to show at the total level. Given the fact that there is some data on July 18, the 
idea is to either

 ■ Consider July 18 the last date to use for all the customers, regardless of their individual last date. 
Therefore, the customers not reported at a certain date have a zero balance at that date.

 ■ Consider each customer’s own last date, then aggregate the grand total using as the last date, 
the last date of each customer. Thus, the balance account of a customer is always the last bal-
ance available for that customer.
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Both these defi nitions are correct, and it all depends on the requirements of the report. Because 
both are interesting to learn, we demonstrate how to write the code for both. The easier of the two is 
considering the last date for which there is some data regardless of the customer. The correct formula 
only requires changing the way LASTNONBLANK computes its result:

LastBalanceAllCustomers := 
VAR LastDateAllCustomers = 
    CALCULATETABLE ( 
        LASTNONBLANK (
            'Date'[Date], 
            COUNTROWS ( RELATEDTABLE ( Balances ) ) 
        ),
        ALL ( Balances[Name] )
    )
VAR Result =     
    CALCULATE (
        SUM( Balances[Balance] ), 
        LastDateAllCustomers
    )
RETURN 
    Result

In this code we used CALCULATETABLE to remove the fi lter from the customer name during the 
evaluation of LASTNONBLANK. In this case, at the grand total LASTNONBLANK always returns July 18 
regardless of the customer in the fi lter context. As a result, now the grand total adds up correctly, and 
the end balance of Katie Jordan and Luis Bonifaz is blank, as you can see in Figure 8-27.

FIGURE 8-27 Using the last date for all the customers provides a different column total result.
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The second option requires more complex reasoning. When using a different date for each cus-
tomer, the grand total cannot be computed by simply using the fi lter context at the grand total. The 
formula needs to compute the subtotal of each customer and then aggregate the results. This is one of 
the scenarios where iterators are a simple and effective solution. Indeed, the following measure uses an 
outer SUMX to produce the total by summing the individual values of each customer:

LastBalanceIndividualCustomer :=
SUMX (
    VALUES ( Balances[Name] ),
    CALCULATE (
        SUM ( Balances[Balance] ),
        LASTNONBLANK ( 
            'Date'[Date], 
            COUNTROWS ( RELATEDTABLE ( Balances ) ) 
        )
    )
)

The result of this latter measure computes for each customer the value on their own last date. It then 
aggregates the grand total by summing individual values. You see the result in Figure 8-28.

FIGURE 8-28 The matrix now shows the subtotal of each customer on their own last date.

 

Note With a large number of customers, the LastBalanceIndividualCustomer measure 
might have performance issues. The reason is that the formula includes two nested iterators, 
and the outer iterator has a large granularity. A faster approach to this same requirement is 
included in Chapter 10, “Working with the fi lter context,” leveraging functions like TREATAS 
that will be discussed in later chapters.
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As you have learned, the complexity of semi-additive calculations is not in the code, but rather in 
the defi nition of its desired behavior. Once the behavior is clear, the choice between one pattern and 
the other is simple.

In this section we showed the most commonly used LASTDATE and LASTNONBLANK functions. 
There are two similar functions available to obtain the fi rst date instead of the last date within a time 
period. These functions are FIRSTDATE and FIRSTNONBLANK. Moreover, there are further functions 
whose goal is to simplify calculations like the one demonstrated so far. We discuss them in the next 
section.

Working with opening and closing balances
DAX offers many functions like LASTDATE that simplify calculations retrieving the value of a measure 
at the opening or closing date of a time period. Although useful, these additional functions suffer from 
the same limitations as LASTDATE. That is, they work well if and only if the dataset contains values for 
all the dates.

These functions are STARTOFYEAR, STARTOFQUARTER, STARTOFMONTH, and the corresponding 
closing functions: ENDOFYEAR, ENDOFQUARTER, ENDOFMONTH. Intuitively, STARTOFYEAR always 
returns January 1 of the currently selected year in the fi lter context. In a similar way STARTOFQUARTER 
and STARTOFMONTH return the beginning of the quarter or of the month, respectively.

As an example, we prepared a different dataset that is aimed at resolving a different scenario where 
semi-additive calculations are useful. The demo fi le contains the prices of the Microsoft stock between 
2013 and 2018. The value is well known at the day level. But what should a report show at an aggre-
gated level—for example, at the quarter level? In this case, the most commonly used value is the last 
value of the stock price. In other words, stock prices are another example where the semi-additive pat-
tern becomes useful.

A simple implementation of the last value of a stock works well for simple reports. The following for-
mula computes the last value of the Microsoft stock, considering an average of the prices in case there 
are multiple rows for the same day:

Last Value := 
CALCULATE ( 
    AVERAGE ( MSFT[Value] ), 
    LASTDATE ( 'Date'[Date] ) 
)

The result is correct when used in a daily chart like Figure 8-29.

However, this nice result is not due to the DAX code working well. The chart looks correct because 
we used the date level in the x axis, and the client tool—Power BI in this example—works hard to 
ignore all the empty values in our dataset. This results in a continuous line. But using the same mea-
sure in a matrix sliced by year and month would make the gaps in the calculation become much more 
evident. This shows in Figure 8-30.



 CHAPTER 8 Time intelligence calculations 255

FIGURE 8-29 A line chart showing the price by day looks perfectly fi ne.

FIGURE 8-30 The matrix showing years and months contains several blank values.

Using LASTDATE means you can expect empty values whenever there is no value on the exact last 
day of the month. That day might be either a weekend or a holiday. The correct version of Last Value is 
the following:

Last Value := 
CALCULATE ( 
    AVERAGE ( MSFT[Value] ), 
    LASTNONBLANK ( 
        'Date'[Date], 
        COUNTROWS ( RELATEDTABLE ( MSFT ) )
    )
)
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Being mindful with these functions can prevent unexpected results. For example, imagine comput-
ing the Microsoft stock increase from the beginning of the quarter. One option, which again proves to 
be wrong, is the following code:

SOQ := 
CALCULATE ( 
    AVERAGE ( MSFT[Value] ), 
    STARTOFQUARTER ( 'Date'[Date] ) 
)
 
SOQ% := 
DIVIDE ( 
    [Last Value] - [SOQ], 
    [SOQ] 
)

STARTOFQUARTER returns the date when the current quarter started, regardless the presence of 
data on that specifi c date. For example, January 1, which is the start of the fi rst quarter, is also New 
Year’s Day. Consequently, there is never a price for a stock on that date, and the previous measures 
produce the result visible in Figure 8-31.

FIGURE 8-31 STARTOFQUARTER returns a date whether it is a holiday or not.

You can note that there are no values for SOQ in the fi rst quarter. Besides, the issue is present for any 
quarter that starts on a day for which there is no data. To compute the start or the end of a time period, 
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only taking into account dates with data available, the functions to use are FIRSTNONBLANK and 
LASTNONBLANK mixed with other time intelligence functions like, for example, DATESINPERIOD.

A much better implementation of the SOQ calculation is the following:

SOQ := 
VAR FirstDateInQuarter =
    CALCULATETABLE (
        FIRSTNONBLANK ( 
            'Date'[Date], 
            COUNTROWS ( RELATEDTABLE( MSFT ) ) 
        ),
        PARALLELPERIOD ( 'Date'[Date], 0, QUARTER )
    )
VAR Result =
    CALCULATE ( 
        AVERAGE ( MSFT[Value] ), 
        FirstDateInQuarter
    )
RETURN 
    Result

This latter version is much more complex both to author and to understand. However, it works in 
any scenario by only considering dates with data available. You can see the result of the matrix with the 
new implementation of SOQ in Figure 8-32.

FIGURE 8-32 The new version of SOQ reports correct numbers regardless of weekends and holidays.
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At the risk of seeming pedantic, it is worth repeating the same concept used when introducing 
the topic of semi-additive measures. The devil is in the details. DAX offers several functions that work 
for models with data for all the dates. Unfortunately, not all models contain data for all the dates. 
In those latter scenarios, it is always extremely important to consider all the possible implications of 
using these simple functions. One should consider time intelligence functions as building blocks for 
more complex calculations. Combining different time intelligence functions enables the accurate 
computing of different time periods, although there is no predefi ned function solving the problem 
in a single step.

This is why instead of just showing you a smooth example for each time intelligence function, we 
preferred walking them through different trial-and-error scenarios. The goal of this section—and of 
the whole book—is not to just show you how to use functions. The goal is to empower you to think in 
DAX, to identify which details you should take care of, and to build your own calculations whenever the 
basic functionalities of the language are not enough for your needs.

In the next section we move one step forward in that same direction, by showing how most time 
intelligence calculations can be computed without the aid of any time intelligence functions. The goal 
is not purely educational. When working with custom calendars, such as weekly calendars, time intel-
ligence functions are not useful. You need to be prepared to author some complex DAX code to obtain 
the desired result.

Understanding advanced time intelligence calculations

This section describes many important details about time intelligence functions. To showcase 
these details, we write time intelligence calculations by using simpler DAX functions such as 
FILTER, ALL, VALUES, MIN, and MAX. The goal of this section is not to suggest you avoid stan-
dard time intelligence functions in favor of simpler functions. Instead, the goal is to help you 
understand the exact behavior of time intelligence functions even in particular side cases. This 
knowledge enables you to then write custom calculations whenever the available functions do not 
provide the exact calculation you need. You will also notice that the translation to simpler DAX 
sometimes requires more code than expected because of certain hidden functionalities in time 
intelligence calculations.

Your reason for rewriting a time intelligence calculation in DAX could be that you are dealing with 
a nonstandard calendar, where the fi rst day of the year is not always the same for all the years. This 
is the case, for example, for ISO calendars based on weeks. Here the assumption made by the time 
intelligence function that year, month, and quarter can always be extracted from the date value is no 
longer true. You can write a different logic by changing the DAX code in the fi lter conditions; or you 
can simply take advantage of other columns in the date table, so you do not have a complex DAX 
expression to maintain. You will fi nd more examples of this latter approach under “Working with 
custom calendars” later in this chapter.
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Understanding periods to date
Earlier, we described the DAX functions that calculate month-to-date, quarter-to-date, and year-to-
date: they are DATESMTD, DATESQTD, and DATESYTD. Each of these fi lter functions is like the result 
of a FILTER statement that can be written in DAX. For example, consider the following DATESYTD 
function:

DATESYTD ( 'Date'[Date] )

It corresponds to a fi lter over the date column using FILTER called by CALCULATETABLE, as in the 
following code:

CALCULATETABLE (
    VAR LastDateInSelection = MAX ( 'Date'[Date] )
    RETURN 
        FILTER (
            ALL ( 'Date'[Date] ),
            'Date'[Date] <= LastDateInSelection
                && YEAR ( 'Date'[Date] ) = YEAR ( LastDateInSelection )
        )
)

In a similar way, the DATESMTD function:

DATESMTD ( 'Date'[Date] )

corresponds to the following code:

CALCULATETABLE (
    VAR LastDateInSelection = MAX ( 'Date'[Date] )
    RETURN 
        FILTER (
            ALL ( 'Date'[Date] ),
            'Date'[Date] <= LastDateInSelection
                && YEAR ( 'Date'[Date] ) = YEAR ( LastDateInSelection )
                && MONTH ( 'Date'[Date] ) = MONTH ( LastDateInSelection )
        )
)

The DATESQTD function follows the same pattern. All these alternative implementations have a 
common characteristic: They extract the information about year, month, and quarter from the last day 
available in the current selection. Then, they use this date to create a suitable fi lter.
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Context transition in time intelligence functions

You might have noticed that in the previous expressions we always use an outer 
CALCULATETABLE surrounding the whole code. The reason for the presence of 
CALCULATETABLE is to perform a context transition, which is required when a date 
 column is specifi ed as a column reference. Previously in this chapter you saw that a 
 column reference in the fi rst argument of a time intelligence function is translated into 
a table obtained by calling CALCULATETABLE and DISTINCT:

DATESYTD ( 'Date'[Date] )
 
-- corresponds to
 
DATESYTD ( CALCULATETABLE ( DISTINCT ( 'Date'[Date] ) ) )

Thus, the context transition only takes place to translate the column reference into a table. It 
does not happen when a table is used as an argument of a time intelligence function instead of 
a date column reference. A more accurate translation of DATESYTD is the following:

DATESYTD ( 'Date'[Date] )
 
-- corresponds to
 
VAR LastDateInSelection = 
    MAXX ( CALCULATETABLE ( DISTINCT ( 'Date'[Date] ) ), [Date] )
RETURN 
    FILTER (
        ALL ( 'Date'[Date] ),
        'Date'[Date] <= LastDateInSelection
            && YEAR ( 'Date'[Date] ) = YEAR ( LastDateInSelection )
    )

The context transition does not happen when the argument of a time intelligence function is a table.
 

The CALCULATETABLE generated for the column reference used in time intelligence functions is 
important when you have a row context. Look at the following two calculated columns, both created in 
the Date table:

'Date'[CountDatesYTD] = COUNTROWS ( DATESYTD ( 'Date'[Date] ) )
 
'Date'[CountFilter] =
COUNTROWS (
    VAR LastDateInSelection =
        MAX ( 'Date'[Date] )
    RETURN
        FILTER (
            ALL ( 'Date'[Date] ),
            'Date'[Date] <= LastDateInSelection
                && YEAR ( 'Date'[Date] ) = YEAR ( LastDateInSelection )
        )
)
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Though they look similar, they are not. Indeed, you can see the result in Figure 8-33.

FIGURE 8-33 CountFilter does not perform context transition, whereas CountDatesYTD does.

CountDatesYTD returns the number of days from the beginning of the year, up to the date in the 
current row. To achieve this result, DATESYTD should inspect the current fi lter context and extract 
the selected period from the fi lter context. However, being computed in a calculated column, there 
is no fi lter context. The behavior of CountFilter is simpler to explain: When CountFilter computes the 
maximum date, it always retrieves the last date of the entire date table because there are no fi lters in 
the fi lter context. CountDatesYTD behaves differently because DATESYTD performs a context transi-
tion being called with a date column reference. Thus, it creates a fi lter context that only contains the 
currently iterated date.

If you rewrite DATESYTD and you know that the code will not be executed inside a row context, you 
can remove the outer CALCULATETABLE, which would otherwise be a useless operation. This is usually 
the case for a fi lter argument in a CALCULATE call not called within an iterator—a place where 
DATESYTD is often used. In these cases, instead of DATESYTD, you can write:

VAR LastDateInSelection = MAX ( 'Date'[Date] )
RETURN 
    FILTER (
        ALL ( 'Date'[Date] ),
        'Date'[Date] <= LastDateInSelection
            && YEAR ( 'Date'[Date] ) = YEAR ( LastDateInSelection )
    )
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On the other hand, to retrieve the date from the row context—for example, in a calculated 
 column—it is easier to retrieve the date value of the current row in a variable instead of using MAX:

VAR CurrentDate = 'Date'[Date]
RETURN 
    FILTER (
        ALL ( 'Date'[Date] ),
        'Date'[Date] <= CurrentDate
            && YEAR ( 'Date'[Date] ) = YEAR ( CurrentDate )
    )

DATESYTD allows the specifying of a year-end date, which is useful to compute YTD on fi scal years. 
For example, for a fi scal year starting on July 1, June 30 needs to be specifi ed in the second argument 
by using one of the following versions:

DATESYTD ( 'Date'[Date], "06-30" )
DATESYTD ( 'Date'[Date], "30-06" )

Regardless of the local culture, let us assume that the programmer has specifi ed the <month> and 
<day>. The corresponding FILTER of DATESYTD using these placeholders is the following:

VAR LastDateInSelection = MAX ( 'Date'[Date] )
RETURN 
    FILTER (
        ALL ( 'Date'[Date] ),
        'Date'[Date] > DATE ( YEAR ( LastDateInSelection ) - 1, <month>, <day> )
            && 'Date'[Date] <= LastDateInSelection
    )

 

Important It is important to note that DATESYTD always starts from the day after the speci-
fi ed end of the fi scal year. This causes a problem in the special case where a company has a 
fi scal year starting on March 1. In fact, the end of the fi scal year can be either February 28 
or 29, depending on whether the calculation is happening in a leap year or not. As of April 
2019, this special scenario is not supported by DATESYTD. Thus, if one needs to author code 
and they have to start the fi scal calendar on March 1, then DATESYTD cannot be used. A 
workaround is available at http://sql.bi/fymarch.

 

Understanding DATEADD
DATEADD retrieves a set of dates shifted in time by a certain offset. When DATEADD analyzes the cur-
rent fi lter context, it includes special handling to detect whether the current selection is one month or 
a special period, like the beginning or the end of a month. For example, when DATEADD retrieves an 
entire month shifted back one quarter, it oftentimes returns a different number of days than the cur-
rent selection. This happens because DATEADD understands that the current selection is a month, and 
it retrieves a full corresponding month regardless of the number of days.

http://sql.bi/fymarch
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These special behaviors are expressed in three rules that we describe in this section. These rules 
make it hard to rewrite DATEADD on a generic date table. The code would be painfully diffi cult to 
write and nearly impossible to manage over time. DATEADD only uses the values of the date column, 
extracting the information needed—such as year, quarter, and month—from the available date value. 
The same logic would be hard to reproduce in plain DAX. On the other hand, by using additional 
columns in the Date table, one can author an alternative version of DATEADD. We will elaborate on this 
technique later in this chapter, in the section about custom calendars.

Consider the following formula:

DATEADD ( 'Date'[Date], -1, MONTH )

The closest—but not totally equivalent—DAX formula is the following:

VAR OffsetMonth = -1
RETURN TREATAS (
    SELECTCOLUMNS ( 
        CALCULATETABLE ( DISTINCT ( 'Date'[Date] ) ),
        "Date", DATE ( 
            YEAR ( 'Date'[Date] ), 
            MONTH ( 'Date'[Date] ) + OffsetMonth, 
            DAY ( 'Date'[Date] )
        )
    ),
    'Date'[Date]
)

 

Note In the previous example and in other formulas in this chapter, we use the TREATAS 
function, which applies a table expression to the fi lter context on the columns specifi ed by 
the second and following arguments. You can read a more complete description of this 
function in Chapter 10.

 

The formula also works in January because a value lower than 1 for the month parameter is con-
sidered an offset to go into a previous year. However, this implementation only works properly if the 
destination month has the same number of days as the current month. If you move from February to 
January, the formula misses two or three days, depending on the year. In a similar way, if you move 
from March to February, the result might include days in March.

On the other hand, DATEADD does not have a similar problem and returns the entire month with 
the offset applied, in case an entire month was selected before the offset was applied. In order to 
achieve this, DATEADD uses three rules:

 1. DATEADD only returns days that exist in the date column. If some expected dates are missing, 
then DATEADD returns only those dates that are not missing in the date column.

 2. If a day does not exist in the corresponding month after the shifting operation, then the result 
of DATEADD includes the last day of the corresponding month.
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 3. If the selection includes the last two days of a month, then the result of DATEADD includes all the 
days between the corresponding days in the shifted month and the end of the shifted month.

A few examples are helpful to understand the effects of these behaviors. Consider the following 
measures: Day count counts the number of selected days; PM Day count counts the number of days 
shifted back in the previous month; PM Range returns the date range selected by DATEADD.

Day count := 
COUNTROWS ( 'Date' ) 
 
PM Day count := 
CALCULATE ( [Day count], DATEADD ( 'Date'[Date], -1, MONTH ) ) 
 
PM Range := 
CALCULATE (  
    VAR MinDate = MIN ( 'Date'[Date] )
    VAR MaxDate = MAX ( 'Date'[Date] )
    VAR Result =
        FORMAT ( MinDate, "MM/DD/YYYY - " ) & FORMAT ( MaxDate, "MM/DD/YYYY" )
    RETURN 
        Result,
    DATEADD ( 'Date'[Date], -1, MONTH )
)

 ■ Rule 1 is in effect when the selection is near the boundaries of the range of dates included in 
the date column. For example, Figure 8-34 shows the PM Day count and PM Range measures 
returning valid values in February 2007 because dates in January 2007 exist in the date column, 
whereas the same measures return blanks in January 2007 because dates in December 2006 are 
not present in the date column.

FIGURE 8-34 The dates selected are shifted back one month.
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The main reason why the Date table should include all the days within one year is because of 
the behavior of DATEADD. Be mindful that several time intelligence functions in DAX internally 
use DATEADD. Therefore, having a complete date table is of paramount importance for DAX 
time intelligence functions to behave as expected.

 ■ Rule 2 is relevant because months have different numbers of days. The 31st day does not exist 
for all months. If it is selected, it is moved to the last day of the month in the shifted period. For 
example, in Figure 8-35 the last days of March are all moved to the last day of February because 
February 29 to 31 do not exist in 2007.

FIGURE 8-35 A date that does not exist in the destination month is replaced by the last day of the 
destination month.

The consequence of this rule is that you might obtain a lower number of days than the initial 
selection. This is intuitive when the selection of 31 days in March should result in a correspond-
ing selection of 28 or 29 days in February. However, when the selection includes a reduced 
number of days, the result might not be what is expected. For example, in Figure 8-36 you can 
see that a selection of 5 days in March 2007 results in only 2 days in February 2007.

FIGURE 8-36 Several days in the starting selection might result in the same day in the DATEADD result.
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 ■ Rule 3 generates a special handling type when the last day of a month is included within a range 
of dates. For example, consider the initial selection of three days from June 29, 2007, to July 1, 2007. 
The selection only includes three days, but among those is the last day of June, which is June 30. 
When DATEADD shifts the dates back, it includes the last day of May (May 31). Figure 8-37 shows this 
behavior and it is worth a deeper look. Indeed, you can note that June 30 is moved to May 30. Only 
if the selection contains both June 29 and 30 does the result then include the last day of the previous 
month (May 31). In this case, the number of days in the previous month is greater than the number of 
days originally selected: 2 days selected in June 2017 return 3 days in the previous month (May 2007).

FIGURE 8-37 The result of DATEADD includes all days between the fi rst and the last day of the selection 
after the shift operation.

The reason for these rules is to provide an intuitive behavior when a formula operates at the month 
level. As you can see in Figure 8-38, when you compare the selections at the month level, the result is 
intuitive and expected. It shows the complete range of days of the previous month.

FIGURE 8-38 The PM Day count measure shows the number of days in the previous month.
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Understanding the rules described in this section is important to handle side conditions that 
might happen with partial selections of days in months. For example, consider a fi lter over week-
days in a report. That fi lter might not include the last days of a month, which would guarantee that 
the entire previous month is selected. Moreover, the shift of dates performed by DATEADD only 
considers the number of days within the month and not the week days. The application of a fi lter to 
the date column of the Date table also generates an implicit ALL over the Date table itself, removing 
any existing fi lter over other columns of the Date table including weekdays. Thus, a slicer that fi lters 
weekdays is not compatible with the use of DATEADD because it does not produce the expected 
result.

For example, consider the following defi nition of PM Sales DateAdd displaying the Sales Amount of 
the previous month, as shown in Figure 8-39:

PM Sales DateAdd := 
CALCULATE ( 
    [Sales Amount], 
    DATEADD ( 'Date'[Date], -1, MONTH ) 
)

FIGURE 8-39 The PM Sales DateAdd measure does not correspond to Sales Amount of the previous month.

PM Sales DateAdd creates a fi lter of days that does not correspond to the full month. It translates the 
days of the month selected, including additional days at the end of the month according to Rule 3. This 
fi lter overrides and ignores the Day of Week selection for the value of the previous month. The result 
produces different values, even bigger than Sales Amount as in March and May 2007, for example.

In this case, computing correctly requires a custom calculation like the one implemented in the PM 
Sales Weekday measure. It applies a fi lter over the YearMonthNumber column keeping the fi lter on Day 
of Week, and removing the fi lter from all the other columns of the Date table using ALLEXCEPT. The 
YearMonthNumber calculated column is a sequential number over months and years:
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Date[YearMonthNumber] = 
'Date'[Year] * 12 + 'Date'[Month Number] – 1
 
PM Sales Weekday := 
VAR CurrentMonths = DISTINCT ( 'Date'[YearMonthNumber] )
VAR PreviousMonths = 
    TREATAS (
        SELECTCOLUMNS ( 
            CurrentMonths,
            "YearMonthNumber", 'Date'[YearMonthNumber] - 1 
        ),
        'Date'[YearMonthNumber]
    )  
VAR Result = 
    CALCULATE ( 
        [Sales Amount], 
        ALLEXCEPT ( 'Date', 'Date'[Week Day] ),
        PreviousMonths
    )
RETURN 
    Result 

The result is visible in Figure 8-40.

FIGURE 8-40 The PM Sales Weekday measure corresponds to Sales Amount of the previous month.

However, this solution works specifi cally for this report. If the selection of days were made based 
on other criteria like the fi rst 6 days of the month, then the result produced by PM Sales Weekday 
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would get the entire month, whereas the result produced by PM Sales DateAdd would work in this 
case. Depending on the columns visible to the user, one might implement different calculations based 
on the selection made. For example, the following PM Sales measure uses the ISFILTERED function to 
check whether a fi lter is active on the Day of Week column. A more detailed explanation of ISFILTERED 
is included in Chapter 10.

PM Sales := 
IF (
    ISFILTERED ( 'Date'[Day of Week] ),
    [PM Sales Weekday],
    [PM Sales DateAdd]
)

Understanding FIRSTDATE, LASTDATE, FIRSTNONBLANK, and 
LASTNONBLANK
In the “Understanding semi-additive calculations” section earlier in this chapter, you learned two 
functions that seem alike: LASTDATE and LASTNONBLANK. In fact, these functions exhibit distinctive 
behaviors, and so do the two companions FIRSTDATE and FIRSTNONBLANK.

FIRSTDATE and LASTDATE only operate on a date column. They return, respectively, the fi rst and the 
last date in the active fi lter context, ignoring any data existing in other related tables:

FIRSTDATE ( 'Date'[Date] )
LASTDATE ( 'Date'[Date] )

FIRSTDATE returns the minimum value of the column received in the current fi lter context, whereas 
LASTDATE returns the maximum value. FIRSTDATE and LASTDATE behave somewhat like MIN and 
MAX, with one important difference: FIRSTDATE and LASTDATE return a table and perform a context 
transition, whereas MIN and MAX return a scalar value without doing any context transition.

For example, consider the following expression:

CALCULATE (
    SUM ( Inventory[Quantity] ),
    LASTDATE ( 'Date'[Date] )
)

You can rewrite the formula using MAX instead of LASTDATE, but this would result in unnecessary 
longer code:

CALCULATE (
    SUM ( Inventory[Quantity] ),
    FILTER (
        ALL ( 'Date'[Date] ),
        'Date'[Date] = MAX ( 'Date'[Date] )
    )
)
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Besides, LASTDATE also performs a context transition. Consequently, the exact equivalent of LAST-
DATE in plain DAX is as follows:

CALCULATE (
    SUM ( Inventory[Quantity] ),
    VAR LastDateInSelection = 
        MAXX ( CALCULATETABLE ( DISTINCT ( 'Date'[Date] ) ), 'Date'[Date] )
    RETURN
        FILTER (
            ALL ( 'Date'[Date] ),
            'Date'[Date] = LastDateInSelection 
        )
)

The context transition is relevant when you execute FIRSTDATE/LASTDATE in a row context. The 
best practice is to use FIRSTDATE/LASTDATE when you write a fi lter expression because a table expres-
sion is expected, whereas MIN/MAX functions are better when you are writing a logical expression in 
a row context that usually requires a scalar value. Indeed, LASTDATE with a column reference implies a 
context transition that hides the external fi lter context.

For example, you will favor FIRSTDATE/LASTDATE over MIN/MAX in a fi lter argument of CALCULATE/
CALCULATETABLE functions because the syntax is simpler. However, you should use MIN/MAX when 
the context transition implied by FIRSTDATE/LASTDATE would modify the result. This is the case of the 
condition in a FILTER function. The following expression fi lters the dates for computing a running total:

FILTER (
    ALL ( 'Date'[Date] ),
    'Date'[Date] <= MAX ( 'Date'[Date] )
)

MAX is the right function to use. In fact, the result of using LASTDATE instead of MAX would always 
contain all the dates, regardless of the current selection because of the unwanted context transition. 
Thus, the following expression returns all dates, no matter what. The reason is that LASTDATE—
because of context transition—returns the value of Date[Date] in each row of the FILTER iteration:

FILTER (
    ALL ( 'Date'[Date] ),
    'Date'[Date] <= LASTDATE ( 'Date'[Date] ) -- this condition is always true
)

LASTNONBLANK and FIRSTNONBLANK are different from FIRSTDATE and LASTDATE. In fact, 
LASTNONBLANK and FIRSTNONBLANK are iterators, meaning that they scan a table row by row in a 
row context and that they return the last (or fi rst) of the values for which the second parameter is not a 
blank. Usually, the second parameter of these functions is either a measure or an expression including 
CALCULATE, so to rely on context transition.

To obtain the right value for the last non-blank date for a given measure/table, you use an expres-
sion like this:

LASTNONBLANK ( 'Date'[Date], CALCULATE ( COUNTROWS ( Inventory ) ) )
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It returns the last date (in the current fi lter context) for which there are rows in the Inventory table. 
You can also use an equivalent formula:

LASTNONBLANK ( 'Date'[Date], COUNTROWS ( RELATEDTABLE ( Inventory ) ) )

That last expression returns the last date (in the current fi lter context) for which there is a related 
row in the Inventory table.

It is worth noting that FIRSTNONBLANK/LASTNONBLANK functions accept any data type as their 
fi rst argument, whereas the FIRSTDATE/LASTDATE functions require a column of DateTime or Date 
data type. Thus, and though it is not a commonly used practice, FIRSTNONBLANK and LASTNON-
BLANK can also be used with different tables like customers, products, or any other table.

Using drillthrough with time intelligence
A drillthrough operation is a request for the data source rows corresponding to the fi lter context used 
in a certain calculation. Every time you use a time intelligence function, you change the fi lter context on 
the Date table. This produces a different result for the measure from the result obtained with the initial 
fi lter context. When you use a client that performs a drillthrough action over a report, such as a pivot 
table in Excel, you could observe a behavior that is not what you might expect. In fact, the drillthrough 
operation made in MDX does not consider the changes in the fi lter context defi ned by the measure 
itself. Instead, it only considers the fi lter context defi ned by the rows, columns, fi lters, and slicers of the 
pivot table.

For example, by default the drillthrough on March 2007 always returns the same rows, regardless 
of the time intelligence function applied in the measure. By using TOTALYTD, one would expect all the 
days from January to March 2007; by using SAMEPERIODLASTYEAR, one would expect March 2006; 
and by using LASTDATE, one would only expect the rows for March 31, 2007. Indeed, in the default 
drillthrough any of these fi lters always returns all the rows for March 2007. This behavior can be con-
trolled by the Detail Rows property in the Tabular model. At the time of writing (April 2019), the Detail 
Rows property can be set in an Analysis Services 2017 or Azure Analysis Services data model, but it is 
not available either in Power BI or in Power Pivot for Excel.

The Detail Rows property must apply the same fi lter used for the corresponding time intelligence 
measure. For example, consider the following year-to-date measure:

CALCULATE (
    [Sales Amount],
    DATESYTD ( 'Date'[Date] )
)

Its Detail Rows property should be set to

CALCULATETABLE ( 
    Sales,                       -- This expression also controls the columns returned
    DATESYTD ( 'Date'[Date] )
)
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Working with custom calendars

As you have seen so far, the standard time intelligence functions in DAX only support standard 
 Gregorian calendars. These are based on a solar calendar divided into 12 months, each one with a 
different number of days. These functions work well to analyze data by year, quarter, month, and day. 
However, there are models that have a different defi nition of time periods, like week-based calendars 
such as the ISO week date system. If someone needs a custom calendar, they need to rewrite the time 
intelligence logic in DAX because the standard time intelligence calculation would be of no use.

When it comes to nonstandard calendars, there are so many variations that it would be impossible 
to cover them all. Therefore, we show examples of how to implement time intelligence calculations in 
DAX when you cannot use standard functions.

In order to simplify the formulas, a common technique is to move part of the business logic in the 
date table through the use of dedicated columns. The standard DAX time intelligence functions do 
not use any information from the date table other than the date column. This is a design choice of 
DAX because this way the behavior of the language does not depend on the presence of additional 
metadata to identify columns to determine year, quarter, and month of a date—as was the case with 
MDX and Analysis Services Multidimensional. Being the owner of your model and of your DAX code, 
you can make more assumptions, and this helps in simplifying the code to handle custom time-related 
calculations.

This fi nal section shows a few examples of the formulas for custom calendars. If needed, you can 
fi nd more information, examples, and ready-to-use DAX formulas in the following articles:

 ■ Time Patterns: http://www.daxpatterns.com/time-patterns/

 ■ Week-Based Time Intelligence in DAX: http://sql.bi/isoweeks/

Working with weeks
DAX does not provide any time intelligence functions that handle weeks. The reason is that there are 
many different standards and techniques to defi ne weeks within a year, and to defi ne the notion of cal-
culation over weeks. Oftentimes a single week crosses the boundaries of years, quarters, and months. 
You need to write the code to handle your own defi nition of a week-based calendar. For example, in 
ISO a week-date system of January 1 and January 2 in 2011 belongs to week 52 of year 2010, and the 
fi rst week of 2011 starts on January 3.

Although there are different standards, you can learn a generic approach that should work in most 
cases. The approach involves the creation of additional columns in the Date table to store the relation-
ship between weeks and their month/quarter/year. Changing the association rules will just require 
changing the content of the Date table, without modifying the DAX code of the measures.

http://www.daxpatterns.com/time-patterns/
http://sql.bi/isoweeks/
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For example, you can extend a Date table to support ISO weeks by using the following calculated 
columns:

'Date'[Calendar Week Number] = WEEKNUM ( 'Date'[Date], 1 )
 
'Date'[ISO Week Number] = WEEKNUM ( 'Date'[Date], 21 )
 
'Date'[ISO Year Number] = YEAR ( 'Date'[Date] + ( 3 - WEEKDAY ( 'Date'[Date], 3 ) ) )
 
'Date'[ISO Week] = "W" & 'Date'[ISO Week Number] & "-" & 'Date'[ISO Year Number]
 
'Date'[ISO Week Sequential] = INT ( ( 'Date'[Date] - 2 ) / 7 ) 
 
'Date'[ISO Year Day Number] =
VAR CurrentIsoYearNumber = 'Date'[ISO Year Number]
VAR CurrentDate = 'Date'[Date]
VAR DateFirstJanuary = DATE ( CurrentIsoYearNumber, 1, 1 )
VAR DayOfFirstJanuary = WEEKDAY ( DateFirstJanuary, 3 )
VAR OffsetStartIsoYear = - DayOfFirstJanuary + ( 7 * ( DayOfFirstJanuary > 3 ) )
VAR StartOfIsoYear = DateFirstJanuary + OffsetStartIsoYear
VAR Result = CurrentDate - StartOfIsoYear
RETURN 
    Result

You can see in Figure 8-41 the result of these columns. The ISO Week column will be visible to users, 
whereas the ISO Week Sequential Number is for internal use only. ISO Year Day Number is the number 
of days since the beginning of the ISO year. These additional columns make it easy to compare differ-
ent periods.

FIGURE 8-41 The calculated columns extend the Date table to support ISO weeks.

Using the new columns, a developer can write year-to-date aggregation by using the ISO Year Num-
ber column instead of extracting the year number from the date. This technique is the same as the one 
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you learned in the “Understanding periods to date” section earlier in this chapter. We just added an 
additional check to make sure that only one ISO Year is selected, prior to invoking the VALUES function:

ISO YTD Sales :=
IF (
    HASONEVALUE ( 'Date'[ISO Year Number] ),
    VAR LastDateInSelection = MAX ( 'Date'[Date] )
    VAR YearSelected = VALUES ( 'Date'[ISO Year Number] )
    VAR Result = 
        CALCULATE (
            [Sales Amount],
            'Date'[Date] <= LastDateInSelection,
            'Date'[ISO Year Number] = YearSelected,
            ALL ( 'Date' )
        )
    RETURN
        Result
)

Figure 8-42 shows the result of the ISO YTD Sales measure at the beginning of 2008, compared with 
a standard YTD computed through DATESYTD. The ISO version accurately includes December 31, 2007, 
which belongs to ISO Year 2008.

FIGURE 8-42 ISO YTD Sales accurately includes December 31, 2007, in the fi rst week of 2008.

The comparison with the prior year should compare the relative weeks of the year with the same 
weeks in the previous year. Since the dates might be different, it is simpler to use other columns in the 
date table to implement the comparison logic. The distribution of weeks within each year is regular 
because each week always has seven days, whereas calendar months have different lengths and cannot 
benefi t from the same assumption. In week-based calendars, you can simplify the calculation by look-
ing in the previous year for the same relative days that were selected in the current fi lter context.

The following ISO PY Sales measure fi lters the same selection of days in the previous year. This tech-
nique also works when the selection includes complete weeks because the days are selected using the 
ISO Year Day Number value and not the effective date.
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ISO PY Sales := 
IF (
    HASONEVALUE ( 'Date'[ISO Year Number] ),
    VAR DatesInSelection = VALUES ( 'Date'[ISO Year Day Number] )
    VAR YearSelected = VALUES ( 'Date'[ISO Year Number] )
    VAR PrevYear = YearSelected - 1
    VAR Result = 
        CALCULATE (
            [Sales Amount],
            DatesInSelection,
            'Date'[ISO Year Number] = PrevYear,
            ALL ( 'Date' )
        )
    RETURN
        Result
)

Figure 8-43 shows the result produced by the ISO PY Sales measure. On the right we added the sales 
amount of 2007, to make it easier to understand the source of ISO PY Sales.

FIGURE 8-43 The ISO PY Sales shows the value of the same weeks one year earlier.

Week-based calendars are simple to manage because of the assumption you can make about the 
symmetry between days in different years. This is usually not compatible with the calendar month, so 
if you want to use both hierarchies (months and weeks), you should create different time intelligence 
calculations for each hierarchy.
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Custom year-to-date, quarter-to-date, and month-to-date
Earlier in this chapter, you learned how to rewrite DATESYTD and similar functions in the “Understand-
ing periods to date” section. There, we could still extract date attributes—like the year—from the date 
column. With ISO calendars, this logic is no longer in the date column. Instead, we created additional 
columns just for this calculation. In this section we now demonstrate how to replace the logic that 
extracts information from the date value by using other columns of the Date table.

For example, consider the following YTD Sales measure:

YTD Sales :=
CALCULATE (
    [Sales Amount],
    DATESYTD ( 'Date'[Date] )
)

The corresponding syntax in DAX without time intelligence is the following:

YTD Sales :=
VAR LastDateInSelection = MAX ( 'Date'[Date] )
VAR Result = 
    CALCULATE (
        [Sales Amount],
        'Date'[Date] <= LastDateInSelection
           && YEAR ( 'Date'[Date] ) = YEAR ( LastDateInSelection )
    )
RETURN 
    Result

If you use a custom calendar, you must replace the YEAR function call with an access to the Year 
column, such as in the following YTD Sales Custom measure:

YTD Sales Custom :=
VAR LastDateInSelection = MAX ( 'Date'[Date] )
VAR LastYearInSelection = MAX ( 'Date'[Calendar Year Number] )
VAR Result =
    CALCULATE (
        [Sales Amount],
        'Date'[Date] <= LastDateInSelection,
        'Date'[Calendar Year Number] = LastYearInSelection,
        ALL ( 'Date' )
    )
RETURN 
    Result

You can use the same template to implement quarter-to-date and month-to-date calculations. The 
only difference is the column used instead of Calendar Year Number:
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QTD Sales Custom :=
VAR LastDateInSelection = MAX ( 'Date'[Date] )
VAR LastYearQuarterInSelection = MAX ( 'Date'[Calendar Year Quarter Number] )
VAR Result = 
    CALCULATE (
        [Sales Amount],
        'Date'[Date] <= LastDateInSelection,
        'Date'[Calendar Year Quarter Number] = LastYearQuarterInSelection,
        ALL ( 'Date' )
    )
RETURN
    Result
 
MTD Sales Custom :=
VAR LastDateInSelection = MAX ( 'Date'[Date] )
VAR LastYearMonthInSelection = MAX ( 'Date'[Calendar Year Month Number] )
VAR Result =
    CALCULATE (
        [Sales Amount],
        'Date'[Date] <= LastDateInSelection,
        'Date'[Calendar Year Month Number] = LastYearMonthInSelection,
        ALL ( 'Date' )
    )
RETURN
    Result

You can use these formulas to implement calculations for both standard calendars (in case you want 
to improve performance using DirectQuery) and custom calendars (in case the time periods are not 
standard periods).

Conclusions

In this long chapter, you learned the basics of time intelligence calculations in DAX. These are the 
important points we covered:

 ■ Both Power Pivot and Power BI have mechanisms to automate the creation of a date table. They 
are not worth using, unless your requirements are really simple. Having control over your date 
table is important and the existing tools do not let you modify the tables to follow your needs.

 ■ Building a date table is easy by leveraging CALENDARAUTO and some simple DAX code. It is 
worth investing some time to build your own date table, as you will reuse the code in many dif-
ferent projects. You can also download DAX templates for a date table on the web.

 ■ A data table should be marked as a date table to simplify the use of time intelligence 
calculations.

 ■ There are several time intelligence functions. Most of them simply return a table that can be 
used as a fi lter argument of CALCULATE.
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 ■ You should learn to treat time intelligence functions as building blocks for more complex cal-
culations. By mixing time intelligence functions, one can create several different and complex 
calculations.

 ■ When the requirements are such that standard time intelligence calculations no longer work, 
it is time to roll up your sleeves and learn to author time intelligence calculations with simpler 
DAX functions.

 ■ There are several examples of time intelligence calculations in this book. However, you can fi nd 
many more at https://www.daxpatterns.com/time-patterns/.

https://www.daxpatterns.com/time-patterns/
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Calculation groups

In 2019, DAX received a major update with the introduction of calculation groups. Calculation groups 
are a utility feature inspired from a similar feature available in MDX, known as calculated members. If 
you already know what calculated members in MDX are, then learning calculation groups should be 
somewhat easier. However, the DAX implementation differs from the MDX implementation. Therefore, 
regardless of your previous knowledge, in this chapter you will learn what calculation groups are, what 
they were designed for, and how they can help build awesome calculations.

Calculation groups are easy to use; however, designing a model with calculation groups correctly 
can be challenging when you create multiple calculation groups or when you use calculation items in 
measures. For this reason, we provide best practices to help you avoid any issues. Deviating from these 
best practices requires a deep understanding of how calculation groups are designed, if one wants to 
obtain a sound model.

Calculation groups are a new feature in DAX, which, as of April 2019, has not been completed and 
released. Along this chapter we highlight the parts that may change in the fi nal version of this feature. 
Therefore, it is important to visit the web page https://www.sqlbi.com/calculation-groups, where you 
will fi nd updated material and examples about calculation groups in DAX.

Introducing calculation groups

Before we provide a description of calculation groups, it is useful to spend some time analyzing the 
business requirement that led to the introduction of this feature. Because you just fi nished digesting 
the chapter about time intelligence, an example involving time-related calculations fi ts perfectly well.

In our sample model we defi ned calculations to compute the sales amount, the total cost, the mar-
gin, and the total quantity sold by using the following DAX code:

Sales Amount := SUMX ( Sales, Sales[Quantity] * Sales[Net Price] )
Total Cost := SUMX ( Sales, Sales[Quantity] * Sales[Unit Cost] )
Margin := [Sales Amount] - [Total Cost]
Sales Quantity := SUM ( Sales[Quantity] )

All four measures are useful, and they provide different insights into the business. Moreover, all four 
measures are good candidates for time intelligence calculations. A year-to-date over sales quantity can 
be as interesting as a year-to-date over sales amount and over margin. The same consideration is true 
for many other time intelligence calculations: same period last year, growth in percentage against the 
previous year, and many others.

https://www.sqlbi.com/calculation-groups


280 CHAPTER 9 Calculation groups

Nevertheless, if one wants to build all the different time intelligence calculations for all the measures, 
the number of measures in the data model may grow very quickly. In the real world, managing a data 
model with hundreds of measures is intimidating for both users and developers. Finally, consider that all 
the different measures for time intelligence calculations are simple variations of a common pattern. For 
example, the year-to-date versions of the previous list of four measures would look like the following:

YTD Sales Amount := 
CALCULATE ( 
    [Sales Amount], 
    DATESYTD ( 'Date'[Date] ) 
)

YTD Total Cost := 
CALCULATE ( 
    [Total Cost], 
    DATESYTD ( 'Date'[Date] ) 
)

YTD Margin := 
CALCULATE ( 
    [Margin], 
    DATESYTD ( 'Date'[Date] ) 
)

YTD Sales Quantity := 
CALCULATE ( 
    [Sales Quantity], 
    DATESYTD ( 'Date'[Date] ) 
)

All the previous measures only differ in their base measure; they all apply the same DATESYTD fi lter 
context to different base measures. It would be great if a developer were given the opportunity to 
defi ne a more generic calculation, using a placeholder for the measure:

YTD <Measure> := 
CALCULATE (
    <Measure>, 
    DATESYTD ( 'Date'[Date] )
)

The previous code is not a valid DAX syntax, but it provides a very good description of what calcula-
tion items are. You can read the previous code as: When you need to apply the YTD calculation to a 
measure, call the measure after applying DATESYTD to the Date[Date] column. This is what a calcula-
tion item is: A calculation item is a DAX expression containing a special placeholder. The placeholder is 
replaced with a measure by the engine just before evaluating the result. In other words, a calculation 
item is a variation of an expression that can be applied to any measure.

Moreover, a developer will likely fi nd themselves needing several time intelligence calculations. As 
we noted at the beginning of the section, year-to-date, quarter-to-date, and same period last year are 
all calculations that somehow belong to the same group of calculations. Therefore, DAX offers calcula-
tion items and calculation groups. A calculation group is a set of calculation items that are conveniently 
grouped together because they are variations on the same topic.
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Let us continue with DAX pseudo-code:

CALCULATION GROUP "Time Intelligence"
    CALCULATION ITEM CY := <Measure>
    CALCULATION ITEM PY := CALCULATE ( <Measure>, SAMPEPERIODLASTYEAR ( 'Date'[Date] ) ) 
    CALCULATION ITEM QTD := CALCULATE ( <Measure>, DATESQTD ( 'Date'[Date] ) )
    CALCULATION ITEM YTD := CALCULATE ( <Measure>, DATESYTD ( 'Date'[Date] ) )

As you can see, we grouped four time-related calculations in a group named Time Intelligence. In 
only four lines, the code defi nes dozens of different measures because the calculation items apply their 
variation to any measure in the model. Thus, as soon as a developer creates a new measure, the CY, PY, 
QTD, and YTD variations will be available at no cost.

There are still several details missing in our understanding of calculation groups, but only one is 
required to start taking advantage of them and to defi ne the fi rst calculation group: How does the 
user choose one variation? As we said, a calculation item is not a measure; it is a variation of a measure. 
Therefore, a user needs a way to put in a report a specifi c measure with one or more variations of the 
measure itself. Because users have the habit of selecting columns from tables, calculation groups are 
implemented as if they were columns in tables, whereas calculation items are like values of the given 
columns. This way, the user can use the calculation group in the columns of a matrix to display different 
variations of a measure in the report. For example, the calculation items previously described are applied 
to the columns of the matrix in Figure 9-1, showing different variations of the Sales Amount measure.

FIGURE 9-1 The user can use a calculation group as if it were a column of the model, applying it to matrix columns.

Creating calculation groups

The implementation of calculation groups in a Tabular model depends on the user interface of the 
editor tool. At the time of writing (April 2019), neither Power BI nor SQL Server Data Tools (SSDT) for 
Analysis Services have a user interface for this feature, which is only available at the API level of Tabular 
Object Model (TOM). The fi rst tool providing an editor for this feature is Tabular Editor, an open source 
tool available for free at https://tabulareditor.github.io/.

https://tabulareditor.github.io/
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In Tabular Editor, the Model / New Calculation Group menu item creates a new calculation group, 
which appears as a table in the model with a special icon. This is shown in Figure 9-2 where the 
calculation group has been renamed Time Intelligence.

FIGURE 9-2 Tabular Editor displays the Time Intelligence calculation group as a special table.

A calculation group is a special table with a single column, named Attribute by default in Tabular 
Editor. In our sample model we renamed this column Time calc; then we added three items (YTD, QTD, 
and SPLY for same period last year) by using the New Calculation Item context menu item available by 
right-clicking on the Time calc column. Each calculation item has a DAX expression, as shown in Figure 9-3.

FIGURE 9-3 Every calculation item has a DAX expression that can be modifi ed in Tabular Editor.
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The SELECTEDMEASURE function is the DAX implementation of the <Measure> placeholder we 
used in the previous DAX pseudo-code. The DAX code for each calculation item is described in the 
following code. The comment preceding each DAX expression identifi es the corresponding calculation 
item:

 

Note It is best practice to always expose the business logic through measures in the 
model. When the model includes calculation groups, the Power BI client does not allow 
developers to aggregate columns because calculation groups can only be applied to mea-
sures, and they do not produce any effect on aggregation functions; they only operate on 
measures.

 

-- 
-- Calculation Item: YTD
-- 
    CALCULATE ( 
        SELECTEDMEASURE (), 
        DATESYTD ( 'Date'[Date] ) 
    )

-- 
-- Calculation Item: QTD
-- 
    CALCULATE ( 
        SELECTEDMEASURE (), 
        DATESQTD ( 'Date'[Date] ) 
    )

-- 
-- Calculation Item: SPLY
-- 
    CALCULATE ( 
        SELECTEDMEASURE (), 
        SAMEPERIODLASTYEAR ( 'Date'[Date] ) 
    )

With this defi nition, the user will see a new table named Time Intelligence, with a column named 
Time calc containing three values: YTD, QTD, and SPLY. The user can create a slicer on that column, or 
use it on the rows and columns of visuals, as if it were a real column in the model. For example, when 
the user selects YTD, the engine applies the YTD calculation item to whatever measure is in the report. 
In Figure 9-4 you can see a matrix containing the Sales Amount measure. Because the slicer selects the 
YTD variation of the measure, the numbers shown are year-to-date values.
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FIGURE 9-4 When the user selects YTD, the values in the matrix represent the YTD variation of the Sales 
Amount measure.

If on the same report the user selects SPLY, the result will be very different, as you can appreciate in 
Figure 9-5.

FIGURE 9-5 Selecting SPLY changes the results of the Sales Amount measure because it now uses a different 
variation. The values are the original Sales Amount values, shifted back one year.

If the user does not select one value or if the user selects multiple values together, then the engine 
does not apply any variation to the original measure. You can see this in Figure 9-6.
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FIGURE 9-6 When no calculation item is selected, the report shows the original measure. 

Note The behavior of calculation groups with no selection or with multiple items selected 
may change in the future. As of April 2019, when multiple calculation items are selected, the 
behavior is the same as if there were no selection on a calculation group. Nevertheless, this 
condition might return different results in future versions—for example, raising an error in 
case of a multiple selection.

Calculation groups can go further than that. At the beginning of this section we introduced four dif-
ferent measures: Sales Amount, Total Cost, Margin, and Sales Quantity. It would be extremely nice if the 
user could use a slicer in order to select the metric to show and not only the time intelligence calcula-
tion to apply. We would like to present a generic report that slices any of the four metrics by month 
and year, letting the user choose the desired metric. In other words, we want to obtain the report in 
Figure 9-7.

FIGURE 9-7 The report shows the YTD time intelligence calculation applied to Margin, but the user can choose any 
other combination through the slicers.
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In the example shown in Figure 9-7, the user is browsing the margin amount using a year-to-date 
variation. Nevertheless, the user can choose any combination of the slicers linked to the two calculation 
groups, Metric and Time calc.

In order to obtain this report, we created an additional calculation group named Metric, which 
includes the Sales Amount, Total Cost, Margin, and Sales Quantity calculation items. The expres-
sion for each calculation item just evaluates the corresponding measure, as shown in Figure 9-8 for the 
Sales Amount calculation item.

FIGURE 9-8 The Metric calculation group contains four calculation items; each one simply evaluates a correspond-
ing measure.

When there are multiple calculation groups in the same data model, it is important to defi ne in 
which order they should be applied by the DAX engine. The Precedence property of the calculation 
group defi nes the order of application: the fi rst calculation group applied is the one with the larger 
value. In order to obtain the desired result, we increased the Precedence property of the Time Intel-
ligence calculation group to 10, as shown in Figure 9-9. As a consequence, the engine applies the Time 
Intelligence calculation group before the Metric calculation group, which keeps the Precedence prop-
erty at the default value of zero. We discuss the precedence of calculation groups in more detail later in 
this chapter.
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FIGURE 9-9 The Precedence property defi nes the order in which each calculation group is applied to a measure.

The following DAX code includes the defi nition of each calculation item in the Metric 
calculation group:

-- 
-- Calculation Item: Margin
-- 
    [Margin]

-- 
-- Calculation Item: Sales Amount
-- 
    [Sales Amount]

-- 
-- Calculation Item: Sales Quantity
-- 
    [Sales Quantity]

-- 
-- Calculation Item: Total Cost
-- 
    [Total Cost]

These calculation items are not modifi ers of the original measure. Instead, they completely replace 
the original measure with a new one. To obtain this behavior, we omitted a reference to SELECTED-
MEASURE in the expression. SELECTEDMEASURE is used very often in calculation items, but it is not 
mandatory.
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This last example is useful to introduce the fi rst of the many complexities that we will need to 
address with calculation groups. If the user selects Quantity, then the report shows the quantity, but it 
still uses the same format strings (with two decimals) as the other measures. Because the Quantity mea-
sure is an integer, it would be useful to remove the decimal places or, in general, to adopt a different 
format string. We discussed earlier the fact that the presence of multiple calculation groups in a calcu-
lation requires the defi nition of a precedence order, as was the case in the previous example. These are 
the fi rst of several details to consider in order to create useful calculation groups.

 

Note If you are using Analysis Services, be mindful that adding a calculation group to a 
model is an operation that requires a refresh of the table corresponding to the calculation 
group in order to make the calculation items visible to the client. This may prove to be coun-
terintuitive because deploying measures does not require such an update—measures are vis-
ible to the clients just after the deployment. However, because calculation groups and items 
are presented to the client in tables and columns, after the deployment it is necessary to run 
a refresh operation to populate the internal structures of the tables and columns. In Power BI 
this operation will likely be handled automatically by the user interface—though this is pure 
speculation because calculation groups are not present in Power BI at the time of printing.

 

Understanding calculation groups

In the previous sections we focused on the use of calculation groups and how to implement them with 
Tabular Editor. In this section, we describe in more detail the properties and behavior of calculation 
groups and calculation items.

There are two entities: calculation groups and calculation items. A calculation group is a collection of 
calculation items, grouped together based on a user-defi ned criterion. For both calculation groups and 
calculation items, there are properties that the developer must set correctly. We introduce these entities 
and their properties here, providing more examples and details in the remaining part of this chapter.

A calculation group is a simple entity, defi ned by

 ■ The calculation group Name. This is the name of the table that represents the calculation group 
on the client side.

 ■ The calculation group Precedence. When there are multiple active calculation groups, a num-
ber that defi nes the precedence used to apply each calculation group to a measure reference.

 ■ The calculation group attribute Name. This is the name of the column that includes the calcula-
tion items, displayed to the client as unique items available in the column.

A calculation item is a much more sophisticated entity, and here is the list of its properties:

 ■ The calculation item Name. This becomes one value of the calculation group column. Indeed, a 
calculation item is like one row in the calculation group table.
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 ■ The calculation item Expression. A DAX expression that might contain special functions like 
SELECTEDMEASURE. This is the expression that defi nes how to apply the calculation item.

 ■ The sort order of the calculation item is defi ned by the Ordinal value. This property defi nes 
how the different calculation items are sorted when presented to the user. It is very similar to 
the sort-by-column feature of the data model. This feature is not available as of April 2019 but 
should be implemented before calculation groups are released.

 ■ Format String. If not specifi ed, a calculation item inherits the format string of its base measure. 
Nevertheless, if the modifi er changes the calculation, then it is possible to override the measure 
format string with the format of the calculation item.

The Format String property is important in order to obtain a consistent behavior of the measures in 
the model according to the calculation item being applied to them. For example, consider the follow-
ing calculation group containing two calculation items for time intelligence: year-over-year (YOY) is 
the difference between a selected period and the same period in the previous year; year-over-year 
percentage (YOY%) is the percentage of YOY over the amount in the same period in the previous year:

-- 
-- Calculation Item: YOY
-- 
    VAR CurrYear =
        SELECTEDMEASURE ()
    VAR PrevYear =
        CALCULATE ( 
            SELECTEDMEASURE (), 
            SAMEPERIODLASTYEAR ( 'Date'[Date] ) 
        )
    VAR Result = 
        CurrYear - PrevYear
    RETURN Result

-- 
-- Calculation Item: YOY%
-- 
    VAR CurrYear =
        SELECTEDMEASURE ()
    VAR PrevYear =
        CALCULATE ( 
            SELECTEDMEASURE (), 
            SAMEPERIODLASTYEAR ( 'Date'[Date] ) 
        )
    VAR Result =
        DIVIDE ( 
            CurrYear - PrevYear, 
            PrevYear 
        )
    RETURN Result
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The result produced by these two calculation items in a report is correct, but if the Format String 
property does not override the default format string, then YOY% is displayed as a decimal number 
instead of as a percentage, as shown in Figure 9-10.

FIGURE 9-10 The two calculation items YOY and YOY% share the same format as the Sales Amount measure.

The example shown in Figure 9-10 displays the YOY evaluation of the Sales Amount measure using 
the same format string as the original Sales Amount measure. This is the correct behavior to display 
a difference. However, the YOY% calculation item displays the same amount as a percentage of the 
value of the previous year. The number shown is correct, but for January one would expect to see −12% 
instead of −0.12. In this case the expected format string should be a percentage, regardless of the 
format of the original measure. To obtain the desired behavior, set the Format String property of the 
YOY% calculation item to percentage, overriding the behavior of the underlying measure. You can see 
the result in Figure 9-11. If the Format String property is not assigned to a calculation item, the existing 
format string is used.

FIGURE 9-11 The YOY% calculation item overrides the format of the Sales Amount measure displaying the value as 
a percentage.
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The format string can be defi ned using a fi xed format string or—in more complex scenarios—
by using a DAX expression that returns the format string. When one is writing a DAX expression, it 
becomes possible to refer to the format string of the current measure using the SELECTEDMEASURE-
FORMATSTRING function, which returns the format string currently defi ned for the measure. For 
example, if the model contains a measure that returns the currently selected currency and you want to 
include the currency symbol as part of the format string, you can use this code to append the currency 
symbol to the current format string:

SELECTEDMEASUREFORMATSTRING () & " " & [Selected Currency]

Customizing the format string of a calculation item is useful to preserve user experience consistency 
when browsing the model. However, a careful developer should consider that the format string oper-
ates on any measure used with the calculation item. When there are multiple calculation groups in a 
report, the result produced by these properties also depends on the calculation group precedence, as 
explained in a later section of this chapter.

Understanding calculation item application
So far, the description we gave of how a calculation item works has never been extremely precise. The 
reason is mainly educational: we wanted to introduce the concept of calculation items, without diving 
too deep into details that might be distracting. Indeed, we said that calculation items can be applied 
by the user using, for example, a slicer. A calculation item is applied by replacing measure references 
invoked when there is a calculation item active in the fi lter context. In this scenario, the calculation item 
rewrites the measure reference by applying the expression defi ned in the calculation item itself.

For example, consider the following calculation item:

-- 
-- Calculation Item: YTD
--
    CALCULATE ( 
        SELECTEDMEASURE (), 
        DATESYTD ( 'Date'[Date] ) 
    )

In order to apply the calculation item in an expression, you need to fi lter the calculation group. You 
can create this fi lter using CALCULATE, like in the following example; this is the same technique used by 
the client tool when using slicers and visuals:

CALCULATE (
    [Sales Amount], 
    'Time Intelligence'[Time calc] = "YTD"
)

There is nothing magical about calculation groups: They are tables, and as such they can be fi ltered 
by CALCULATE like any other table. When CALCULATE applies a fi lter to a calculation item, DAX uses 
the defi nition of the calculation item to rewrite the expression before evaluating it.
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Therefore, based on the defi nition of the calculation item, the previous code is interpreted as 
follows:

CALCULATE (
    CALCULATE ( 
        [Sales Amount], 
        DATESYTD ( 'Date'[Date] ) 
    ) 
)

 

Note Inside the inner CALCULATE, one can check with ISFILTERED whether the calculation 
item is fi ltered or not. In the example, we removed the outer fi lter on the calculation item for 
the sake of simplicity, to show that the calculation item has already been applied. Neverthe-
less, a calculation item retains its fi lters, and further sub-expressions might still perform the 
replacement of measures.

 

Despite being very intuitive in simple examples, this behavior hides some level of complexity. The 
application of a calculation item replaces a measure reference with the expression of the calculation 
item. Focus your attention on this last sentence: A measure reference is replaced. Without a measure 
reference, a calculation item does not apply any modifi cation. For example, the following code is not 
affected by any calculation item because it does not contain any measure reference:

CALCULATE (
    SUMX ( Sales, Sales[Quantity] * Sales[Net Price] ), 
    'Time Intelligence'[Time calc] = "YTD"
)

In this example, the calculation item does not perform any transformation because the code inside 
CALCULATE does not use any measure. The following code is the one executed after the application of 
the calculation item:

CALCULATE (
    SUMX ( Sales, Sales[Quantity] * Sales[Net Price] )
)

If the expression inside CALCULATE contains multiple measure references, all of them are replaced 
with the calculation item defi nition. For example, the expression in the following Cost Ratio YTD mea-
sure contains two measure references, Total Cost and Sales Amount:

CR YTD :=
CALCULATE (
    DIVIDE ( 
        [Total Cost], 
        [Sales Amount]
    ),
    'Time Intelligence'[Time calc] = "YTD"
)



 CHAPTER 9 Calculation groups 293

To obtain the actual code executed, replace the measure references with the expansion of the 
calculation item defi nition, as in the following CR YTD Actual Code measure:

CR YTD Actual Code :=
CALCULATE (
    DIVIDE ( 
        CALCULATE ( 
            [Total Cost], 
            DATESYTD ( 'Date'[Date] ) 
        ),
        CALCULATE ( 
            [Sales Amount], 
            DATESYTD ( 'Date'[Date] ) 
        ) 
    )
)

In this example, the code generated produces the same result as the next version in the CR YTD 
Simplifi ed measure, which is more intuitive:

CR YTD Simplified :=
CALCULATE (
    CALCULATE ( 
        DIVIDE ( 
            [Total Cost], 
            [Sales Amount]
        ),
        DATESYTD ( 'Date'[Date] ) 
    )
)

These three measures return the same result, as shown in Figure 9-12.

FIGURE 9-12 The CR YTD, CR YTD Actual Code, and CR YTD Simplifi ed measures produce the same result.
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Nevertheless, you must be very careful because the CR YTD Simplifi ed measure does not correspond 
to the actual code generated by the calculation item, which is the code in CR YTD Actual Code. In this 
very special case, the two versions are equivalent. However, in more complex scenarios the difference 
is signifi cant, and such a large difference can lead to unintended results that are extremely hard to fol-
low and understand. Let us analyze a couple of examples. In the fi rst example the Sales YTD 2008 2009 
measure has two nested CALCULATE functions: the outer CALCULATE sets a fi lter on the year 2008, 
whereas the inner CALCULATE sets a fi lter on the year 2009:

Sales YTD 2008 2009 :=
CALCULATE (
    CALCULATE ( 
        [Sales Amount], 
        'Date'[Calendar Year] = "CY 2009"
    ), 
    'Time Intelligence'[Time calc] = "YTD",
    'Date'[Calendar Year] = "CY 2008"
)

The outer CALCULATE fi lters the calculation item to the YTD value. Nevertheless, the application of 
the calculation item does not change the expression because the expression does not directly contain 
any measure. CALCULATE fi lters the calculation item, but its application does not lead to any modifi ca-
tions to the code.

Pay attention to the fact that the Sales Amount measure is within the scope of the inner CALCULATE. 
The application of a calculation item modifi es the measures in the current scope of the fi lter context; it 
does not affect nested fi lter context scopes. Those are handled by their own CALCULATE—or equiva-
lent code, such as CALCULATETABLE or context transitions—which may or may not retain the same 
fi lter on the calculation item.

When the inner CALCULATE applies its fi lter context, it does not change the fi lter status of the calcu-
lation item. Therefore, the engine fi nds that the calculation item is still fi ltered, and it remains fi ltered if 
no other CALCULATE changes it. Same as if it were a regular column. The inner CALCULATE contains a 
measure reference, and DAX performs the application of the calculation item. The resulting code cor-
responds to the defi nition of the Sales YTD 2008 2009 Actual Code measure:

Sales YTD 2008 2009 Actual Code :=
CALCULATE (
    CALCULATE ( 
        CALCULATE ( 
            [Sales Amount], 
            DATESYTD ( 'Date'[Date] ) 
        ),
        'Date'[Calendar Year] = "CY 2009"
    ), 
    'Date'[Calendar Year] = "CY 2008"
)

The result of these two measures is visible in Figure 9-13. The selection made by the slicer on the left 
applies to the matrix in the middle of the fi gure, which includes the Sales YTD 2008 2009 and Sales YTD 
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2008 2009 Actual Code measures. However, the selection of the year CY 2008 is overridden by CY 2009. 
This can be verifi ed by looking at the matrix on the right-hand side, which shows the Sales Amount 
measure transformed with the YTD calculation item for the CY 2008 and CY 2009 years. The numbers 
in the center matrix correspond to the CY 2009 column of the matrix on the right.

FIGURE 9-13 The Sales YTD 2008 2009 and Sales YTD 2008 2009 Actual Code measures produce the same result.

The DATESYTD function is applied when the fi lter context is fi ltering the year 2009, not 2008. 
Despite the calculation item being fi ltered along with the fi lter for the year 2008, its actual application 
took place in a different fi lter context, namely the inner fi lter context. The behavior is counterintuitive 
to say the least. The more complex the expression used inside CALCULATE, the harder it becomes to 
understand how the application works.

The behavior of calculation items leads to one very important best practice: You need to use 
calculation items to modify an expression if and only if this expression is a single measure. The previ-
ous example was only useful to introduce the rule; let us now analyze the best practice with a more 
complex expression. The next expression computes the number of working days only for the months 
where there are sales:

SUMX ( 
    VALUES ( 'Date'[Calendar Year month] ),
    IF ( 
        [Sales Amount] > 0, -- Measure reference
        [# Working Days]    -- Measure reference
    )
)

This calculation is useful to compute Sales Amount per working day considering only the months 
with sales. The following example uses this calculation in a more complex expression:

DIVIDE ( 
    [Sales Amount],  -- Measure reference
    SUMX ( 
        VALUES ( 'Date'[Calendar Year month] ),
        IF ( 
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            [Sales Amount] > 0, -- Measure reference
            [# Working Days]    -- Measure reference
        )
    )
)

If this expression is executed within an outer CALCULATE that changes the calculation to a YTD, the 
result is the following new formula that produces an unexpected result:

Sales WD YTD 2008 :=
CALCULATE (
    DIVIDE ( 
        [Sales Amount],  -- Measure reference
        SUMX ( 
            VALUES ( 'Date'[Calendar Year month] ),
            IF ( 
                [Sales Amount] > 0, -- Measure reference
                [# Working Days]    -- Measure reference
            )
        )
    ), 
    'Time Intelligence'[Time calc] = "YTD",
    'Date'[Calendar Year] = "CY 2008"
)

Intuitively, one would expect the previous expression to compute the Sales Amount measure per 
working days considering all the months before the current one. In other words, one would expect this 
code to be executed:

Sales WD YTD 2008 Expected Code :=
CALCULATE (
    CALCULATE ( 
        DIVIDE ( 
            [Sales Amount],  -- Measure reference
            SUMX ( 
                VALUES ( 'Date'[Calendar Year month] ),
                IF ( 
                    [Sales Amount] > 0, -- Measure reference
                    [# Working Days]    -- Measure reference
                )
            )
        ) , 
        DATESYTD ( 'Date'[Date] )
    ),
    'Date'[Calendar Year] = "CY 2008"
)

Nevertheless, you might have noticed that we have highlighted the three measure references with a 
few comments. This was not by chance. The application of a calculation item happens on the measure 
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references, not on the entire expression. Therefore, the code executed by replacing the measure refer-
ences with the calculation items active in the fi lter context is very different:

Sales WD YTD 2008 Actual Code :=
CALCULATE (
    DIVIDE ( 
        CALCULATE (
            [Sales Amount],
            DATESYTD ( 'Date'[Date] )
        ),
        SUMX ( 
            VALUES ( 'Date'[Calendar Year month] ),
            IF ( 
                CALCULATE (
                    [Sales Amount],
                    DATESYTD ( 'Date'[Date] )
                ) > 0,
                CALCULATE (
                    [# Working Days],
                    DATESYTD ( 'Date'[Date] )
                )
            )
        )
    ),
    'Date'[Calendar Year] = "CY 2008"
)

This latter version of the code produces an abnormal value for the number of working days because 
it sums the year-to-date of the number of working days for all the months visible in the current con-
text. The chances of producing an inaccurate result are extremely high. When an individual month 
is selected, the result (by pure luck) is the right one, whereas at the quarter and at the year levels it is 
hilariously wrong. This is shown in Figure 9-14.

FIGURE 9-14 Different versions of the Sales WD calculation computed for the all the quarters of 2008.

The Sales WD YTD 2008 Expected Code measure returns the correct number for every quarter, 
whereas the Sales WD YTD 2008 and Sales WD YTD 2008 Actual Code measures return a smaller value. 
Indeed, the number of working days in the denominator of the ratio is computed as the sum of the 
year-to-date number of working days for each month in the period.
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You can easily avoid this complexity by obeying the best practice: Use CALCULATE with calculation 
items only to invoke an individual measure. When one authors the Sales WD YTD 2008 Fixed measure 
that includes the full expression and uses the Sales WD YTD 2008 Fixed measure in a single CALCULATE 
function, the code is very different and easier to use:

--
-- Measure Sales WD
--
Sales WD :=
DIVIDE ( 
    [Sales Amount],
    SUMX ( 
        VALUES ( 'Date'[Calendar Year month] ),
        IF ( 
            [Sales Amount] > 0,
            [# Working Days]
        )
    )
)

--
-- Measure Sales WD YTD 2008 Fixed
-- New version of the Sales WD YTD 2008 measure that applies the YTD calculation item
--
Sales WD YTD 2008 Fixed :=
CALCULATE (
    [Sales WD],                             -- Measure reference
    'Time Intelligence'[Time calc] = "YTD",
    'Date'[Calendar Year] = "CY 2008"
)

In this case, the code generated by the application of the calculation item is much more intuitive:

Sales WD YTD 2008 Fixed Actual Code :=
CALCULATE (
    CALCULATE (
        [Sales WD],
        DATESYTD ( 'Date'[Date] )
    ),
    'Date'[Calendar Year] = "CY 2008"
)

In this latter example the fi lter provided by DATESYTD surrounds the entire expression, leading to 
the code that one intuitively expects from the application of the calculation item. The result of the Sales 
WD YTD 2008 Fixed and Sales WD YTD 2008 Fixed Actual Code measures is visible in Figure 9-14.

For very simple calculations containing simple expressions, it is possible to deviate from this best 
practice. However, when doing so, the developer must always think twice before creating any mea-
sure, because as soon as the complexity of the expression is no longer trivial, the chances of producing 
wrong calculations become very high.
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When using client tools like Power BI, you never have to worry about these details. Indeed, these 
tools make sure that calculation items get applied the right way because they always invoke single 
measures as part of the query they execute. Nevertheless, as a DAX developer, you will end up using 
calculation items as fi lters in CALCULATE. When you do that, pay attention to the expression used in 
CALCULATE. If you want to stay on the safe side, use calculation items in CALCULATE to modify a single 
measure. Never apply calculation items to an expression.

Finally, we suggest you learn calculation items by rewriting the expression manually, applying the 
calculation item, and writing down the complete code that will be executed. It is a mental exercise that 
proves very useful in understanding exactly what is happening inside the engine.

Understanding calculation group precedence
In the previous section we described how to use CALCULATE to apply a calculation item to a measure. 
It is possible to apply multiple calculation items to the same measure. Even though each calculation 
group can only have one active calculation item, the presence of multiple calculation groups can 
activate multiple calculation items at the same time. This happens when a user uses multiple slicers 
over different calculation groups, or when a CALCULATE function fi lters calculation items in different 
calculation groups. For example, at the beginning of this chapter we defi ned two calculation groups: 
one to defi ne the base measure and the other to defi ne the time intelligence calculation to apply to the 
base measure.

If there are multiple calculation items active in the current fi lter context, it is important to defi ne 
which calculation item is applied fi rst, by defi ning a set of precedence rules. DAX enforces this by making 
it mandatory to set the Precedence property in a calculation group, in models that have more than one 
calculation group. This section describes how to correctly set the Precedence property of a calculation 
group through examples where the defi nition of the precedence changes the result of the calculations.

To prepare the demonstration, we created two different calculation groups, each one containing 
only one calculation item:

-------------------------------------------------------
-- Calculation Group: 'Time Intelligence'[Time calc]
-------------------------------------------------------

-- 
-- Calculation Item: YTD
--
    CALCULATE ( 
        SELECTEDMEASURE (), 
        DATESYTD ( 'Date'[Date] ) 
    )
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-------------------------------------------------------
-- Calculation Group: 'Averages'[Averages]
-------------------------------------------------------

-- 
-- Calculation Item: Daily AVG
--
    DIVIDE (
        SELECTEDMEASURE (),
        COUNTROWS ( 'Date' )
    )

YTD is a regular year-to-date calculation, whereas Daily AVG computes the daily average by 
dividing the selected measure by the number of days in the fi lter context. Both calculation items work 
just fi ne, as shown in Figure 9-15, where we use two measures to invoke the two calculation items 
individually:

YTD := 
CALCULATE ( 
    [Sales Amount], 
    'Time Aggregation'[Aggregation] = "YTD" 
)

Daily AVG := 
CALCULATE ( 
    [Sales Amount], 
    'Averages'[Averages] = "Daily AVG" 
)

FIGURE 9-15 Both Daily AVG and YTD calculation items work just fi ne when invoked individually in separate 
measures.

The scenario suddenly becomes more complex when both calculation items are used at the same 
time. Look at the following Daily YTD AVG measure defi nition:
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Daily YTD AVG := 
CALCULATE (
    [Sales Amount], 
    'Time Intelligence'[Time calc] = "YTD",
    'Averages'[Averages] = "Daily AVG" 
)

The measure invokes both calculation items at the same time, but this raises the issue of precedence. 
Should the engine apply YTD fi rst and Daily AVG later, or the other way around? In other words, which 
of these two expressions should be evaluated?

--
--  YTD is applied first, and then DIVIDE
--
DIVIDE (
    CALCULATE ( 
        [Sales Amount],
        DATESYTD ( 'Date'[Date] ) 
    ),
    COUNTROWS ( 'Date' )
)

--
--  DIVIDE is applied first, and then YTD
--
CALCULATE ( 
    DIVIDE (
        [Sales Amount],
        COUNTROWS ( 'Date' )
    ),
    DATESYTD ( 'Date'[Date] ) 
)

It is likely that the second expression is the correct one. Nevertheless, without further information, 
DAX cannot choose between the two. Therefore, the developer must defi ne the correct order of 
application of the calculation groups.

The order of application depends on the Precedence property in the two calculation groups: The 
calculation group with the highest value is applied fi rst; then the other calculation groups are applied 
according to their Precedence value in a descending order. Figure 9-16 shows the wrong result pro-
duced with the following settings:

 ■ Time Intelligence calculation group—Precedence: 0

 ■ Averages calculation group—Precedence: 10
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FIGURE 9-16 The Daily YTD AVG measure does not produce an accurate result.

The value of the Daily YTD AVG is clearly wrong in all the months displayed but January. Let us ana-
lyze what happened in more depth. Averages has a precedence of 10; therefore, it is applied fi rst. The 
application of the Daily AVG calculation item leads to this expression corresponding to the Daily YTD 
AVG measure reference:

CALCULATE ( 
    DIVIDE (
        [Sales Amount],
        COUNTROWS ( 'Date' )
    ),
   'Time Intelligence'[Time calc] = "YTD"
)

At this point, DAX activates the YTD calculation item from the Time Intelligence calculation group. 
The application of YTD rewrites the only measure reference in the formula, which is Sales Amount. 
Therefore, the fi nal code corresponding to the Daily YTD AVG measure becomes the following:

DIVIDE (
    CALCULATE ( 
        [Sales Amount],
        DATESYTD ( 'Date'[Date] ) 
    ),
    COUNTROWS ( 'Date' )
)

Consequently, the number shown is obtained by dividing the Sales Amount measure computed 
using the YTD calculation item, by the number of days in the displayed month. For example, the value 
shown in December is obtained by dividing 9,353,814,87 (YTD of Sales Amount) by 31 (the number of 
days in December). The number should be much lower because the YTD variation should be applied to 
both the numerator and the denominator of the DIVIDE function used in the Daily AVG 
calculation item.
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To solve the issue, the YTD calculation item must be applied before Daily AVG. This way, the 
transformation of the fi lter context for the Date column occurs before the evaluation of COUNTROWS 
over the Date table. In order to obtain this, we modify the Precedence property of the Time Intelligence 
calculation group to 20, obtaining the following settings:

 ■ Time Intelligence calculation group—Precedence: 20

 ■ Averages calculation group—Precedence: 10

Using these settings, the Daily YTD AVG measure returns the correct values, as shown in Figure 9-17.

FIGURE 9-17  The Daily YTD AVG measure produces the right result.

This time, the two application steps are the following: DAX fi rst applies the YTD calculation from the 
Time Intelligence calculation group, changing the expression to the following:

CALCULATE (
    CALCULATE ( 
        [Sales Amount],
        DATESYTD ( 'Date'[Date] ) 
    ),
    'Averages'[Averages] = "Daily AVG" 
)

Then, DAX applies the Daily AVG calculation item from the Averages calculation group, replacing 
the measure reference with the DIVIDE function and obtaining the following expression:

CALCULATE ( 
    DIVIDE (
        [Sales Amount],
        COUNTROWS ( 'Date' )
    ),
    DATESYTD ( 'Date'[Date] ) 
)
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The value displayed in December now considers 365 days in the denominator of DIVIDE, thus 
obtaining the correct number. Before moving further, please consider that, in this example, we fol-
lowed the best practice of using calculation items with a single measure. Indeed, the fi rst call comes 
from the visual of Power BI. However, one of the two calculation items rewrote the Sales Amount mea-
sure in such a way that the problem arose. In this scenario, following the best practices is not enough. 
It is mandatory that a developer understand and defi ne the precedence of application of calculation 
groups very well.

All calculation items in a calculation group share the same precedence. It is impossible to defi ne dif-
ferent precedence values for different calculation items within the same group.

The Precedence property is an integer value assigned to a calculation group. A higher value means 
a higher precedence of application; the calculation group with the higher precedence is applied fi rst. 
In other words, DAX applies the calculation groups according to their Precedence value sorted in a 
descending order. The absolute value assigned to Precedence does not mean anything. What matters 
is how it compares with the Precedence of other calculation groups. There cannot be two calculation 
groups in a model with the same Precedence.

Because assigning different Precedence values to multiple calculation groups is mandatory, you 
must pay attention making this choice when you design a model. Choosing the right Precedence 
upfront is important because changing the Precedence of a calculation group might affect the exist-
ing reports of a model already deployed in production. When you have multiple calculation groups 
in a model, you should always spend time verifying that the results of the calculations are the results 
expected with any combination of calculation items. The chances of making mistakes in the defi nition 
of the precedence values is quite high without proper testing and validation.

Including and excluding measures from calculation items
There are scenarios where a calculation item implements a variation that does not make sense on all 
the measures. By default, a calculation item applies its effects on all the measures. Nevertheless, the 
developer might want to restrict which measures are affected by a calculation item.

One can write conditions in DAX that analyze the current measure evaluated in the model by using 
either ISSELECTEDMEASURE or SELECTEDMEASURENAME. For example, consider the requirement of 
restricting the measures affected by the Daily AVG calculation item so that a measure computing a 
percentage is not transformed into a daily average. The ISSELECTEDMEASURE function returns True 
if the measure evaluated by SELECTEDMEASURE is included in the list of measures specifi ed in the 
arguments:

-------------------------------------------------------
-- Calculation Group: 'Averages'[Averages]
-------------------------------------------------------

-- 
-- Calculation Item: Daily AVG
--
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IF (
    ISSELECTEDMEASURE (
        [Sales Amount],
        [Gross Amount],
        [Discount Amount],
        [Sales Quantity],
        [Total Cost],
        [Margin]
    ),
    DIVIDE (
        SELECTEDMEASURE (),
        COUNTROWS ( 'Date' )
    )
)

As you can see, the code specifi es the measure on which to compute the daily average, returning blank 
when the Daily AVG calculation item is applied to any other measure. Now if the requirement is just to 
exclude specifi c measures, including any other measure by default, the code can be written this way:

-------------------------------------------------------
-- Calculation Group: 'Averages'[Averages]
-------------------------------------------------------

-- 
-- Calculation Item: Daily AVG
--
IF (
    NOT ISSELECTEDMEASURE ( [Margin %] ),
    DIVIDE (
        SELECTEDMEASURE (),
        COUNTROWS ( 'Date' )
    )
)

In both cases the Daily AVG calculation item excludes the calculation for the Margin % measure, as 
shown in Figure 9-18.

FIGURE 9-18 The Daily AVG calculation item is not applied to Margin %.
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Another function that can be used to analyze the selected measure in a calculation item expression 
is SELECTEDMEASURENAME, which returns a string instead of a Boolean value. This function may be 
used instead of ISSELECTEDMEASURE, as in the following example:

-------------------------------------------------------
-- Calculation Group: 'Averages'[Averages]
-------------------------------------------------------

-- 
-- Calculation Item: Daily AVG
--
IF (
    NOT ( SELECTEDMEASURENAME () = "Margin %" ),
    DIVIDE (
        SELECTEDMEASURE (),
        COUNTROWS ( 'Date' )
    )
)

The result would be the same, but the ISSELECTEDMEASURE solution is preferable for several 
reasons:

 ■ If the measure name is misspelled using a comparison with SELECTEDMEASURENAME, the DAX 
code simply return False without raising an error.

 ■ If the measure name is misspelled using ISSELECTEDMEASURE, the expression fails with the 
error Invalid input arguments for ISSELECTEDMEASURE.

 ■ If a measure is renamed in the model, all the expressions using ISSELECTEDMEASURE are 
automatically renamed in the model editor (formula fi xup), whereas the strings compared to 
SELECTEDMEASURENAME must be updated manually.

The SELECTEDMEASURENAME function should be considered when the business logic of a calcula-
tion item must apply a transformation based on an external confi guration. For example, the function 
might be useful when there is a table with a list of measures that should enable a behavior in a calcula-
tion item so that the model has an external confi guration that can be modifi ed without requiring an 
update of the DAX code.

Understanding sideways recursion

DAX calculation items do not provide full recursion. However, there is a limited form of recursion avail-
able, which is called sideways recursion. We describe this complex topic through examples. Let us start 
by understanding what recursion is and why it is important to discuss it. Recursion might occur when a 
calculation item refers to itself, leading to an infi nite loop in the application of calculation items. Let us 
elaborate on this.
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Consider a Time Intelligence calculation group with two calculation items defi ned as follows:

-------------------------------------------------------
-- Calculation Group: 'Time Intelligence'[Time calc]
-------------------------------------------------------

-- 
-- Calculation Item: YTD
--
    CALCULATE ( 
        SELECTEDMEASURE (), 
        DATESYTD ( 'Date'[Date] ) 
    )

-- 
-- Calculation Item: SPLY
--
    CALCULATE ( 
        SELECTEDMEASURE (), 
        SAMEPERIODLASTYEAR ( 'Date'[Date] ) 
    )

The requirement is to add a third calculation item that computes the year-to-date in the previous 
year (PYTD). As you learned in Chapter 8, “Time intelligence calculations,” this can be obtained by mix-
ing two time intelligence functions: DATESYTD and SAMEPERIODLASTYEAR. The following calculation 
item solves the scenario:

-- 
-- Calculation Item: PYTD
--
    CALCULATE ( 
        SELECTEDMEASURE (), 
        DATESYTD ( SAMEPERIODLASTYEAR ( 'Date'[Date] ) )
    )

Given the simplicity of the calculation, this solution is already optimal. Nevertheless, as a mind chal-
lenge we can try to author the same code in a different way. Indeed, there already is a YTD calculation 
item that computes the year-to-date in place; therefore, one could think of using the calculation item 
instead of mixing time intelligence calculations within the same formula. Look at the following defi ni-
tion of the same PYTD calculation item:

-- 
-- Calculation Item: PYTD
--
    CALCULATE ( 
        SELECTEDMEASURE (), 
        SAMEPERIODLASTYEAR ( 'Date'[Date] ),
        'Time Intelligence'[Time calc] = "YTD"
    )
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The calculation item achieves the same result as the previous defi nition, but using a different tech-
nique. SAMEPERIODLASTYEAR moves the fi lter context back to the previous year, while the year-to-
date calculation is obtained by applying an existing calculation item in the Time calc calculation group: 
YTD. As previously noted, in this example the code is less readable and needlessly more complex. That 
said, you can easily imagine that in a more complex scenario the ability to invoke previously defi ned 
calculation items might come very handy—to avoid repeating the same code multiple times in your 
measures.

This is a powerful mechanism to defi ne complex calculations. It comes with some level of complexity 
that needs to be well understood: recursion. As you have seen in the PYTD calculation item, it is pos-
sible to defi ne a calculation item based on another calculation item from the same calculation group. In 
other words, inside a calculation group certain items can be defi ned in terms of other items of the same 
calculation group. If the feature were available without any restriction, this would lead to extremely 
complex situations where calculation item A depends on B, which depends on C, which in turn can 
depend on A. The following fi ctitious example demonstrates the issue:

-------------------------------------------------------
-- Calculation Group: Infinite[Loop]
-------------------------------------------------------

-- 
-- Calculation Item: Loop A
--
    CALCULATE ( 
        SELECTEDMEASURE (), 
        Infinite[Loop] = "Loop B"
    )

-- 
-- Calculation Item: Loop B
--
    CALCULATE ( 
        SELECTEDMEASURE (), 
        Infinite[Loop] = "Loop A"
    )

If used in an expression like in the following example, DAX would not be able to apply the 
calculation items, because A requires the application of B, which in turn requires A, and so on:

CALCULATE ( 
    [Sales Amount],
    Infinite[Loop] = "Loop A"
)

Some programming languages allow similar circular dependencies to be used in the defi nition of 
expressions—typically in functions—leading to recursive defi nitions. A recursive function defi nition is a 
defi nition where the function is defi ned in terms of itself. Recursion is extremely powerful, but it is also 
extremely complex for developers writing code and for the optimizer looking for the best execution 
path.
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For these reasons, DAX does not allow the defi nition of recursive calculation items. In DAX, a devel-
oper can reference another calculation item of the same calculation group, but without referencing 
the same calculation item twice. In other words, it is possible to use CALCULATE to invoke a calculation 
item, but the calculation item invoked cannot directly or indirectly invoke the original calculation item. 
This feature is called sideways recursion. Its goal is not to implement full recursion; Instead, it aims at 
reusing complex calculation items without providing the full power (and complexity) of recursion.

 

Note If you are familiar with the MDX language, you should be aware that MDX supports 
both sideways recursion and full recursion. These capabilities are part of the reasons MDX 
is more complex a language than DAX. Moreover, full recursion oftentimes leads to bad 
performance. For these reasons, DAX does not support full recursion by design.

 

Be mindful that recursion might also occur because a measure sets a fi lter on a calculation item, 
not only between calculation items. For example, consider the following defi nitions of measures (Sales 
Amount, MA, MB) and calculation items (A and B):

--
-- Measures definition
--
Sales Amount := SUMX ( Sales, Sales[Quantity] * Sales[Net Price] )
MA := CALCULATE ( [Sales Amount], Infinite[Loop] = "A" )
MB := CALCULATE ( [Sales Amount], Infinite[Loop] = "B" )

-------------------------------------------------------
-- Calculation Group: Infinite[Loop]
-------------------------------------------------------

-- 
-- Calculation Item: A
--
    [MB]

-- 
-- Calculation Item: B
--
    [MA]

The calculation items do not reference each other. Instead, they reference a measure that, in turn, 
references the calculation items, generating an infi nite loop. We can see this happening by following 
the calculation item application step by step. Consider the following expression:

CALCULATE ( 
    [Sales Amount], 
    Infinite[Loop] = "A" 
)
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The application of calculation item A produces the following result:

CALCULATE (
    CALCULATE ( [MB] )
)

However, the MB measure internally references both Sales Amount and calculation item B; it 
corresponds to the following code:

CALCULATE (
    CALCULATE (
        CALCULATE ( 
            [Sales Amount], 
            Infinite[Loop] = "B" 
        )
    )
)

At this point, the application of calculation item B produces the following result:

CALCULATE (
    CALCULATE (
        CALCULATE ( 
            CALCULATE ( [MA] ) 
        )
    )
)

Again, the MA measure internally references Sales Amount and calculation item A, and corresponds 
to the following code:

CALCULATE (
    CALCULATE (
        CALCULATE ( 
            CALCULATE ( 
                CALCULATE ( 
                    [Sales Amount], 
                    Infinite[Loop] = "A" 
                )
            ) 
        )
    )
)

Now we are back to the initial expression and we potentially enter into an infi nite loop of calculation 
items applied to the expression—although the calculation items do not reference each other. Instead, 
they reference a measure that, in turn, references the calculation items. The engine is smart enough to 
detect that, in this case, an infi nite loop is present. Therefore, DAX throws an error.
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Sideways recursion can lead to very complex expressions that are hard to read and likely to produce 
unexpected results. Most of the complexity of calculation items with sideways recursion is seen when 
there are measures that internally apply calculation items with CALCULATE—all the while users change 
the calculation item through the user interface of the tool, like using a slicer in Power BI.

Our suggestion is to limit the use of sideways recursion in your code as much as you can, though 
this might mean repeating the same code in multiple places. Only in hidden calculation groups can you 
safely rely on sideways recursion, so that they can be managed by code but not by users. Keep in mind 
that Power BI users can defi ne their own measures in a report, and, unaware of a complex topic like 
recursion, they might generate errors without properly understanding the reason.

Using the best practices

As we said in the introduction, there are only two best practices to follow to avoid encountering issues 
with calculation items:

 ■ Use calculation items to modify the behavior of expressions consisting of one measure only. 
Never use calculation items to change the behavior of more complex expressions.

--
--  This is a BEST PRACTICE 
--
SalesPerWd :=
CALCULATE ( 
    [Sales Amount],                          -- Single measure. This is good
    'Time Intelligence'[Time calc] = "YTD"
)

--
--  This is BAD PRACTICE – do not do this!
--
SalesPerWd :=
CALCULATE ( 
    SUMX ( Customer, [Sales Amount] ),       -- Complex expression, it is not a single
    'Time Intelligence'[Time calc] = "YTD"              -- measure reference
)

 ■ Avoid using sideways recursion in any calculation group that remains public and available to 
users. You can safely use sideways recursion in hidden calculation groups. Still, if you use side-
ways recursion, pay attention not to introduce full recursion, which would produce an error as a 
result.

Conclusions

Calculation groups are an extremely powerful tool to simplify the building of complex models. By 
letting the developer defi ne variations of measures, calculation groups provide a very compact way of 
generating hundreds of measures without duplicating code. Moreover, users love calculation groups 
because they have the option of creating their own combination of calculations.
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As a DAX developer, you should understand their power and their limitations. These are the lessons 
included in this chapter:

 ■ Calculation groups are sets of calculation items.

 ■ Calculation items are variations of a measure. By using the SELECTEDMEASURE function, calcu-
lation items have the option of changing the way a calculation goes.

 ■ A calculation item can override the expression and the format string of the current measure.

 ■ If multiple calculation groups are being used in a model, the developer must defi ne the order of 
application of the calculation items to disambiguate their behavior.

 ■ Calculation items are applied to measure references, not to expressions. Using a calculation 
item to change the behavior of an expression not consisting of a single measure reference is 
likely to produce unexpected results. Therefore, it is a best practice to only apply calculation 
items to expressions made up of a single measure reference.

 ■ A developer can use sideways recursion in the defi nition of a calculation item, but this suddenly 
increases the complexity of the whole expression. The developer should limit the use of side-
ways recursion to hidden calculation groups and avoid sideways recursion in calculation groups 
that are visible to users.

 ■ Following the best practices is the easiest way to avoid the complexity involved in calculation 
groups.

Finally, keep in mind that calculation groups are a very recent addition to the DAX language. This is 
a very powerful feature, and we just started discovering the many uses of calculation groups. We will 
update the web page mentioned in the introduction of this chapter with references to new articles and 
blog posts where you can continue to learn about calculation groups.
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Working with the fi lter context

In the previous chapters you learned how to create fi lter contexts to perform advanced calculations. 
For example, in the time intelligence chapter, you learned how to mix time intelligence calculations 
to provide a comparison of different periods. In Chapter 9, “Calculation groups,” you learned how to 
simplify the user experience and the DAX code using calculation groups. In this chapter, you learn 
many functions that read the state of the current fi lter context, in order to change the behavior of 
your formulas according to existing selections and fi lters. These functions, though powerful, are not 
frequently used. Nevertheless, a correct understanding of these functions is needed to create measures 
that work well in different reports rather than just in the report where they were used the fi rst time.

A formula might work or not depending on how the fi lter context is set. For example, you might 
write a formula that works correctly at the month level but returns an inaccurate result at the year level. 
Another example would be the ranking of a customer against all other customers. That formula works 
if a single customer is selected in the fi lter context, but it would return an incorrect result if multiple 
customers were visible. Therefore, a measure designed to work in any report should inspect the fi lter 
context prior to returning a value. If the fi lter context satisfi es the requirements of the formula, then it 
can return a meaningful value. Otherwise, if the fi lter context contains fi lters that are not compatible 
with the code, then returning a blank is a better choice.

Be mindful that no formula should ever return an incorrect value. It is always better to return no 
value than to compute an incorrect value. Users are expected to be able to browse your model without 
any previous knowledge of the internals of the code. As a DAX author, you are responsible for making 
sure your code works in any situation.

For each function introduced in this chapter, we show several scenarios where it might be useful and 
logical to use the function itself. But your scenario is surely different from any of our examples. Thus, 
when reading about these functions, try to fi gure out how they could improve the features of your 
model.

Besides, in this chapter we also introduce two important concepts: data lineage and the TREATAS 
function. Data lineage is an intuitive concept you have been using so far without a complete explana-
tion. In this chapter we go deeper, describing its behavior and several scenarios where it is useful to 
consider it.
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Using HASONEVALUE and SELECTEDVALUE

As outlined in the introduction, many calculations provide meaningful values based on the current 
selection. Nevertheless, the same calculation on a different selection provides incorrect fi gures. As an 
example, look at the following formula computing a simple quarter-to-date (QTD) of the sales amount:

QTD Sales := 
CALCULATE ( 
    [Sales Amount], 
    DATESQTD ( 'Date'[Date] )
)

As you can see in Figure 10-1, the code works well for months and quarters, but at the year level 
(CY 2007) it produces a result stating that the QTD value of Sales Amount for 2017 is 2,731,424.16.

FIGURE 10-1 QTD Sales reports values at the year level too, but the numbers might confuse some users.

Actually, the value reported by QTD Sales at the year level is the value of the last quarter of the year, 
which corresponds to the QTD Sales value of December. One might argue that—at the year level—the 
value of QTD does not make sense. To be correct, the value should not appear at the quarter level. 
Indeed, a QTD aggregation makes sense at the month level and below, but not starting at the quarter 
level and above. In other words, the formula should report the value of QTD at the month level and 
blank the value otherwise.
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In such a scenario, the function HASONEVALUE becomes useful. For example, to remove the total at 
the quarter level and above, it is enough to detect multiple months selected. This is the case at the year 
and quarter levels, whereas at the month level there is only one month selected. Thus, protecting the 
code with an IF statement provides the desired behavior. The following code does the job:

QTD Sales := 
IF ( 
    HASONEVALUE ( 'Date'[Month] ),
    CALCULATE ( 
        [Sales Amount], 
        DATESQTD ( 'Date'[Date] )
    )
)

The result of this new formula is visible in Figure 10-2.

FIGURE 10-2 Protecting QTD Sales with HASONEVALUE lets you blank undesired values.

This fi rst example is already an important one. Instead of just leaving the calculation “as is,” we 
decided to go one step further and question exactly “when” the calculation produces a value that 
makes sense. If it turns out that a certain formula does not produce accurate results in a fi lter 
context, it is better to verify whether the fi lter context satisfi es the minimum requirements and 
operate accordingly.

In Chapter 7, “Working with iterators and with CALCULATE,” you saw a similar scenario when you 
learned about the RANKX function. There, we had to produce a ranking of the current customer 
against all other customers, and we used HASONEVALUE to guarantee that such ranking is only 
produced when a single customer is selected in the current fi lter context.
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Time intelligence is a scenario where HASONEVALUE is frequently used because many aggregations—
like YTD, for example—only make sense when the fi lter context is fi ltering one quarter, one month, 
or one specifi c time period. In all other cases, the formula should avoid returning a value and should 
return BLANK instead.

Another common scenario where HASONEVALUE is useful is to extract one selected value from 
the fi lter context. There used to be many scenarios where this could be useful, but with the advent of 
calculation groups, their number is much lower. We will describe a scenario performing some sort of 
what-if analysis. In such a case, the developer typically builds a parameter table that lets the user select 
one value through a slicer; then, the code uses this parameter to adjust the calculation.

For example, consider evaluating the sales amount by adjusting the values of previous years based 
on the infl ation rate. In order to perform the analysis, the report lets the user select a yearly infl ation 
rate that should be used from each transaction date up to today. The infl ation rate is a parameter of the 
algorithm. A solution to this scenario is to build a table with all the values that a user can select. In our 
example, we created a table with all the values from 0% to 20% with a step of 0.5%, obtaining the table 
you can partially see in Figure 10-3.

FIGURE 10-3 Infl ation contains all the values between 0% and 20% with a step of 0.5%.

The user selects the desired value with a slicer; then the formula needs to apply the selected infl a-
tion rate for all the years from the transaction date up to the current date. If the user does not perform 
a selection or if they select multiple values, then the formula should use a default infl ation rate of 0% to 
report the actual sales amount.

The fi nal report looks like the one in Figure 10-4.
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FIGURE 10-4 The Infl ation parameter controls the multiplier of previous years.

 

Note The What-If parameter feature in Power BI generates a table and a slicer using the 
same technique described here.

 

There are several interesting notes about this report:

 ■ A user can select the infl ation rate to apply through the top-left slicer.

 ■ The report shows the year used to perform the adjustment, reporting the year of the last sale in 
the data model in the top-right label.

 ■ Infl ation Adjusted Sales multiplies the sales amount of the given year by a factor that depends 
on the user-selected infl ation.

 ■ At the grand total level, the calculation needs to apply a different multiplier to each year.

The code for the reporting year label is the simplest calculation in the report; it only needs to 
retrieve the year of the maximum order date from the Sales table:

Reporting year := "Reporting year: " & YEAR ( MAX ( Sales[Order Date] ) )
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Similarly, one could retrieve the selected user infl ation by using MIN or MAX, because when the 
user fi lters one value with the slicer, both MIN and MAX return the same value—that is, the only 
value selected. Nevertheless, a user might make an invalid selection by fi ltering multiple values or 
by applying no fi lter at all. In that case, the formula needs to behave correctly and still provide a 
default value.

Thus, a better option is to check with HASONEVALUE whether the user has actively fi ltered a single 
value with the slicer, and have the code behave accordingly to the HASONEVALUE result:

User Selected Inflation :=
IF (
    HASONEVALUE ( 'Inflation Rate'[Inflation] ),
    VALUES ( 'Inflation Rate'[Inflation] ),
    0
)

Because this pattern is very common, DAX also offers an additional choice. The SELECTEDVALUE 
function provides the behavior of the previous code in a single function call:

User Selected Inflation := SELECTEDVALUE ( 'Inflation Rate'[Inflation], 0 )

SELECTEDVALUE has two arguments. The second argument is the default returned in case there is 
more than one element selected in the column passed as the fi rst argument.

Once the User Selected Infl ation measure is in the model, one needs to compute the multiplier for 
the selected year. If the last year in the model is considered the year to use for the adjustment, then the 
multiplier needs to iterate over all the years between the last year and the selected year performing the 
multiplication of 1+Infl ation for each year:

Inflation Multiplier :=
VAR ReportingYear =
    YEAR ( CALCULATE ( MAX ( Sales[Order Date] ), ALL ( Sales ) ) )
VAR CurrentYear =
    SELECTEDVALUE ( 'Date'[Calendar Year Number] )
VAR Inflation = [User Selected Inflation]
VAR Years =
    FILTER (
        ALL ( 'Date'[Calendar Year Number] ),
        AND (
            'Date'[Calendar Year Number] >= CurrentYear,
            'Date'[Calendar Year Number] < ReportingYear
        )
    )
VAR Multiplier =
    MAX ( PRODUCTX ( Years, 1 + Inflation ), 1 )
RETURN
    Multiplier



 CHAPTER 10 Working with the fi lter context 319

The last step is to use the multiplier on a year-by-year basis. Here is the code of Infl ation Adjusted 
Sales:

Inflation Adjusted Sales :=
SUMX (
    VALUES ( 'Date'[Calendar Year] ),
    [Sales Amount] * [Inflation Multiplier]
)

Introducing ISFILTERED and ISCROSSFILTERED

Sometimes the goal is not to gather a single value from the fi lter context; instead, the goal is to check 
whether a column or a table has an active fi lter on it. The reason one might want to check for the pres-
ence of a fi lter is usually to verify that all the values of a column are currently visible. In the presence of 
a fi lter, some values might be hidden and the number—at that point—might be inaccurate.

A column might be fi ltered because there is a fi lter applied to it or because some other column is 
being fi ltered, and therefore there is an indirect fi lter on the column. We can elaborate on this with a 
simple example:

RedColors := 
CALCULATE ( 
    [Sales Amount],
    'Product'[Color] = "Red"
)

During the evaluation of Sales Amount, the outer CALCULATE applies a fi lter on the Product[Color] 
column. Consequently, Product[Color] is fi ltered. There is a specifi c function in DAX that checks whether 
a column is fi ltered or not: ISFILTERED. ISFILTERED returns TRUE or FALSE, depending on whether the 
column passed as an argument has a direct fi lter on it or not. When ISFILTERED receives a table as an 
argument, it returns TRUE if any columns of the table are being fi ltered directly; otherwise, it returns 
FALSE.

Although the fi lter is on Product[Color], all the columns of the Product table are indirectly 
fi ltered. For example, the Brand column only shows the brands that have at least one red product. 
Any brand with no red products will not be visible because of the fi lter on the color column. Apart 
from Product[Color], all the other columns of the Product table have no direct fi lter. Nevertheless, their 
visible values are limited. Indeed, all the columns of Product are cross-fi ltered. A column is cross-fi ltered 
if there is a fi lter that may reduce its set of visible values, either a direct or an indirect fi lter. The function 
to use to check whether a column is cross-fi ltered or not is ISCROSSFILTERED.

It is important to note that if a column is fi ltered, it is also cross-fi ltered. The opposite does not hold 
true: A column can be cross-fi ltered even though it is not fi ltered. Moreover, ISCROSSFILTERED works 
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either with a column or with a table. Indeed, whenever any column of a table is cross-fi ltered, all the 
remaining columns of the table are cross-fi ltered too. Therefore, ISCROSSFILTERED should be used with 
a table rather than with a column. You might still fi nd ISCROSSFILTERED used with a column because—
originally—ISCROSSFILTERED used to only work with columns. Only later was ISCROSSFILTERED 
introduced for tables. Thus, some old code might still only use ISCROSSFILTERED with a column.

Because fi lters work over the entire data model, a fi lter on the Product table also affects the related 
tables. Thus, the fi lter on Product[Color] applies its effect to the Sales table too. Therefore, any column 
in the Sales table is cross-fi ltered by the fi lter on Product[Color].

To demonstrate the behavior of these functions, we used a slightly different model than the usual 
model used in the rest of the book. We removed some tables, and we upgraded the relationship 
between Sales and Product using bidirectional cross-fi ltering. You can see the resulting model in 
Figure 10-5.

FIGURE 10-5 In this model the relationship between Sales and Product is bidirectional.

In this model, we authored this set of measures:

Filter Gender := ISFILTERED ( Customer[Gender] )
Cross Filter Customer := ISCROSSFILTERED ( Customer )
Cross Filter Sales := ISCROSSFILTERED ( Sales )
Cross Filter Product := ISCROSSFILTERED ( 'Product' )
Cross Filter Store := ISCROSSFILTERED ( Store )
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Finally, we projected all the measures in a matrix with Customer[Continent] and Customer[Gender] 
on the rows. You can see the result in Figure 10-6.

FIGURE 10-6 The matrix shows the behavior of ISFILTERED and ISCROSSFILTERED.

Here are a few considerations about the results:

 ■ Customer[Gender] is only fi ltered on the rows where there is an active fi lter on 
Customer[Gender]. At the subtotal level—where the fi lter is only on Customer[Continent]—the 
column is not fi ltered.

 ■ The entire Customer table is cross-fi ltered when there is a fi lter on either Customer[Continent] or 
Customer[Gender].

 ■ The same applies to the Sales table. The presence of a fi lter on any column of the Customer 
table applies a cross-fi lter on the Sales table because Sales is on the many-side of a many-to-
one relationship with Customer.

 ■ Store is not cross-fi ltered because the fi lter on Sales does not propagate to Customer. Indeed, 
the relationship between Sales and Store is unidirectional, so the fi lter does not propagate from 
Sales to Store.

 ■ Because the relationship between Sales and Product is bidirectional, then the fi lter on Sales 
propagates to Product. Therefore, Product is cross-fi ltered by any fi lter in other tables of this 
data model.

ISFILTERED and ISCROSSFILTERED are not frequently used in DAX expressions. They are used when 
performing advanced optimization by checking the set of fi lters on a column—to make the code follow 
different paths depending on the fi lters. Another common scenario is when working with hierarchies, 
as we will show in Chapter 11, “Handling hierarchies.”
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Beware that one cannot rely on the presence of a fi lter to determine whether all the values of a 
column are visible. In fact, a column can be both fi ltered and cross-fi ltered but still show all the values. 
A simple measure demonstrates this:

Test := 
CALCULATE ( 
    ISFILTERED ( Customer[City] ), 
    Customer[City] <> "DAX" 
)

There is no city named DAX in the Customer table. Thus, the fi lter does not have any effect on the 
Customer table because it shows all the rows. Therefore, Customer[City] shows all the possible values of 
the column, even though a fi lter is active on the same column and the Test measure returns TRUE.

To check whether all the possible values are visible in a column or in a table, the best option is to 
count the rows under different contexts. In this case, there are some important details to learn, which 
we discuss in the following sections.

Understanding differences between VALUES and FILTERS

FILTERS is a function like VALUES, with one important difference. VALUES returns the values visible in 
the fi lter context; FILTERS returns the values that are currently being fi ltered by the fi lter context.

Although the two descriptions look the same, they are not. Indeed, one might fi lter four product 
colors with a slicer, say Black, Brown, Azure, and Blue. Imagine that because of other fi lters in the fi lter 
context, only two of them are visible in the data if the other two are not used in any product. In that 
scenario, VALUES returns two colors, whereas FILTER returns all the fi ltered four. An example is useful to 
clarify this concept.

For this example, we use an Excel fi le connected to a Power BI model. The reason is that—at the time 
of writing—FILTERS does not work as expected when used by SUMMARIZECOLUMNS, which is the 
function used by Power BI to query the model. Thus, the example would not work in Power BI.

 

Note Microsoft is aware of the issue of using FILTERS in Power BI, and it is possible that this 
problem will be solved in the future. However, for illustrating the concept in this book, we 
had to use Excel as a client because Excel does not leverage SUMMARIZECOLUMNS.

 

In Chapter 7 we demonstrated how to use CONCATENATEX to show a label in a report indicating 
the colors selected through a slicer. There, we ended up with a complex formula useful to demon-
strate the usage of iterators and variables. Here, we recall the simpler version of that code for your 
convenience:
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Selected Colors := 
"Showing " &  
CONCATENATEX (
    VALUES ( 'Product'[Color] ),
    'Product'[Color], 
    ", ",
    'Product'[Color],
    ASC
) & " colors."

Consider a report with two slicers: one slicer fi lters only one category, and the other slicer fi lters 
several colors, as shown in Figure 10-7.

FIGURE 10-7 Although there are four colors selected, the Selected Colors measure only shows 
two of them.

Though there are four colors selected in the slicer, the Selected Colors measure only returns two of 
them. The reason is that VALUES returns the values of a column under the current fi lter context. There 
are no TV and Video products which are either blue or azure. Thus, even though the fi lter context is 
fi ltering four colors, VALUES only returns two of them.

If the measure is changed to use FILTERS instead of VALUES, then FILTERS returns the fi ltered values, 
regardless of whether there is any product in the current fi lter context representing those values:

Selected Colors := 
"Showing " &  
CONCATENATEX (
    FILTERS ( 'Product'[Color] ),
    'Product'[Color], 
    ", ",
    'Product'[Color],
    ASC
) & " colors."

With this new version of Selected Colors, now the report shows all four colors as the selected ones, as 
you can see in Figure 10-8.
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FIGURE 10-8 Using FILTERS, the Selected Colors measure now returns all four selected colors.

Similar to HASONEVALUE, DAX also offers a function to check whether a column only has one active 
fi lter: HASONEFILTER. Its use and syntax are similar to that of HASONEVALUE. The only difference is 
that HASONEFILTER might return TRUE when there is a single fi lter active, and at the same time 
HASONEVALUE returns FALSE because the value, although fi ltered, is not part of the visible values.

Understanding the difference between ALLEXCEPT and 
ALL/VALUES

In a previous section we introduced ISFILTERED and ISCROSSFILTERED to check for the presence of a 
fi lter. The presence of a fi lter is not enough to verify that all the values of a column—or of a table—are 
visible. A better option is to count the number of rows in the current fi lter context and check it against 
the count of all the rows without any fi lter.

As an example, look at Figure 10-9. The Filtered Gender measure checks for ISFILTERED on the 
Customer[Gender] column, whereas NumOfCustomers simply counts the number of rows in the 
Customer table:

NumOfCustomers := COUNTROWS ( Customer )

FIGURE 10-9 Even though Customer[Gender] is fi ltered, all the customers are visible.
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You can observe that whenever a customer is a company, as expected the gender is always a blank 
value. In the second row of the matrix, the fi lter on Gender is active; indeed, Filtered Gender returns 
TRUE. At the same time, the fi lter does not really fi lter anything because there is only one possible 
Gender value, and it is visible.

The presence of a fi lter does not imply that the table is actually fi ltered. It only states that a fi lter 
is active. To check whether all the customers are visible or not, it is better to rely on a simple count. 
Checking that the number of customers with and without the fi lter on Gender is the same helps identify 
that, although active, the fi lter is not effective.

When performing such calculations, one should pay attention to the details of the fi lter context and 
of the behavior of CALCULATE. There are two possible ways of checking the same condition:

 ■ Counting the customers of ALL genders.

 ■ Counting the customers with the same customer type (Company or Person).

Even though in the report of Figure 10-9 the two calculations return the same value, if one changes 
the columns used in the matrix, they compute different results. Besides, both calculations have pros 
and cons; these are worth learning because they might be useful in several scenarios. We start from the 
fi rst and easiest one:

All Gender := 
CALCULATE (
    [NumOfCustomers], 
    ALL ( Customer[Gender] ) 
)

ALL removes the fi lter on the Gender column, leaving all the remaining fi lters in place. As a result, it 
computes the number of customers in the current fi lter, regardless of the gender. In Figure 10-10 you 
can see the result, along with the All customers visible measure that compares the two counts.

FIGURE 10-10 On the second row, All customers visible returns True, even though Gender is fi ltered.

All Gender is a measure that works well. However, it has the disadvantage of hardcoding in the 
measure the fact that it only removes the fi lter from Gender. For example, using the same measure on 
a matrix that slices by Continent, the result is not the desired one. You see this in Figure 10-11 where the 
All customers visible measure is always TRUE.
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FIGURE 10-11 Filtering by continent, All customers visible returns incorrect results.

Beware that the measure is not incorrect. It computes the value correctly, but it only works if the 
report is slicing by gender. To obtain a measure that is independent from the Gender, then the path 
to follow is the other one: removing all the fi lters from the Customer table except for the Customer 
Type column.

Removing all the fi lters but one looks like a simple operation. However, it hides a trap that you should 
be aware of. As a matter of fact, the fi rst function that comes to a student’s mind is ALLEXCEPT. Unfortu-
nately, ALLEXCEPT might return unexpected results in this scenario. Consider the following formula:

AllExcept Type := 
CALCULATE ( 
    [NumOfCustomers], 
    ALLEXCEPT ( Customer, Customer[Customer Type] ) 
)

ALLEXCEPT removes all the existing fi lters from the Customer table except for the Customer Type 
column. When used in the previous report, it computes a correct result, as shown in Figure 10-12.

FIGURE 10-12 ALLEXCEPT removes the dependency from the gender; it works with any column.

The measure does not only work with the Continent. By replacing the continent with the gender in 
the report, it still produces a correct result, as shown in Figure 10-13.
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FIGURE 10-13 ALLEXCEPT works with the gender too.

Despite the report being accurate, there is a hidden trap in the formula. The ALL* functions, when 
used as fi lter arguments in CALCULATE, act as CALCULATE modifi ers. This is explained in Chapter 5, 
“Understanding CALCULATE and CALCULATETABLE.” These modifi ers do not return a table that is used 
as a fi lter. Instead, they only remove fi lters from the fi lter context.

Focus your attention on the row with a blank gender. There are 385 customers in this group: All of 
them are companies. If one removes the Customer Type column from the report, the only remaining 
column in the fi lter context is the gender. When the gender shows the blank row, we know that only 
companies are visible in the fi lter context. Nevertheless, Figure 10-14 is surprising because it shows the 
same value for all the rows in the report; this value is the total number of customers.

FIGURE 10-14 ALLEXCEPT produces unexpected values if the customer type is not part of the report.

Here is a caveat: ALLEXCEPT removed all the fi lters from the Customer table apart from the fi lter on 
the customer type. However, there is no fi lter on the customer type to retain. Indeed, the only fi lter in 
the fi lter context is the fi lter on the Gender, which ALLEXCEPT removes.

Customer Type is cross-fi ltered, but it is not fi ltered. As a result, ALLEXCEPT has no fi lter to retain and 
its net effect is the same as an ALL on the customer table. The correct way of expressing this condition 
is by using a pair of ALL and VALUES instead of ALLEXCEPT. Look at the following formula:

All Values Type := 
CALCULATE ( 
    [NumOfCustomers], 
    ALL ( Customer ), 
    VALUES ( Customer[Customer Type] ) 
)
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Though similar to the previous defi nition, its semantics are different. ALL removes any fi lter from the 
Customer table. VALUES evaluates the values of Customer[Customer Type] in the current fi lter context. 
There is no fi lter on the customer type, but customer type is cross-fi ltered. Therefore, VALUES only 
returns the values visible in the current fi lter context, regardless of which column is generating the fi lter 
that is cross-fi ltering the customer type. You can see the result in Figure 10-15.

FIGURE 10-15 Using ALL and VALUES together produces the desired result.

The important lesson here is that there is a big difference between using ALLEXCEPT and using ALL 
and VALUES together as fi lter arguments in CALCULATE. The reason is that the semantic of an ALL* 
function is always that of removing fi lters. ALL* functions never add fi lters to the context; they can only 
remove them.

The difference between the two behaviors, adding fi lters or removing fi lters, is not relevant in many 
scenarios. Nevertheless, there are situations where this difference has a strong impact, like in the 
previous example.

This, along with many other examples in this book, shows that DAX requires you to be very precise 
in the defi nition of your code. Using a function like ALLEXCEPT without thinking carefully about all the 
implications might result in your code producing unexpected values. DAX hides a lot of its complex-
ity by providing intuitive behaviors in most situations. Nevertheless, the complexity, although hidden, 
is still there. One should understand the behaviors of fi lter contexts and CALCULATE well in order to 
master DAX.

Using ALL to avoid context transition

By now, at this point in the book our readers have a solid understanding of context transition. It is an 
extremely powerful feature, and we have leveraged it many times to compute useful values. Never-
theless, sometimes it is useful to avoid it or at least to mitigate its effects. To avoid the effects of the 
context transition, the ALL* functions are the tools to use.

It is important to remember that when CALCULATE performs its operations, it executes each step 
in a precise order: The fi lter arguments are evaluated fi rst, then the context transition happens if there 
are row contexts, then the CALCULATE modifi ers are applied, and fi nally CALCULATE applies the 
result of the fi lter arguments to the fi lter context. You can leverage this order of execution noting that 
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CALCULATE modifi ers—among which we count the ALL* functions—are applied after the context tran-
sition. Because of this, a fi lter modifi er has the option of overriding the effect of the context transition.

For example, consider the following piece of code:

SUMX (
    Sales,
    CALCULATE (
        …,
        ALL ( Sales )
    )
)

CALCULATE runs in the row context generated by SUMX, which is iterating over Sales. As such, 
it should perform a context transition. Because CALCULATE is invoked with a modifi er—that is 
ALL ( Sales )—the DAX engine knows that any fi lter on the Sales table should be removed.

When we described the behavior of CALCULATE, we said that CALCULATE fi rst performs context 
transition (that is, it fi lters all the columns in Sales) and then uses ALL to remove those fi lters. Neverthe-
less, the DAX optimizer is smarter than that. Because it knows that ALL removes any fi lter from Sales, it 
also knows that it would be totally useless to apply a fi lter and then remove it straight after. Thus, the 
net effect is that in this case CALCULATE does not perform any context transition, even though it 
removes all the existing row contexts.

This behavior is important in many scenarios. It becomes particularly useful in calculated columns. 
In a calculated column there is always a row context. Therefore, whenever the code in a calculated 
column invokes a measure, it is always executed in a fi lter context only for the current row.

For example, imagine computing the percentage of sales of the current product against all products 
in a calculated column. Inside a calculated column one can easily compute the value of sales of the 
current product by just invoking the Sales Amount measure. The context transition makes sure that the 
value returned only represents the sales of the current product. Nevertheless, the denominator should 
compute the sales of all the products, but the context transition is a problem. So, one can avoid the 
context transition by using ALL, like in the following code:

'Product'[GlobalPct] = 
VAR SalesProduct = [Sales Amount]
VAR SalesAllProducts = 
    CALCULATE ( 
        [Sales Amount], 
        ALL ( 'Product' ) 
    )
VAR Result =
    DIVIDE ( SalesProduct, SalesAllProducts )
RETURN
    Result
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Remember: the reason why ALL is removing the effect of the context transition is because ALL—
being a CALCULATE modifi er—is executed after the context transition. For this reason, ALL can over-
ride the effects of the context transition.

Similarly, the percentage against all the products in the same category is a slight variation of the 
previous code:

'Product'[CategoryPct] = 
VAR SalesProduct = [Sales Amount]
VAR SalesCategory = 
    CALCULATE ( 
        [Sales Amount], 
        ALLEXCEPT ( 'Product', 'Product'[Category] ) 
    )
VAR Result
    DIVIDE ( SalesProduct, SalesCategory ) 
RETURN
    Result

You can look at the result of these two calculated columns in Figure 10-16.

FIGURE 10-16 GlocalPct and CategoryPct use ALL and ALLEXCEPT to avoid the effect of the context transition.

Using ISEMPTY

ISEMPTY is a function used to test whether a table is empty, meaning that it has no values visible in the 
current fi lter context. Without ISEMPTY, the following expression would test that a table expression 
returns zero rows:

COUNTROWS ( VALUES ( 'Product'[Color] ) ) = 0
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Using ISEMPTY makes the code easier:

ISEMPTY ( VALUES ( 'Product'[Color] ) )

From a performance point of view, using ISEMPTY is always a better choice because it informs the 
engine exactly what to check. COUNTROWS requires DAX to count the number of rows in the table, 
whereas ISEMPTY is more effi cient and usually does not require a complete scan of the visible values of 
the target table.

For example, imagine computing the number of customers who never bought certain products. 
A solution to this requirement is the following measure, NonBuyingCustomers:

NonBuyingCustomers := 
VAR SelectedCustomers =
    CALCULATETABLE (
        DISTINCT ( Sales[CustomerKey] ),
        ALLSELECTED ()
    )
VAR CustomersWithoutSales =
    FILTER ( 
        SelectedCustomers,
        ISEMPTY ( RELATEDTABLE ( Sales ) )
    )
VAR Result =
    COUNTROWS ( CustomersWithoutSales )
RETURN
    Result

You can see in Figure 10-17 a report showing the number of customers and the number of 
nonbuying customers side-by-side.

FIGURE 10-17 NonBuyingCustomers counts the customers who never bought any of the selected products.
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ISEMPTY is a simple function. Here we use it as an example to point the reader’s attention to one 
detail. The previous code saved a list of customer keys in a variable, and later it iterated this list with 
FILTER to check whether the RELATEDTABLE result was empty or not.

If the content of the table in the SelectedCustomer variable were the list of customer keys, how could 
DAX know that those values have a relationship with Sales? A customer key, as a value, is not different 
from a product quantity. A number is a number. The difference is in the meaning of the number. As a 
customer key, 120 represents the customer with key 120, whereas as a quantity, it indicates the number 
of products sold.

Thus, a list of numbers has no clear meaning as a fi lter, unless one knows where these numbers 
come from. DAX maintains the knowledge about the source of column values through data lineage, 
which we explain in the next section.

Introducing data lineage and TREATAS

As we anticipated in the previous section, “Using ISEMPTY,” a list of values is meaningless unless one 
knows what those values represent. For example, imagine a table of strings containing “Red” and 
“Blue” like the following anonymous table:

{ "Red", "Blue" }

As humans, we know these are colors. More likely, at this point in the book all our readers know 
that we are referencing product colors. But to DAX, this only represents a table containing two strings. 
Therefore, the following measure always produces the grand total of sales because the table containing 
two values cannot fi lter anything:

Test := 
CALCULATE ( 
    [Sales Amount],
    { "Red", "Blue" }
)

 

Note The previous measure does not raise any error. The fi lter argument is applied to an 
anonymous table, without any effect on physical tables of the data model.

 

In Figure 10-18 you can see that the result is the same as Sales Amount because CALCULATE does not 
apply any further fi ltering.
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FIGURE 10-18 Filtering with an anonymous table does not produce any fi lter.

For a value to fi lter the model, DAX needs to know the data lineage of the value itself. A value that 
represents a column in the data model holds the data lineage of that column. On the other hand, 
a value that is not linked to any column in the data model is an anonymous value. In the previous 
example, the Test measure used an anonymous table to fi lter the model and, as such, it did not fi lter 
any column of the data model.

The following is a correct way of applying a fi lter. Be mindful that we use the full syntax of the CAL-
CULATE fi lter argument for educational purposes; a predicate to fi lter Product[Color] would be enough:

Test := 
CALCULATE ( 
    [Sales Amount],
    FILTER ( 
        ALL ( 'Product'[Color] ),
        'Product'[Color] IN { "Red", "Blue" }
    )
)

Data lineage fl ows this way: ALL returns a table that contains all product colors. The result contains 
the values from the original column, so DAX knows the meaning of each value. FILTER scans the table 
containing all the colors and checks whether each color is included in the anonymous table containing 
Red and Blue. As a result, FILTER returns a table containing the values of Product[Color], so CALCULATE 
knows that the fi lter is applied to the Product[Color] column.
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One can imagine data lineage as a special tag added to each column, identifying its position in the 
data model.

You typically do not have to worry about data lineage because DAX handles the complexity of data 
lineage by itself in a natural and intuitive way. For example, when a table value is assigned to a vari-
able, the table contains data lineage information that is maintained through the whole DAX evaluation 
process using that variable.

The reason why it is important to learn data lineage is because one has the option of either main-
taining or changing data lineage at will. In some scenarios it is important to keep the data lineage, 
whereas in other scenarios one might want to change the lineage of a column.

The function that can change the lineage of a column is TREATAS. TREATAS accepts a table as its fi rst 
argument and then a set of column references. TREATAS updates the data lineage of the table tag-
ging each column with the appropriate target column. For example, the previous Test measure can be 
rewritten this way:

Test := 
CALCULATE ( 
    [Sales Amount],
    TREATAS ( { "Red", "Blue" }, 'Product'[Color] )
)

TREATAS returns a table containing values tagged with the Product[Color] column. As such, this new 
version of the Test measure only fi lters the red and blue colors, as shown in Figure 10-19.

FIGURE 10-19 TREATAS updates the lineage of the anonymous table, so that fi ltering now works as expected.
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The rules for data lineage are simple. A simple column reference maintains its data lineage, whereas 
an expression is always anonymous. Indeed, an expression generates a reference to an anonymous 
column. For example, the following expression returns a table with two columns that have the same 
content. The difference between the two columns is that the fi rst one retains the data lineage informa-
tion, whereas the second one does not because it is a new column:

ADDCOLUMNS ( 
    VALUES ( 'Product'[Color] ),
    "Color without lineage", 'Product'[Color] & ""
)

TREATAS is useful to update the data lineage of one or more columns in a table expression. The 
example shown so far was only for educational purposes. Now we show a better example related to 
time intelligence calculations. In Chapter 8, “Time intelligence calculations,” we showed the following 
formula to compute the LASTNONBLANK date for semi-additive calculations:

LastBalanceIndividualCustomer :=
SUMX (
    VALUES ( Balances[Name] ),
    CALCULATE (
        SUM ( Balances[Balance] ),
        LASTNONBLANK ( 
            'Date'[Date], 
            COUNTROWS ( RELATEDTABLE ( Balances ) ) 
        )
    )
)

This code works, but it suffers from a major drawback: It contains two iterations, and the optimizer is 
likely to use a suboptimal execution plan for the measure. It would be better to create a table contain-
ing the customer name and the date of the last balance, and then use that table as a fi lter argument in 
CALCULATE to fi lter the last date available for each customer. It turns out that this is possible by using 
TREATAS:

LastBalanceIndividualCustomer Optimized :=
VAR LastCustomerDate =
    ADDCOLUMNS ( 
        VALUES ( Balances[Name] ),
        "LastDate", CALCULATE (
            MAX ( Balances[Date] ),
            DATESBETWEEN ( 'Date'[Date], BLANK(), MAX ( Balances[Date] ) )
        )
    )
VAR FilterCustomerDate =
    TREATAS ( 
        LastCustomerDate, 
        Balances[Name],
        'Date'[Date] 
    )
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VAR SumLastBalance =
    CALCULATE (
        SUM ( Balances[Balance] ),
        FilterCustomerDate
    )
RETURN
    SumLastBalance

The measure performs the following operations:

 ■ LastCustomerDate contains the last date for which there is data for each customer. The result is 
a table that contains two columns: the fi rst is the Balances[Name] column, whereas the second 
is an anonymous column because it is the result of an expression.

 ■ FilterCustomerDate has the same content as LastCustomerDate. By using TREATAS, both col-
umns are now tagged with the desired data lineage. The fi rst column targets Balances[Name], 
whereas the second column targets Date[Date].

 ■ The last step is to use FilterCustomerDate as a fi lter argument of CALCULATE. Because the table 
is now correctly tagged with the data lineage, CALCULATE fi lters the model in such a way that 
only one date is selected for every customer. This date is the last date with data in the Balances 
table for the given customer.

Most of the time, TREATAS is applied to change the data lineage of a table with a single column. 
The previous example shows a more complex scenario where the data lineage is modifi ed on a table 
containing two columns. The data lineage of a table resulting from a DAX expression can include col-
umns of different tables. When this table is applied to the fi lter context, it often generates an arbitrarily 
shaped fi lter, discussed in the next section.

Understanding arbitrarily shaped fi lters

Filters in the fi lter context can have two different shapes: simple fi lters and arbitrarily shaped fi lters. All 
the fi lters we have used so far are simple fi lters. In this section, we describe arbitrarily shaped fi lters, and 
we briefl y discuss the implications of using them in your code. Arbitrarily shaped fi lters can be created 
by using a PivotTable in Excel or by writing DAX code in a measure, whereas the Power BI user interface 
currently requires a custom visual to create arbitrarily shaped fi lters. This section describes what these 
fi lters are and how to manage them in DAX.

We can start by describing the difference between a simple fi lter and an arbitrarily shaped fi lter in 
the fi lter context.

 ■ A column fi lter is a list of values for one column only. A list of three colors, like red, blue, and 
green, is a column fi lter. For example, the following CALCULATE generates a column fi lter in the 
fi lter context that only affects the Product[Color] column:

CALCULATE ( 
    [Sales Amount],
    'Product'[Color] IN { "Red", "Blue", "Green" }
)
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 ■ A simple fi lter is a fi lter over one or more columns that corresponds to a set of simple column 
fi lters. Almost all the fi lters used in this book so far are column fi lters. Column fi lters are created 
quite simply, by using multiple fi lter arguments in CALCULATE:

CALCULATE ( 
    [Sales Amount],
    'Product'[Color] IN { "Red", "Blue" },
    'Date'[Calendar Year Number] IN { 2007, 2008, 2009 }
)

The previous code could be written using a simple fi lter with two columns:

CALCULATE ( 
    [Sales Amount],
    TREATAS (
        {
            ( "Red", 2007 ),
            ( "Red", 2008 ),
            ( "Red", 2009 ),
            ( "Blue", 2007 ),
            ( "Blue", 2008 ),
            ( "Blue", 2009 ) 
        },
        'Product'[Color],
        'Date'[Calendar Year Number]
    )
)

Because a simple fi lter contains all the possible combinations of two columns, it is simpler to 
express it using two column fi lters.

 ■ An arbitrarily shaped fi lter is any fi lter that cannot be expressed as a simple fi lter. For example, 
look at the following expression:

CALCULATE (
    [Sales Amount],
    TREATAS (
        {
            ( "CY 2007", "December" ),
            ( "CY 2008", "January" ) 
        },
        'Date'[Calendar Year],
        'Date'[Month]
    )
)

The fi lter on year and month is not a column fi lter because it involves two columns. Moreover, 
the fi lter does not include all the combinations of the two columns existing in the data model. 
In fact, one cannot fi lter year and month separately. Indeed, there are two year and two month 
references, and there are four existing combinations in the Date table for the values provided, 
whereas the fi lter only includes two of these combinations. In other words, using two column 
fi lters, the resulting fi lter context would also include January 2007 and December 2008, which 
are not included in the fi lter described by the previous code. Therefore, this is an arbitrarily 
shaped fi lter.
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An arbitrarily shaped fi lter is not just a fi lter with multiple columns. Certainly, a fi lter with multiple 
columns could be an arbitrarily shaped fi lter, but one can build a fi lter with multiple columns retain-
ing the shape of a simple fi lter. The following example is a simple fi lter, despite it involving multiple 
columns:

CALCULATE (
    [Sales Amount],
    TREATAS (
        {
            ( "CY 2007", "December" ),
            ( "CY 2008", "December" ) 
        },
        'Date'[Calendar Year],
        'Date'[Month]
    )
)

The previous expression can be rewritten as the combination of two column fi lters this way:

CALCULATE (
    [Sales Amount],
    'Date'[Calendar Year] IN { "CY 2007",  "CY 2008" },
    'Date'[Month] = "December" 
)

Although they seem complex to author, arbitrarily shaped fi lters can easily be defi ned through the 
user interface of Excel and Power BI. At the time of writing, Power BI can only generate an arbitrarily 
shaped fi lter by using the Hierarchy Slicer custom visual, which defi nes fi lters based on a hierarchy 
with multiple columns. For example, in Figure 10-20 you can see the Hierarchy Slicer fi ltering different 
months in 2007 and 2008.

FIGURE 10-20 Filtering a hierarchy makes it possible to build an arbitrarily shaped fi lter.
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In Microsoft Excel you fi nd a native feature to build arbitrarily shaped sets out of hierarchies, as 
shown in Figure 10-21.

FIGURE 10-21 Microsoft Excel builds arbitrarily shaped fi lters using the native hierarchy fi lter.

Arbitrarily shaped fi lters are complex to use in DAX because of the way CALCULATE might change 
them in the fi lter context. In fact, when CALCULATE applies a fi lter on a column, it removes previous 
fi lters on that column only, replacing any previous fi lter with the new fi lter. The result is that typically, 
the original shape of the arbitrarily shaped fi lter is lost. This behavior leads to formulas that produce 
inaccurate results and that are hard to debug. Thus, to demonstrate the problem, we will increase the 
complexity of the code step-by-step, until the problem arises.

Imagine you defi ne a simple measure that overwrites the year, forcing it to be 2007:

Sales Amount 2007 := 
CALCULATE ( 
    [Sales Amount], 
    'Date'[Calendar Year] = "CY 2007" 
)

CALCULATE overwrites the fi lter on the year but it does not change the fi lter on the month. When it 
is used in a report, the results of the measure might seem unusual, as shown in Figure 10-22.
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FIGURE 10-22 The year 2007 replaces the previous fi lter on the year.

When 2007 is selected, the results of the two measures are the same. However, when the year selected 
is 2008, it gets replaced with 2007, whereas months are left untouched. The result is that the value shown 
for January 2008 is the sales amount of January 2007. The same happens for February and March. The 
main thing to note is that the original fi lter did not contain the fi rst three months of 2007, and by replac-
ing the fi lter on the year, our formula shows their value. As anticipated, so far there is nothing special.

Things suddenly become much more intricate if one wants to compute the average monthly sales. 
A possible solution to this calculation is to iterate over the months and average the partial results using 
AVERAGEX:

Monthly Avg := 
AVERAGEX ( 
    VALUES ( 'Date'[Month] ), 
    [Sales Amount] 
)

You can see the result in Figure 10-23. This time, the grand total is surprisingly large.

FIGURE 10-23 The grand total is defi nitely not the average of months; it is too large.
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Understanding the problem is much harder than fi xing it. Focus your attention on the cell that com-
putes the wrong value—the grand total of Monthly Avg. The fi lter context of the Total row of the report 
is the following:

TREATAS (
    { 
        ( "CY 2007", "September" ),
        ( "CY 2007", "October" ),
        ( "CY 2007", "November" ),
        ( "CY 2007", "December" ),
        ( "CY 2008", "January" ), 
        ( "CY 2008", "February" ), 
        ( "CY 2008", "March" ) 
    },
    'Date'[Calendar Year],
    'Date'[Month]
)

In order to follow the execution of the DAX code, we expand the full calculation in that cell by 
defi ning the corresponding fi lter context in a CALCULATE statement that evaluates the Monthly Avg 
measure. Moreover, we expand the code of Monthly Avg to build a single formula that simulates the 
execution:

CALCULATE (
    AVERAGEX ( 
        VALUES ( 'Date'[Month] ), 
        CALCULATE ( 
            SUMX ( 
                 Sales, 
                 Sales[Quantity] * Sales[Net Price] 
            ) 
        ) 
    ),
    TREATAS (
        { 
            ( "CY 2007", "September" ),
            ( "CY 2007", "October" ),
            ( "CY 2007", "November" ),
            ( "CY 2007", "December" ),
            ( "CY 2008", "January" ), 
            ( "CY 2008", "February" ), 
            ( "CY 2008", "March" ) 
        },
        'Date'[Calendar Year],
        'Date'[Month]
    )
)

The key to fi xing the problem is to understand what happens when the highlighted CALCULATE is 
executed. That CALCULATE is executed in a row context that is iterating over the Date[Month] column. 
Consequently, context transition takes place and the current value of the month is added to the fi lter 



342 CHAPTER 10 Working with the fi lter context

context. On a given month, say January, CALCULATE adds January to the fi lter context, replacing the 
current fi lter on the month but leaving all the other fi lters untouched.

When AVERAGEX is iterating January, the resulting fi lter context is January in both 2007 and 2008; 
this is because the original fi lter context fi lters two years for the year column. Therefore, on each itera-
tion DAX computes the sales amount of one month in two distinct years. This is the reason why the 
value is much higher than any monthly sales.

The original shape of the arbitrarily shaped fi lter is lost because CALCULATE overrides one of the 
columns involved in the arbitrarily shaped fi lter. The net result is that the calculation produces an 
incorrect result.

Fixing the problem is much easier than expected. Indeed, it is enough to iterate over a column that 
is guaranteed to have a unique value on every month. If, instead of iterating over the month name, 
which is not unique over different years, the formula iterates over the Calendar Year Month column, 
then the code produces the correct result:

Monthly Avg := 
AVERAGEX ( 
    VALUES ( 'Date'[Calendar Year Month] ), 
    [Sales Amount] 
)

Using this version of Monthly Avg, on each iteration the context transition overrides the fi lter on 
Calendar Year Month, which represents both year and month values in the same column. As a result, it 
is guaranteed to always return the sales of an individual month, producing the correct outcome shown 
in Figure 10-24.

FIGURE 10-24 Iterating over a unique column makes the code compute the correct result.

If a unique column for the cardinality of the iterator is not available, another viable solution is to 
use KEEPFILTERS. The following alternative version of the code works correctly, because instead of 



 CHAPTER 10 Working with the fi lter context 343

replacing the previous fi lter, it adds the month fi lter to the previously existing arbitrarily shaped set; 
this maintains the format of the original fi lter:

Monthly Avg KeepFilters := 
AVERAGEX ( 
    KEEPFILTERS ( VALUES ( 'Date'[Month] ) ), 
    [Sales Amount] 
)

As anticipated, arbitrarily shaped sets are not commonly observed in real-world reports. Neverthe-
less, users have multiple and legitimate ways of generating them. In order to guarantee that a measure 
works correctly even in the presence of arbitrarily shaped sets, it is important to follow some best 
practices:

 ■ When iterating over a column, make sure that the column has unique values at the granularity 
where the calculation is being performed. For example, if a Date table has more than 12 months, 
a YearMonth column should be used for monthly calculations.

 ■ If the previous best practice cannot be applied, then protect the code using KEEPFILTERS to 
guarantee that the arbitrarily shaped fi lter is maintained in the fi lter context. Be mindful that 
KEEPFILTERS might change the semantics of the calculations. Indeed, it is important to 
double-check that KEEPFILTERS does not introduce errors in the measure.

Following these simple rules, your code will be safe even in the presence of arbitrarily shaped fi lters.

Conclusions

In this chapter we described several functions that are useful to inspect the content of the fi lter context 
and/or to modify the behavior of a measure depending on the context. We also introduced important 
techniques to manipulate the fi lter context with the increased knowledge of the possible states of the 
fi lter context. Here is a recap of the important concepts you learned in this chapter:

 ■ A column can be either fi ltered or cross-fi ltered. It is fi ltered if there is a direct fi lter; it is cross-
fi ltered if the fi lter is coming from a direct fi lter on another column or table. You can verify 
whether a column is fi ltered or not by using ISFILTERED and ISCROSSFILTERED.

 ■ HASONEVALUE checks whether a column only has one value visible in the fi lter context. This is 
useful before retrieving that value using VALUES. The SELECTEDVALUE function simplifi es the 
HASONEVALUE/VALUES pattern.

 ■ Using ALLEXCEPT is not the same as using the pair ALL and VALUES. In the presence of cross-
fi ltering, ALL/VALUES is safer because it also considers cross-fi ltering as part of its evaluation.

 ■ ALL and all the ALL* functions are useful to avoid the effect of context transition. Indeed, using 
ALL in a calculated column, or in general in a row context, informs DAX that the context transi-
tion is not needed.
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 ■ Each column in a table is tagged with data lineage. Data lineage lets DAX apply fi lters and rela-
tionships. Data lineage is maintained whenever one references a column, whereas it is lost when 
using expressions.

 ■ Data lineage can be assigned to one or more columns by using TREATAS.

 ■ Not all fi lters are simple fi lters. A user can build more complex fi lters either through the user 
interface or by code. The most complex kind of fi lter is the arbitrarily shaped fi lter, which could 
be complex to use because of its interaction with the CALCULATE function and the context 
transition.

You will likely not remember all the concepts and functions described in this chapter immediately 
after having read them. Regardless, it is crucial that you be exposed to these concepts in your learning 
of DAX. You will for sure run into one of the issues described here as you gain DAX experience. 
At that point, it will be useful to come back to this chapter and refresh your memory about the specifi c 
problem you are dealing with.

In the next chapter, we use many of the functions described here to apply calculations over hierar-
chies. As you will learn, working with hierarchies is mainly a matter of understanding the shape of the 
current fi lter context.
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Handling hierarchies

Hierarchies are oftentimes present in data models to make it easier for the user to slice and dice using 
predefi ned exploration paths. Nevertheless, DAX does not have any built-in function providing a cal-
culation over hierarchies. Computing a simple calculation like the ratio to parent requires complex DAX 
code, and the support for calculations over hierarchies proves to be a challenge in general.

However, it is worth learning the DAX code required to handle hierarchies because calculations over 
hierarchies are very common. In this chapter, we show how to create basic calculations over hierarchies 
and how to use DAX to transform a parent/child hierarchy into a regular hierarchy.

Computing percentages over hierarchies

A common requirement when dealing with hierarchies is to create a measure that behaves differently 
depending on the level of the item selected. An example is the ratio to parent calculation. Ratio to 
 parent displays for each level the percentage of that level against its parent.

For instance, consider a hierarchy made of product category, subcategory, and product name. 
A ratio to parent calculation shows the percentage of a category against the grand total, of a 
 subcategory against its category, and of a product against its subcategory. Thus, depending on the 
level of the hierarchy, it shows a different calculation.

An example of this report is visible in Figure 11-1.

In Excel, one might create this calculation by using the PivotTable feature Show Values As, so that 
the computation is performed by Excel. However, if you want to use the calculation regardless of spe-
cifi c features of the client, then it is better to create a new measure that performs the computation so 
that the value is computed in the data model. Moreover, learning the technique comes handy in many 
similar scenarios.

Unfortunately, computing the ratio to parent in DAX is not so easy. Here is the fi rst big DAX limita-
tion we face: There is no way of building a generic ratio to parent measure that works on any arbitrary 
combination of columns in a report. The reason is that inside DAX, there is no way of knowing how the 
report was created or how the hierarchy was used in the client tool. DAX has no knowledge of the way 
a user builds a report. It receives a DAX query; the query does not contain information about what is on 
the rows, what is on the columns, or what slicers were used to build the report.
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FIGURE 11-1 The PercOnParent measure is useful to better understand the values in a table.

Though a generic formula cannot be created, it is still possible to create a measure that computes 
the correct percentages when used properly. Because there are three levels in the hierarchy (category, 
subcategory, and product), we start with three different measures that compute three different per-
centages, one for each level:

PercOnSubcategory := 
DIVIDE ( 
    [Sales Amount],
    CALCULATE ( 
        [Sales Amount], 
        ALLSELECTED ( Product[Product Name] )
    )
)
 
PercOnCategory := 
DIVIDE ( 
    [Sales Amount],
    CALCULATE ( 
        [Sales Amount], 
        ALLSELECTED  ( Product[Subcategory] ) 
    ) 
)
 
PercOnTotal := 
DIVIDE ( 
    [Sales Amount],
    CALCULATE ( 
        [Sales Amount], 
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        ALLSELECTED ( Product[Category] ) 
    )  
)

These three measures compute the percentages needed. Figure 11-2 shows the results in a report.

FIGURE 11-2 The three measures work well only at the level where they have meaning.

You can see that the measures only show the correct values where they are relevant. Otherwise, they 
return 100%, which is useless. Moreover, there are three different measures, but the goal is to only have 
one measure showing different percentages at different levels. This is the next step.

We start by clearing the 100% out of the PercOnSubcategory measure. We want to avoid perform-
ing the calculation if the hierarchy is not showing the Product Name column on the rows. This means 
checking if the Product Name is currently being fi ltered by the query that produces the matrix. There 
is a specifi c function for this purpose: ISINSCOPE. ISINSCOPE returns TRUE if the column passed as the 
argument is fi ltered and it is part of the columns used to perform the grouping. Thus, the formula can 
be updated to this new expression:

PercOnSubcategory := 
IF ( 
    ISINSCOPE ( Product[Product Name] ), 
    DIVIDE ( 
        [Sales Amount],
        CALCULATE ( 
            [Sales Amount], 
            ALLSELECTED ( Product[Product Name] ) 
        ) 
    )
)

Figure 11-3 shows the report using this new formula.
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FIGURE 11-3 Using ISINSCOPE, we remove the useless 100% values from the PercOnSubcategory column.

The same technique can be used to remove the 100% from other measures. Be careful that in 
PercOnCategory, we must check that Subcategory is in scope and Product Name is not. This is because 
when the report is slicing by Product Name using the hierarchy, it is also slicing by Subcategory— 
displaying a product rather than a subcategory. In order to avoid duplicating code to check these 
conditions, a better option is to write a single measure that executes a different operation depending 
on the level of the hierarchy visible—based on the ISINSCOPE condition tested from the bottom to the 
top of the hierarchy levels. Here is the code for the PercOnParent measure:

PercOnParent := 
VAR CurrentSales = [Sales Amount]
VAR SubcategorySales = 
    CALCULATE (
        [Sales Amount],
        ALLSELECTED ( Product[Product Name] )
    )
VAR CategorySales = 
    CALCULATE (
        [Sales Amount],
        ALLSELECTED ( Product[Subcategory] )
    )
VAR TotalSales = 
    CALCULATE (
        [Sales Amount],
        ALLSELECTED ( Product[Category] )
    )
VAR RatioToParent =
    IF (
        ISINSCOPE ( Product[Product Name] ),
        DIVIDE ( CurrentSales, SubcategorySales ),
        IF ( 
            ISINSCOPE  ( Product[Subcategory] ),
            DIVIDE ( CurrentSales, CategorySales ),
            IF (
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                ISINSCOPE  ( Product[Category] ),
                DIVIDE ( CurrentSales, TotalSales )
            )
        )
    )
RETURN RatioToParent

Using the PercOnParent measure, the result is as expected, as you can see in Figure 11-4.

FIGURE 11-4 The PercOnParent measure merges the three columns computed before into a single column.

The three measures created previously are no longer useful. A single measure computes every-
thing needed, putting the right value into a single column by detecting the level the hierarchy is being 
browsed at.

 

Note The order of the IF conditions is important. We want to start by testing the inner-
most level of the hierarchy and then proceed one step at a time to check the outer levels. 
Otherwise, if we reverse the order of the conditions, the results will be incorrect. It is impor-
tant to remember that when the subcategory is fi ltered through the hierarchy, the category 
is fi ltered too.

 

The PercOnParent measure written in DAX only works if the user puts the correct hierarchy on the 
rows. For example, if the user replaces the category hierarchy with the color, the numbers reported are 
hard to understand. Indeed, the measure always works considering the product hierarchy regardless of 
whether it is used or not in the report.
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Handling parent/child hierarchies

The native data model used by DAX does not support true parent/child hierarchies, such as the ones 
found in a Multidimensional database in Analysis Services. However, several DAX functions are avail-
able to fl atten parent/child hierarchies into regular, column-based hierarchies. This is good enough for 
most scenarios, though it means making an educated guess at design time about what the maximum 
depth of the hierarchy will be. In this section, you learn how to use DAX functions to create a parent/
child hierarchy, often abbreviated as P/C.

You can see a classical P/C hierarchy in Figure 11-5.

Annabel

Michael Catherine Harry

Bill

Brad

Chris Vincent

Julie

FIGURE 11-5 The chart shows a graphical representation of a P/C hierarchy.

P/C hierarchies present certain unique qualities:

 ■ The number of levels is not always the same throughout the hierarchy. For example, the path 
from Annabel to Michael has a depth of two levels, whereas in the same hierarchy the path from 
Bill to Chris has a depth of three levels.

 ■ The hierarchy is normally represented in a single table, storing a link to the parent for each row.

The canonical representation of P/C hierarchies is visible in Figure 11-6.

FIGURE 11-6 A table containing a P/C hierarchy.

It is easy to see that the ParentKey is the key of the parent of each node. For example, for Catherine it 
shows 6, which is the key of her parent, Annabel. The issue with this data model is that this time, the rela-
tionship is self-referenced; that is, the two tables involved in the relationship are really the same table.
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A tabular data model does not support self-referencing relationships. Consequently, the data model 
itself has to be modifi ed; the parent/child hierarchy needs to be turned into a regular hierarchy, based 
on one column for each level of the hierarchy.

Before we delve into the details of P/C hierarchies handling, it is worth noting one last point. Look at 
the table in Figure 11-7 containing the values we want to aggregate using the hierarchy.

FIGURE 11-7 This table contains the data for the P/C hierarchy.

The rows in the fact table contain references to both leaf-level and middle nodes in the hierarchy. 
For example, the highlighted row references Annabel. Not only does Annabel have a value by herself, 
she also has three children nodes. Therefore, when summarizing all her data, the formula needs to 
aggregate both her numbers and her children’s values.

Figure 11-8 displays the result we want to achieve.

FIGURE 11-8 This report shows the result of browsing a P/C with a matrix visual.
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There are many steps to cover before reaching the fi nal goal. Once the tables have been loaded 
in the data model, the fi rst step is to create a calculated column that contains the path to reach each 
node, respectively. In fact, because we cannot use standard relationships, we will need to use a set of 
special functions available in DAX and designed for P/C hierarchies handling.

The new calculated column named FullPath uses the PATH function:

Persons[FullPath] = PATH ( Persons[PersonKey], Persons[ParentKey] )

PATH is a function that receives two parameters. The fi rst parameter is the key of the table (in this 
case, Persons[PersonKey]), and the second parameter is the name of the column that holds the parent 
key. PATH performs a recursive traversal of the table, and for each node it builds the path as a list of 
keys separated by the pipe (|) character. In Figure 11-9, you can see the FullPath calculated column.

FIGURE 11-9 The FullPath column contains the complete path to reach each node, respectively.

The FullPath column by itself is not useful. However, it is important because it acts as the basis for 
another set of calculated columns required to build the hierarchy. The next step is to build three calcu-
lated columns, one for each level of the hierarchy:

Persons[Level1] = LOOKUPVALUE(
    Persons[Name], 
    Persons[PersonKey], PATHITEM ( Persons[FullPath], 1, INTEGER )
) 
 
Persons[Level2] = LOOKUPVALUE(
    Persons[Name], 
    Persons[PersonKey], PATHITEM ( Persons[FullPath], 2, INTEGER )
) 
 
Persons[Level3] = LOOKUPVALUE(
    Persons[Name], 
    Persons[PersonKey], PATHITEM ( Persons[FullPath], 3, INTEGER )
)
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PersonKey equals the result of PATHITEM. PATHITEM returns the nth item in a column built with PATH, 
or it returns blank if there is no such item when we request a number greater than the length of the 
path. The resulting table is shown in Figure 11-10.

FIGURE 11-10 The Level columns contain the values to show in the hierarchy.

In this example, we used three columns because the maximum depth of the hierarchy is three. In a 
real-world scenario, one needs to count the maximum number of levels of the hierarchy and to build 
a number of columns big enough to hold all the levels. Thus, although the number of levels in a P/C 
hierarchy should be fl exible, in order to implement hierarchies in a data model, that maximum number 
needs to be set. It is a good practice to add a couple more levels to create space and enable any future 
growth of the hierarchy without needing to update the data model.

Now, we need to transform the set of level columns into a hierarchy. Also, because none of the other 
columns in the P/C is useful, we should hide everything else from the client tools. At this point, we can 
create a report using the hierarchy on the rows and the sum of amounts on the values—but the result is 
not yet as desired. Figure 11-11 displays the result in a matrix.

There are a couple problems with this report:

 ■ Under Annabel, two blank rows contain the value of Annabel herself.

 ■ Under Catherine, a blank row contains the value of Catherine herself. The same happens for 
many other rows.

The hierarchy always shows three levels, even for paths where the maximum depth should be two 
such as Harry, who has no children.

The three columns will be Level1, Level2, and Level3 and the only change is in the second PATHITEM 
parameter, which is 1, 2, and 3. The calculated column uses LOOKUPVALUE to search a row where the 
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FIGURE 11-11 The P/C hierarchy is not exactly what we want because it shows too many rows.

These issues pertain to the visualization of the results. Other than that, the hierarchy computes the 
correct values, because under Annabel’s row, you can see the values of all of Annabel’s children. The 
important aspect of this solution is that we were able to mimic a self-referencing relationship (also 
known as a recursive relationship) by using the PATH function to create a calculated column. The remain-
ing part is solving the presentation issues, but at least things are moving toward the correct solution.

Our fi rst challenge is the removal of all the blank values. For example, the second row of the matrix 
in the report accounts for an amount of 600 that should be visible for Annabel and not for blank. We 
can solve this by modifying the formula for the Level columns. First, we remove all the blanks, repeating 
the previous level if we reached the end of the path. Here, you see the pattern for Level2:

PC[Level2] = 
IF ( PATHLENGTH ( Persons[FullPath] ) >= 2,
    LOOKUPVALUE(
        Persons[Name], 
        Persons[PersonKey], PATHITEM ( Persons[FullPath], 2, INTEGER )
    ),
    Persons[Level1]
)
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Level1 does not need to be modifi ed because there is always a fi rst level. Columns from Level3 must 
follow the same pattern as Level2. With this new formula, the table looks like Figure 11-12.

FIGURE 11-12 With the new formula, the Level columns never contain a blank.

At this point, if you look at the report, the blank rows are gone. Yet, there are still too many rows. In 
Figure 11-13, you can see the report with two rows highlighted.

FIGURE 11-13 The new report does not have blank rows.

Pay attention to the second and third rows of the report. In both cases, the matrix shows a single 
row of the hierarchy (that is, the row of Annabel). We might want to show the second row because it 
contains a relevant value for Annabel. However, we certainly do not want to see the third row because 
the hierarchy is browsing too deep and the path of Annabel is no longer helpful. As you see, the deci-
sion whether to show or hide a node of the hierarchy depends on the depth of the node. We can let a 
user expand Annabel up to the second level of the hierarchy, but we surely want to remove the third 
level of Annabel.
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We can store the length of the path needed to reach the row into a calculated column. The length 
of the path shows that Annabel is a root node. Indeed, it is a node of level 1 with a path containing one 
value only. Catherine, on the other hand, is a node of level 2 because she is a daughter of Annabel and 
the path of Catherine is of length 2. Moreover, although it might not be so evident, Catherine is visible 
at level 1 because her value is aggregated under the fi rst node of Annabel. In other words, even though 
the name of Catherine is not present in the report at level 1, her amount is aggregated under her par-
ent, which is Annabel. The name of Catherine is visible because her row contains Annabel as Level1.

Once we know the level of each node in the hierarchy, we can defi ne that each node be visible 
whenever the report browses the hierarchy up to its level. When the report shows a level that is too 
deep, then the node needs to be hidden. To implement this algorithm, two values are needed:

 ■ The depth of each node; this is a fi xed value for each row of the hierarchy, and as such, it can 
safely be stored in a calculated column.

 ■ The current browsing depth of the report visual; this is a dynamic value that depends on the 
current fi lter context. It needs to be a measure because its value changes depending on the 
report and it has a different value for each row of the report. For example, Annabel is a node at 
level 1, but she appears in three rows because the current depth of the report has three differ-
ent values.

The depth of each node is easy to compute. We can add a new calculated column to the Persons 
table with this simple expression:

Persons[NodeDepth] = PATHLENGTH ( Persons[FullPath] )

PATHLENGTH returns the length of a value computed by PATH. You can see the resulting calculated 
column in Figure 11-14.

FIGURE 11-14 The NodeDepth column stores the depth of each node in a calculated column.

The NodeDepth column is easy to create. Computing the browsing depth is more diffi cult because 
it needs to be computed in a measure. Nevertheless, the logic behind it is not very complex, and it is 
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similar to the technique you have already learned for standard hierarchies. The measure uses ISIN-
SCOPE to discover which of the hierarchy columns is fi ltered versus not.

Moreover, the formula takes advantage of the fact that a Boolean value can be converted to a num-
ber, where TRUE has a value of 1 and FALSE has a value of 0:

BrowseDepth :=
ISINSCOPE ( Persons[Level1] ) +
ISINSCOPE ( Persons[Level2] ) +
ISINSCOPE ( Persons[Level3] )

Thus, if only Level1 is fi ltered, then the result is 1. If both Level1 and Level2 are fi ltered, but not Level3, 
then the result is 2, and so on. You can see the result for the BrowseDepth measure in Figure 11-15.

FIGURE 11-15 The BrowseDepth measure computes the depth of browsing in the report.

We are nearing the resolution of the scenario. The last piece of information we need is that by 
default, a report will hide rows that result in a blank value for all the displayed measures. Specifi cally, 
we are going to use this behavior to hide the unwanted rows. By transforming the value of Amount into 
a blank when we do not want it to appear in the report, we will be able to hide rows from the matrix. 
Thus, the solution is going to use these elements:

 ■ The depth of each node, in the NodeDepth calculated column,

 ■ The depth of the current cell in the report, in the BrowseDepth measure,

 ■ A way to hide unwanted rows, by means of blanking the value of the result.

It is time to merge all this information into a single measure, as follows:

PC Amount := 
IF (
    MAX (Persons[NodeDepth]) < [BrowseDepth],
    BLANK (),
    SUM(Sales[Amount])
)



358 CHAPTER 11 Handling hierarchies

To understand how this measure works, look at the report in Figure 11-16. It contains all the values 
that are useful to grasp the behavior of the formula.

FIGURE 11-16 This report shows the result and all the partial measures used by the formula.

If you look at Annabel in the first row, you see that BrowseDepth equals 1 because this is the 
root of the hierarchy. MaxNodeDepth, which is defined as MAX ( Persons[NodeDepth] ), has a 
value of 2—meaning that the current node is not only showing data at level 1, but also data for 
some children that are at level 2. Thus, the current node is showing data for some children too, 
and for this reason it needs to be visible. The second line of Annabel, on the other hand, has a 
BrowseDepth of 2 and a MaxNodeDepth of 1. The reason is that the filter context filters all the rows 
where Level1 equals Annabel and Level2 equals Annabel, and there is only one row in the hierarchy 
satisfying this condition—this is Annabel herself. But Annabel has a NodeDepth of 1, and because 
the report is browsing at level 2, we need to hide the node. Indeed, the PC Amount measure 
returns a blank.

It is useful to verify the behavior for other nodes by yourself. This way you can improve your 
understanding of how the formula is working. Although one can simply return to this part of the 
book and copy the formula whenever they need to, understanding it is a good exercise because it 
forces you to think in terms of how the fi lter context interacts with various parts of the formula.

To reach the result, the last step is to remove all the columns that are not needed from the 
report, leaving PC Amount alone. The visualization becomes the one we wanted, as you can see in 
Figure 11-17.
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FIGURE 11-17 Once the measure is left alone in the report, all unwanted rows disappear.

The biggest drawback of this approach is that the same pattern has to be used for any measure a 
user may add to the report after the P/C hierarchy is in place. If a measure that does not have a blank for 
unwanted rows is being used as a value, then all the rows will suddenly appear and disrupt the pattern.

At this point, the result is already satisfactory. Yet there is still a small problem. Indeed, if you look 
at the total of Annabel, it is 3,200. Summed up, her children show a total of 2,600. There is a missing 
amount of 600, which is the value of Annabel herself. Some might already be satisfi ed by this visualiza-
tion: The value of a node is easy to calculate, by simply looking at the difference between its total and 
the total of its children. However, if you compare this fi gure to the original goal, you see that in the fi nal 
formula, the value of each node is clearly visible as a child of the node itself. The comparison is visible in 
Figure 11-18, which shows the current and the desired results together.

FIGURE 11-18 The original goal has not been reached yet. We still need to show some rows.
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At this point, the technique should be clear enough. To show a value for Annabel, we need to fi nd 
a condition that lets us identify it as a node that should be made visible. In this case, the condition is 
somewhat complex. The nodes that need to be made visible are non-leaf nodes—that is, they have 
children—that have values for themselves. The code will make those nodes visible for one additional 
level. All other nodes—that is, leaf nodes or nodes with no value associated—will follow the original 
rule and be hidden when the hierarchy is browsing over their depth.

First, we need to create a calculated column in the PC table that indicates whether a node is a leaf. 
The DAX expression is easy: leaves are nodes that are not parents of any other node. In order to check 
the condition, we can count the number of nodes that have the current node as their parent. If it equals 
zero, then we know that the current node is a leaf. The following code does this:

Persons[IsLeaf] =
VAR CurrentPersonKey = Persons[PersonKey]
VAR PersonsAtParentLevel =
    CALCULATE (
        COUNTROWS ( Persons ),
        ALL ( Persons ),
        Persons[ParentKey] = CurrentPersonKey
    )
VAR Result = ( PersonsAtParentLevel = 0 )
RETURN Result

In Figure 11-19, the IsLeaf column has been added to the data model.

FIGURE 11-19 The IsLeaf column indicates which nodes are leaves of the hierarchy.

Now that we can identify leaves, it is time to write the fi nal formula for handling the P/C hierarchy:

FinalFormula =
VAR TooDeep = [MaxNodeDepth] + 1 < [BrowseDepth]
VAR AdditionalLevel = [MaxNodeDepth] + 1 = [BrowseDepth]
VAR Amount =
    SUM ( Sales[Amount] )
VAR HasData = 
    NOT ISBLANK ( Amount )
VAR Leaf =
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    SELECTEDVALUE (
        Persons[IsLeaf],
        FALSE
    )
VAR Result =
    IF (
        NOT TooDeep,
        IF (
            AdditionalLevel,
            IF (
                NOT Leaf && HasData,
                Amount
            ),
            Amount
        )
    )
RETURN
    Result

The use of variables makes the formula easier to read. Here are some comments about their usage:

 ■ TooDeep checks if the browsing depth is greater than the maximum node depth plus one; that 
is, it checks whether the browsing of the report is over the additional level.

 ■ AdditionalLevel checks if the current browsing level is the additional level for nodes that have 
values for themselves and that are not leaves.

 ■ HasData checks if a node itself has a value.

 ■ Leaf checks whether a node is a leaf or not.

 ■ Result is the fi nal result of the formula, making it easy to change the measure result to inspect 
intermediate steps during development.

The remaining part of the code is just a set of IF statements that check the various scenarios and 
behave accordingly.

It is clear that if the data model had the ability to handle P/C hierarchies natively, then all this hard 
work would have been avoided. After all, this is not an easy formula to digest because it requires a full 
understanding of evaluation contexts and data modeling.

      

Important If the model is in compatibility level 1400, you can enable the behavior of a spe-
cial property called Hide Members. Hide Members automatically hides blank members. This 
property is unavailable in Power BI and in Power Pivot as of April 2019. A complete descrip-
tion of how to use this property in a Tabular model is available at https://docs.microsoft.com/
en-us/sql/analysis-services/what-s-new-in-sql-server-analysis- services-2017?view=sql-
server-2017. In case the tool you are using implements this important feature, then we 
strongly suggest using the Hide Members property instead of implementing the complex 
DAX code shown above to hide levels of an unbalanced hierarchy.

 

https://docs.microsoft.com/en-us/sql/analysis-services/what-s-new-in-sql-server-analysis-services-2017?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/analysis-services/what-s-new-in-sql-server-analysis-services-2017?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/analysis-services/what-s-new-in-sql-server-analysis-services-2017?view=sql-server-2017
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Conclusions

In this chapter you learned how to correctly handle calculations over hierarchies. As usual, we now 
recap the most relevant topics covered in the chapter:

 ■ Hierarchies are not part of DAX. They can be built in the model, but from a DAX point of view 
there is no way to reference a hierarchy and use it inside an expression.

 ■ In order to detect the level of a hierarchy, one needs to use ISINSCOPE. Although it is a simple 
workaround, ISINSCOPE does not actually detect the browsing level; rather, it detects the pres-
ence of a fi lter on a column.

 ■ Computing simple percentages over the parent requires the ability to both analyze the current 
level of a hierarchy and create a suitable set of fi lters to recreate the fi lter of the parent.

 ■ Parent/child hierarchies can be handled in DAX by using the predefi ned PATH function and by 
building a proper set of columns, one for each level of the hierarchy.

 ■ Unary operators, often used in parent/child hierarchies, can prove to be a challenge; they can 
therefore be handled in their simpler version (only +/-) by authoring rather complex DAX code. 
Handling more complex scenarios requires even more complicated DAX code, which is beyond 
the scope of this chapter.
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Working with tables

Tables are an important part of DAX formulas. In previous chapters you learned how to iterate over 
tables, how to create calculated tables, and how to perform several other calculation techniques that 
require a table as their starting point. Moreover, CALCULATE fi lter arguments are tables: When author-
ing complex formulas, an ability to build the correct fi lter table is of paramount importance. DAX offers 
a rich set of functions to manage tables. In this chapter we introduce many DAX functions that are 
helpful for creating and managing tables.

For most of the new functions, we provide some examples that are useful for two purposes: They 
show how to use the function, and they act as a good DAX exercise to understand how to write 
complex measures.

Using CALCULATETABLE

The fi rst function to manipulate tables is CALCULATETABLE. We have already used CALCULATETABLE 
multiple times in the book prior to this point. In this section we provide a more complete reference to 
the function, along with some considerations about when to use it.

CALCULATETABLE performs the same operations as CALCULATE, the only difference being in their 
result. CALCULATETABLE returns a table, whereas CALCULATE returns a single value like an integer or a 
string. As an example, if one needs to produce a table containing only red products, then CALCULATE-
TABLE is the function to use:

CALCULATETABLE ( 
    'Product', 
    'Product'[Color] = "Red" 
)

A common question is what the difference is between CALCULATETABLE and FILTER. Indeed, the 
previous expression can be written with FILTER too:

FILTER ( 
    'Product', 
    'Product'[Color] = "Red" 
)

Even though the only difference seems to be the function name, in reality the semantics of these 
two functions are very different. CALCULATETABLE operates by changing the fi lter context fi rst and 
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later evaluating the expression. FILTER, on the other hand, iterates the result of its fi rst argument, 
retrieving the rows that satisfy the condition. In other words, FILTER does not change the fi lter context.

You can appreciate the difference by reviewing the following example:

Red Products CALCULATETABLE =
CALCULATETABLE (
    ADDCOLUMNS (
        VALUES ( 'Product'[Color] ),
        "Num of Products", COUNTROWS ( 'Product' )
    ),
    'Product'[Color] = "Red"
)

The result is in Figure 12-1.

FIGURE 12-1 There are 99 red products in the Contoso database.

By using CALCULATETABLE, the fi lter context where both ADDCOLUMNS and COUNTROWS are 
evaluated is fi ltering red products. Therefore, the result is one row only that contains red as color and 
99 as number of products. In other words, COUNTROWS only counted the red products, without 
requiring a context transition from the row generated by the VALUES function.

If one replaces CALCULATETABLE with FILTER, the result is different. Look at the following table:

Red Products FILTER external =
FILTER (
    ADDCOLUMNS (
        VALUES ( 'Product'[Color] ),
        "Num of Products", COUNTROWS ( 'Product' )
    ),
    'Product'[Color] = "Red"
)

This time, the result is no longer 99; instead, it shows the total number of products, as shown in 
Figure 12-2.

FIGURE 12-2 Although it shows a single line with Red, Num of Products counts all the products.

This table still contains Red for the product color, but now the number of products computes 2,517, 
which is the total number of products. The reason is that FILTER does not change the fi lter context. 
Moreover, FILTER is evaluated after ADDCOLUMNS. Consequently, ADDCOLUMNS iterates all the 
products, and COUNTROWS computes the total number of products because there is no context tran-
sition. Only later does FILTER select the Red row out of all the colors.
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If one uses FILTER instead of CALCULATETABLE, the expression must be written differently, relying 
on CALCULATE to force the context transition:

Red Products FILTER internal =
ADDCOLUMNS (
    FILTER (
        VALUES ( 'Product'[Color] ),
        'Product'[Color] = "Red"
    ),
    "Num of Products", CALCULATE ( COUNTROWS ( 'Product' ) )
)

Now the result is back to 99. In order to obtain the same behavior as CALCULATETABLE, we needed 
to invert the execution order. This way FILTER runs fi rst, and then the calculation of the number of rows 
relies on the context transition to force the row context of ADDCOLUMNS to become a fi lter context 
for COUNTROWS.

CALCULATETABLE works by modifying the fi lter context. It is powerful because it propagates its effect 
to multiple functions in a DAX expression. Its power comes with limitations in the type of fi ltering it can 
create. For example, CALCULATETABLE can only apply fi lters to columns that belong to the data model. 
If one only needs the customer whose sales amount is greater than one million, then CALCULATE-
TABLE is not the right choice because Sales Amount is a measure. Therefore, CALCULATETABLE can-
not apply a fi lter on a measure, whereas FILTER can. This is shown in the following expression; replacing 
FILTER with CALCULATETABLE is not an option, as it would lead to a syntax error:

Large Customers = 
FILTER ( 
    Customer,
    [Sales Amount] > 1000000
)

CALCULATETABLE—like CALCULATE—performs a context transition and can have all the CALCU-
LATE modifi ers like ALL, USERELATIONSHIPS, CROSSFILTER, and many others. Consequently, it is much 
more powerful than FILTER. This is not to say that one should always try to use CALCULATETABLE and 
stop using FILTER. Each of the two functions has advantages and disadvantages, and the choice needs 
to be an educated one.

As a rule of thumb, one uses CALCULATETABLE whenever they need to apply a fi lter on a model 
column and/or there is the need for the other functionalities of CALCULATETABLE, like context transi-
tion and fi lter context modifi ers.

Manipulating tables

DAX offers several functions to manipulate tables. These functions can be used to create new calcu-
lated tables, to create tables to iterate on, or to use their results as fi lter arguments in CALCULATE. 
In this section we provide a complete reference of those functions, along with examples. There are 
also other table functions that are mainly useful in queries. We show them in Chapter 13, “Authoring 
queries.”
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Using ADDCOLUMNS
ADDCOLUMNS is an iterator that returns all the rows and columns of its fi rst argument, adding newly 
created columns to the output. For example, the following calculated table defi nition produces a table 
with all the colors and the value of sales amount for each color:

ColorsWithSales = 
ADDCOLUMNS ( 
    VALUES ( 'Product'[Color] ), 
    "Sales Amount", [Sales Amount] 
)

You can see the result in Figure 12-3.

FIGURE 12-3 The result contains all the product colors and the sales amount for each color.

Being an iterator, ADDCOLUMNS evaluates the column expressions in a row context. In this exam-
ple, it computes the sales of the given product color because the expression of Sales Amount uses a 
measure. Thus, there is an automatic CALCULATE surrounding Sales Amount that generates the context 
transition. If one uses a regular expression instead of a measure, then CALCULATE is frequently used to 
force the context transition.

ADDCOLUMNS is oftentimes used in conjunction with FILTER to obtain fi lters on temporary calcu-
lated columns. For example, to compute the products that sold more than 150,000.00 USD, a possible 
implementation is the following one:

HighSalesProducts =
VAR ProductsWithSales =
    ADDCOLUMNS (
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        VALUES ( 'Product'[Product Name] ),
        "Product Sales", [Sales Amount]
    )
VAR Result =
    FILTER (
        ProductsWithSales,
        [Product Sales] >= 150000
    )
RETURN Result

You can see the result in Figure 12-4.

FIGURE 12-4 The result contains all the product names and the sales amount for each name.

The same expression can be written in several different ways, even without using ADDCOLUMNS. 
The following code, for example, ends up even simpler than the previous one, even though it does not 
add a Product Sales column to the output:

FILTER ( 
    VALUES ( 'Product'[Product Name] ),
    [Sales Amount] >= 150000
)

ADDCOLUMNS is useful to compute multiple columns or when further calculations are needed after 
this fi rst step. For example, consider computing the set of products that together represent 15% of total 
sales. This calculation is no longer trivial because several steps are needed:

 1. Computing the sales amount for each product.

 2. Computing a running total of sales amount, by aggregating each product with all the prod-
ucts that sold more than the product itself.

 3. Transforming the running total into a percentage against the grand total of sales.

 4. Only returning the products whose percentage is less than or equal to 15%.
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Authoring the full query in a single step is unnecessarily complex, whereas splitting the evaluation in 
four steps proves much easier:

Top Products =
VAR TotalSales = [Sales Amount]
VAR ProdsWithSales =
    ADDCOLUMNS (
        VALUES ( 'Product'[Product Name] ),
        "ProductSales", [Sales Amount]
    )
VAR ProdsWithRT =
    ADDCOLUMNS (
        ProdsWithSales,
        "RunningTotal",
        VAR SalesOfCurrentProduct = [ProductSales]
        RETURN
            SUMX (
                FILTER (
                    ProdsWithSales,
                    [ProductSales] >= SalesOfCurrentProduct
                ),
                [ProductSales]
            )
    )
VAR Top15Percent =
    FILTER (
        ProdsWithRT,
        [RunningTotal] / TotalSales <= 0.15
    )
RETURN Top15Percent

You can see the result in Figure 12-5.

FIGURE 12-5 The result contains the top products that generate 15% of sales.
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In the example, we implemented the result as a calculated table, but other uses are possible. For 
example, one could iterate the Top15Percent variable using SUMX to create a measure computing the 
sales of those products.

As with most other DAX functions, one should think of ADDCOLUMNS as one of the many building 
blocks of DAX. The real power of DAX unfolds when you learn how to leverage those building blocks 
and have them interact in more sophisticated calculations.

Using SUMMARIZE
SUMMARIZE is one of the most commonly used functions in DAX. It scans a table (its fi rst argument), 
grouping columns of the same or other related tables in groups of one or more. The main use of SUM-
MARIZE is to only retrieve an existing combination of values, rather than the full list of values.

An example would be computing the number of distinct colors sold, to produce a report that shows 
the number of colors available and the number of colors sold at least once. The following measures 
would produce the desired result:

Num of colors := 
COUNTROWS ( 
    VALUES ( 'Product'[Color] ) 
)
 
Num of colors sold := 
COUNTROWS ( 
    SUMMARIZE ( Sales, 'Product'[Color] ) 
)

You can see the result of these two measures by brand in the report in Figure 12-6.

FIGURE 12-6 Num of colors sold uses SUMMARIZE to compute the number of colors sold.
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In this case we used SUMMARIZE to group the sales by Product[Color], and then we counted the 
number of rows in the result. Because SUMMARIZE performs a group by, it only returns the colors ref-
erenced by Sales. On the other hand, VALUES ( Product[Color] ) returns all the existing colors whether 
they have sales or not.

Using SUMMARIZE, one can group data by any number of columns, provided that the columns used 
as parameters are reachable from Sales only when following many-to-one or one-to-one relation-
ships. For example, to compute the average quantity sold per product and per day, this is one possible 
implementation:

AvgDailyQty :=
VAR ProductsDatesWithSales =
    SUMMARIZE (
        Sales,
        'Product'[Product Name],
        'Date'[Date]
    )
VAR Result =
    AVERAGEX (
        ProductsDatesWithSales,
        CALCULATE (
            SUM ( Sales[Quantity] )
        )
    )
RETURN Result

You can see the result of this measure in Figure 12-7.

FIGURE 12-7 The report shows the average daily sales quantity per year and per brand.

In this case, we used SUMMARIZE to scan Sales and to group it by product name and by date. The 
resulting table contains the product name and the date, only considering days with sales for that prod-
uct. AVERAGEX takes care of computing the average over each row of the temporary table returned by 



 CHAPTER 12 Working with tables 371

SUMMARIZE. If there are no sales for a certain product on any given day, then the resulting table will 
not contain that date.

SUMMARIZE can also be used like ADDCOLUMNS to add further columns to the result. For example, 
the previous measure could also be authored the following way:

AvgDailyQty := 
VAR ProductsDatesWithSalesAndQuantity =
    SUMMARIZE (
        Sales,
        'Product'[Product Name],
        'Date'[Date],
        "Daily qty", SUM ( Sales[Quantity] )  
    )
VAR Result =
    AVERAGEX ( 
        ProductsDatesWithSalesAndQuantity,
        [Daily qty]
    )
RETURN Result

In this case SUMMARIZE returns a table that contains the product name, the date, and a newly 
introduced column named Daily qty. Daily qty is later averaged by AVERAGEX. Nevertheless, the use 
of SUMMARIZE to create temporary columns is deprecated because SUMMARIZE creates one row 
context and one fi lter context at the same time. For this reason, results are complex to understand 
when a context transition is generated in the expression by referencing either a measure or an explicit 
CALCULATE function. If one needs to compute additional columns after SUMMARIZE has performed 
the grouping operation, then it is better to use a pair of ADDCOLUMNS and SUMMARIZE together:

AvgDailyQty := 
VAR ProductsDatesWithSales =
    SUMMARIZE (
        Sales,
        'Product'[Product Name],
        'Date'[Date]
    )
VAR ProductsDatesWithSalesAndQuantity =
    ADDCOLUMNS ( 
        ProductsDatesWithSales,
        "Daily qty", CALCULATE ( SUM ( Sales[Quantity] ) )
    )
VAR Result =
    AVERAGEX ( 
        ProductsDatesWithSalesAndQuantity,
        [Daily qty]
    )
RETURN Result

Despite the code being more verbose, it is much easier to read and write because there is a single 
row context used in a context transition. This row context is introduced by ADDCOLUMNS while iterat-
ing over the result of SUMMARIZE. This pattern results in simpler (and most of the times faster) code.
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It is possible to use more—optional—parameters with SUMMARIZE. They exist for the calculation 
of subtotals and to add columns to the result. We deliberately decided not to write about them to 
make the point even stronger: SUMMARIZE works fi ne when grouping tables and should not be used 
to compute additional columns. Although you can fi nd code on the web that still uses SUMMARIZE to 
author new columns, consider it a very bad practice and always replace it with the pair ADDCOLUMNS/
SUMMARIZE.

Using CROSSJOIN
CROSSJOIN performs the cross-join of two tables, returning the cartesian product of the two input 
tables. In other words, it returns all possible combinations of the values in the input tables. For example, 
the following expression returns all the combinations of product names and years:

CROSSJOIN ( 
    ALL ( 'Product'[Product Name] ),
    ALL ( 'Date'[Calendar Year] )
)

If the model contains 1,000 product names and fi ve years, the resulting table contains 5,000 rows. 
CROSSJOIN is more often used in queries than in measures. Nevertheless, there are some scenarios 
where the use of CROSSJOIN becomes relevant—mostly because of performance.

For example, consider the need for an OR condition between two different columns in a CALCULATE 
fi lter argument. Because CALCULATE merges its fi lter arguments with an intersection, implementing 
the OR condition requires closer attention. For example, this is a possible implementation of CALCU-
LATE fi ltering all the products that belong to the Audio category or have a Black color:

AudioOrBlackSales := 
VAR CategoriesColors = 
    SUMMARIZE (
        'Product',
        'Product'[Category],
        'Product'[Color]
    )
VAR AudioOrBlack =
    FILTER (
        CategoriesColors,
        OR (
            'Product'[Category] = "Audio",
            'Product'[Color] = "Black"
        )
    )
VAR Result =
    CALCULATE (
        [Sales Amount],
        AudioOrBlack
    )
RETURN Result



 CHAPTER 12 Working with tables 373

The previous code works well, and it is optimal also from a performance point of view. SUMMARIZE 
scans the Product table, which is expected to contain a small number of rows. Thus, the evaluation of 
the fi lter is very quick.

If the requirement is to fi lter columns from different tables like color and year, then things are differ-
ent. Indeed, one could extend the previous example; but to summarize by columns from two separate 
tables, SUMMARIZE needs to scan the Sales table:

AudioOr2007 Sales := 
VAR CategoriesYears =
    SUMMARIZE (
        Sales,
        'Product'[Category],
        'Date'[Calendar Year]
    )
VAR Audio2007 = 
    FILTER (
        CategoriesYears,
        OR (
            'Product'[Category] = "Audio",
            'Date'[Calendar Year] = "CY 2007"
        )
    )
VAR Result =
    CALCULATE (
        [Sales Amount],
        Audio2007
    )
RETURN Result

Sales is not a small table; it might contain hundreds of millions of rows. Scanning it to retrieve the 
existing combinations of category and years could result in an expensive operation. Regardless, the 
resulting fi lter is not going to be large because there are only a few categories and years, yet the 
engine needs to scan a large table to retrieve the fi lter.

In that scenario, we recommend you build all the combinations of category and year, producing a 
small table; you would then fi lter that table, as in the following code:

AudioOr2007 Sales := 
VAR CategoriesYears =
    CROSSJOIN (
        VALUES ( 'Product'[Category] ),
        VALUES ( 'Date'[Calendar Year] )
    )
VAR Audio2007 = 
    FILTER (
        CategoriesYears,
        OR (
            'Product'[Category] = "Audio",
            'Date'[Calendar Year] = "CY 2007"
        )
    )
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VAR Result =
    CALCULATE (
        [Sales Amount],
        Audio2007
    )
RETURN Result

The full CROSSJOIN of categories and years contains a few hundred rows and the execution of this 
last version of the measure is faster.

CROSSJOIN is not only useful to speed up calculations. Sometimes, one is interested in retrieving 
rows even when no event happened. For example, by using SUMMARIZE to scan sales by category and 
country, the result only contains the categories and countries with sales for certain products. This is the 
intended behavior of SUMMARIZE, so it is not surprising. However, sometimes the absence of an event 
is more important than its presence. For example, one might want to investigate which brands have no 
sales in certain regions. In that case, the measure needs to build a more complex expression involving 
a CROSSJOIN, so to be able to also retrieve nonexistent combinations of values. We will provide more 
examples of CROSSJOIN in the next chapter.

Using UNION
UNION is a set function that performs the union of two tables. The ability to combine different tables 
into a single table can be important in certain circumstances. It is mainly used in calculated tables, 
much less frequently in measures. For example, the following table contains all the countries from both 
the Customer and the Store tables:

AllCountryRegions = 
UNION ( 
    ALL ( Customer[CountryRegion] ),
    ALL ( Store[CountryRegion] )
)

You can look at the result in Figure 12-8.

FIGURE 12-8 UNION does not remove duplicates.
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UNION does not remove duplicates before returning a result. Thus, if Australia belongs to the 
countries of both customers and stores, it appears twice in the resulting table. If needed, leveraging the 
DISTINCT function will remove duplicates.

We have described and used DISTINCT multiple times prior to this point, to obtain the distinct val-
ues of a column as visible in the current fi lter context. DISTINCT can also be used with a table expres-
sion as a parameter, and in that special case it returns the distinct rows of the table. Thus, the following 
is a good implementation removing potential duplicates from the CountryRegion column:

DistinctCountryRegions = 
VAR CountryRegions =
    UNION ( 
        ALL ( Customer[CountryRegion] ),
        ALL ( Store[CountryRegion] )
   )
VAR UniqueCountryRegions =
    DISTINCT ( CountryRegions )
RETURN UniqueCountryRegions

You can see the resulting table in Figure 12-9.

FIGURE 12-9 DISTINCT removes duplicates from a table.

UNION maintains the data lineage of the input tables if the lineage of both tables is the same. 
In the previous formula, the result of DISTINCT has no lineage because the fi rst table contains 
Customer[CountryRegion], and the second table contains Store[CountryRegion]. Because the data 
lineage of the input tables is different, the result has a new lineage not corresponding to any of the 
existing columns. Therefore, the following calculated table returns the same grand total of sales on all 
the rows:

DistinctCountryRegions = 
VAR CountryRegions =
    UNION ( 
        ALL ( Customer[CountryRegion] ),
        ALL ( Store[CountryRegion] )
   )



376 CHAPTER 12 Working with tables

VAR UniqueCountryRegions =
    DISTINCT ( CountryRegions )
VAR Result =
    ADDCOLUMNS (  
        UniqueCountryRegions,
        "Sales Amount", [Sales Amount]
    )
RETURN Result

The result is presented in Figure 12-10.

FIGURE 12-10 CountryRegion is not a column in the model. Therefore, it does not fi lter Sales Amount.

If the calculated table needs to contain both the sales amount and the number of stores, including 
all country regions of both customers and stores, then the fi ltering must be handled manually through 
a more complex expression:

DistinctCountryRegions =
VAR CountryRegions =
    UNION ( 
        ALL ( Customer[CountryRegion] ),
        ALL ( Store[CountryRegion] )
   )
VAR UniqueCountryRegions =
    DISTINCT ( CountryRegions )
VAR Result =
    ADDCOLUMNS (  
        UniqueCountryRegions,
        "Customer Sales Amount",
            VAR CurrentRegion = [CountryRegion]
            RETURN
                CALCULATE (
                    [Sales Amount],
                    Customer[CountryRegion] = CurrentRegion
                ),
        "Number of stores",
            VAR CurrentRegion = [CountryRegion]
            RETURN
                CALCULATE (
                    COUNTROWS ( Store ),
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                    Store[CountryRegion] = CurrentRegion
                )
    )
RETURN Result

You see the result in Figure 12-11.

FIGURE 12-11 By using more complex CALCULATE statements, one can move the fi lter on stores and sales.

In the previous example CALCULATE applies a fi lter on either the customer or the store country 
region, using the value currently iterated by ADDCOLUMN on the result of UNION. Another option to 
obtain the same result is to restore the lineage using TREATAS (see Chapter 10, “Working with the fi lter 
context,” for more information about TREATAS), as in the following equivalent expression:

DistinctCountryRegions =
VAR CountryRegions =
    UNION ( 
        ALL ( Customer[CountryRegion] ),
        ALL ( Store[CountryRegion] )
    )
VAR UniqueCountryRegions =
    DISTINCT ( CountryRegions )
VAR Result =
    ADDCOLUMNS (  
        UniqueCountryRegions,
        "Customer Sales Amount", CALCULATE (
            [Sales Amount],
            TREATAS (
                { [CountryRegion] },
                Customer[CountryRegion]
            )
        ),
        "Number of stores", CALCULATE (
            COUNTROWS ( Store ),
            TREATAS (
                { [CountryRegion] },
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                Store[CountryRegion]
            )
        )
    )
RETURN Result

The result of our last two examples is the same; what differs is the technique used to move the fi lter 
from a new column to one that is part of the model. Moreover, in this last example you may notice the 
use of a table constructor: The curly braces transform CountryRegion into a table that can be used as a 
parameter of TREATAS.

Because UNION loses the data lineage if values come from different columns, TREATAS is a conve-
nient function to control the data lineage of the result. It is worth noting that TREATAS ignores values 
that do not exist in the target columns.

Using INTERSECT
INTERSECT is a set function much like UNION. However, instead of appending one table to another, 
it returns the intersection of the two tables—that is, only the rows that appear in both tables. It was 
popular before the TREATAS function was introduced because it allows one to apply the result of a 
table expression as a fi lter to other tables and columns. Since the introduction of TREATAS, the number 
of use cases of INTERSECT was greatly reduced.

For example, if one needs to retrieve the customers who bought in both 2007 and 2008, a possible 
implementation is the following:

CustomersBuyingInTwoYears = 
VAR Customers2007 =
    CALCULATETABLE (
        SUMMARIZE ( Sales, Customer[Customer Code] ),
        'Date'[Calendar Year] = "CY 2007"
    )
VAR Customers2008 =
    CALCULATETABLE (
        SUMMARIZE ( Sales, Customer[Customer Code] ),
        'Date'[Calendar Year] = "CY 2008"
    )
VAR Result =
    INTERSECT ( Customers2007, Customers2008 )
RETURN Result

From the lineage point of view, INTERSECT retains the data lineage of the fi rst table. In the previous 
example, both tables have the same data lineage. If one builds a table with different data lineages, then 
only the lineage of the fi rst table is kept. For example, the countries where there are both customers 
and stores can be expressed as follows:

INTERSECT (
    ALL ( Store[CountryRegion] ),
    ALL ( Customer[CountryRegion] )
)
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In this latter example, the lineage is that of Store[CountryRegion]. Consequently, a more 
complex expression like the following returns the sales fi ltered by Store[CountryRegion], not 
Customer[CountryRegion]:

SalesStoresInCustomersCountries =
VAR CountriesWithStoresAndCustomers =
    INTERSECT (
        ALL ( Store[CountryRegion] ),
        ALL ( Customer[CountryRegion] )
    )
VAR Result =
    ADDCOLUMNS (
        CountriesWithStoresAndCustomers,
        "StoresSales", [Sales Amount]
    )
RETURN Result

You see the result of this expression in Figure 12-12.

FIGURE 12-12 StoresSales contains the sales in the store country, not the sales in the customer country.

In this latter example, the StoresSales column contains the sales related to the country of the store.

Using EXCEPT
EXCEPT is the last of the set functions introduced in this section. EXCEPT removes the rows present 
in the second table from the fi rst table. As such, it implements set subtraction with two tables. For 
example, if one is interested in customers who bought a product in 2007 but not in 2008, one possible 
implementation is the following:

CustomersBuyingIn2007butNotIn2008 = 
VAR Customers2007 =
    CALCULATETABLE (
        SUMMARIZE ( Sales, Customer[Customer Code] ),
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        'Date'[Calendar Year] = "CY 2007"
    )
VAR Customers2008 =
    CALCULATETABLE (
        SUMMARIZE ( Sales, Customer[Customer Code] ),
        'Date'[Calendar Year] = "CY 2008"
    )
VAR Result =
    EXCEPT ( Customers2007, Customers2008 )
RETURN Result

The fi rst rows of the calculated table are visible in Figure 12-13.

FIGURE 12-13 Partial list of customers that bought a product in 2007 but not in 2008.

As usual, one could use the previous calculation as a fi lter argument of CALCULATE to obtain the 
sales amount of those customers. EXCEPT is frequently used when analyzing customer behavior. For 
example, a common calculation for many businesses is establishing the number of new customers, 
returning customers, and lost customers.

There are several possible implementations of the same calculations, each one targeted to a specifi c 
data model. The following implementation is not always the most optimal, but it is fl exible and easy 
to understand. To compute the number of customers who did not buy anything last year but bought 
something this year, the following measure removes customers who bought a product in the previous 
year from the set of current customers:

SalesOfNewCustomers := 
VAR CurrentCustomers =
    VALUES ( Sales[CustomerKey] )
VAR CustomersLastYear =
    CALCULATETABLE (
        VALUES ( Sales[CustomerKey] ),
        DATESINPERIOD ( 'Date'[Date], MIN ( 'Date'[Date] ) - 1, -1, YEAR )
    )
VAR CustomersNotInLastYear =
    EXCEPT ( CurrentCustomers, CustomersLastYear )
VAR Result =
    CALCULATE ( [Sales Amount], CustomersNotInLastYear )
RETURN Result

The implementation of this code as a measure works with any fi lter and provides a fl exible way 
to slice by any column. Please be mindful that this implementation of new customers is not the 
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best in terms of performance. We used it here to demonstrate a possible usage of EXCEPT. Later in 
this chapter we show a much faster version of the same calculation, although a bit more complex 
to learn.

From the lineage point of view, EXCEPT retains the data lineage of the fi rst table, as was the case 
with INTERSECT. For example, the following expression computes the sales made to customers living in 
countries where there are no stores:

SalesInCountriesWithNoStores := 
VAR CountriesWithActiveStores =
    CALCULATETABLE (
        SUMMARIZE ( Sales, Store[CountryRegion] ),
        ALL ( Sales )
    )
VAR CountriesWithSales =
    SUMMARIZE ( Sales, Customer[CountryRegion] )
VAR CountriesWithNoStores =
    EXCEPT ( CountriesWithSales, CountriesWithActiveStores ) 
VAR Result =
    CALCULATE ( 
        [Sales Amount], 
        CountriesWithNoStores
    )
RETURN Result

The result of EXCEPT fi lters the Customer[CountryRegion] column because it is the column used by 
the table taken as the fi rst argument of EXCEPT.

Using tables as fi lters

Functions manipulating tables are oftentimes used to build complex fi lters for CALCULATE parameters. 
In this section, we provide further examples, always leading you one step further in your understanding 
of DAX.

Implementing OR conditions
A fi rst example where manipulating tables proves to be a useful skill is the following. Imagine having 
to implement an OR condition between the selections made in different slicers, instead of the default 
AND behavior provided by client tools like Excel and Power BI.

The report in Figure 12-14 contains two slicers. The default behavior of Power BI is to intersect the 
two conditions. As a consequence, the numbers shown represent the sales of Home Appliances to 
customers with a High School education.
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FIGURE 12-14 By default, slicer conditions are intersected so that all the conditions are applied together.

Instead of intersecting the two conditions, one might want to merge them. In other words, the num-
bers shown in the report need to be the sales of products sold to customers with a High School educa-
tion or the sales of Home Appliances. Because Power BI does not support “or” conditions between 
slicers, one can solve the problem by using DAX.

Remember that each cell of the report has a fi lter context containing both a fi lter on the category 
and a fi lter on the education. Both fi lters need to be replaced. There are several possible solutions to 
the same pattern; we demonstrate the use of three different formulas.

The fi rst, and probably the easiest expression of that fi lter, is the following:

OR 1 := 
VAR CategoriesEducations =
    CROSSJOIN ( 
        ALL ( 'Product'[Category] ),
        ALL ( Customer[Education] )
    )
VAR CategoriesEducationsSelected =
    FILTER ( 
        CategoriesEducations,
        OR (
            'Product'[Category] IN VALUES ( 'Product'[Category] ),
            Customer[Education] IN VALUES ( Customer[Education] )
        )
    )
VAR Result =
    CALCULATE (
        [Sales Amount],
        CategoriesEducationsSelected
    )
RETURN Result
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The measure fi rst builds the cross-join of all the categories and education levels. Once the table is 
prepared, it fi lters out the rows that do not satisfy the condition, and fi nally it uses the resulting table as 
a fi lter argument for CALCULATE. CALCULATE overrides the current fi lter on both the category and the 
education, resulting in the report in Figure 12-15.

FIGURE 12-15 The report now shows sales volumes for the Home Appliances category OR the High School educa-
tion level.

The fi rst implementation of the measure is already simple—both to use and to understand. In case 
there is a large number of rows in the columns used to fi lter the OR condition, or when there are more 
than just two conditions, the resulting temporary table would quickly become huge. In such a case, one 
can limit its size by removing the CROSSJOIN in favor of SUMMARIZE, as in this second implementation 
of the same measure:

OR 2 := 
VAR CategoriesEducations = 
    CALCULATETABLE (  
        SUMMARIZE (
            Sales, 
            'Product'[Category],
            Customer[Education]
        ),
        ALL ( 'Product'[Category] ),
        ALL ( Customer[Education] )
    )
VAR CategoriesEducationsSelected =
    FILTER ( 
        CategoriesEducations,
        OR (
            'Product'[Category] IN VALUES ( 'Product'[Category] ),
            Customer[Education] IN VALUES ( Customer[Education] )
        )
    )
VAR Result =
    CALCULATE (



384 CHAPTER 12 Working with tables

         [Sales Amount],
        CategoriesEducationsSelected
    )
RETURN Result

The logic of this second implementation is close to the fi rst one, the only noticeably difference 
being the presence of SUMMARIZE instead of CROSSJOIN. Moreover, it is worth pointing out that 
SUMMARIZE needs to be executed in a fi lter context without the fi lter on Category and Education. 
Otherwise, the slicer would affect the calculation executed by SUMMARIZE, destroying the effort of 
the fi lter.

There is at least a third solution to the same scenario, potentially faster though harder to under-
stand at first sight. Indeed, the same table filter can be expressed thinking that if the category is 
in the selected values for the categories, then any value for the education level is fine. The same 
happens for the education level: As long as the education level is in the selected values for the 
education level, then any category is fine. This reasoning leads to the third formulation of the same 
expression:

OR 3 := 
VAR Categories =
    CROSSJOIN ( 
        VALUES ( 'Product'[Category] ),
        ALL ( Customer[Education] )
    )
VAR Educations = 
    CROSSJOIN ( 
        ALL ( 'Product'[Category] ),
        VALUES ( Customer[Education] )
    )
VAR CategoriesEducationsSelected =
    UNION ( Categories, Educations )
VAR Result =
    CALCULATE (
         [Sales Amount],
        CategoriesEducationsSelected
    )
RETURN Result

As you can see, one can author the same formula in several ways. The difference is in both read-
ability and performance. Being able to write the same formula using different methods is a skill that will 
prove extremely useful in the fi nal optimization chapters, where you learn to evaluate the performance 
of different versions of the same code, seeking the most optimal.

Narrowing sales computation to the fi rst year’s customers
As another example of a useful calculation involving the manipulation of tables, we demonstrate 
how to analyze sales over time but only considering customers who made a purchase during 
the first year of a selected time period. In other words, we consider the first year with sales in 
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the visual, evaluate the customers who bought during that first year, and then we only analyze 
the sales of those customers over the following years, ignoring those who became customers 
afterwards.

The code needs to perform three steps:

 1. Checking what is the fi rst year with sales on any product.

 2. Storing the set of customers of that fi rst year into a variable, ignoring any other 
fi lter.

 3. Computing the sales of the customers determined in step 2 in the current period.

The following code implements this algorithm by using variables to store temporary 
results:

SalesOfFirstYearCustomers :=
VAR FirstYearWithSales =
    CALCULATETABLE (
        FIRSTNONBLANK (
            'Date'[Calendar Year],
            [Sales Amount]
        ),
        ALLSELECTED ()
    )
VAR CustomersFirstYear =
    CALCULATETABLE (
        VALUES ( Sales[CustomerKey] ),
        FirstYearWithSales,
        ALLSELECTED ()
    )
VAR Result =
    CALCULATE (
        [Sales Amount],
        KEEPFILTERS ( CustomersFirstYear )
    )
RETURN Result

The FirstYearWithSales variable stores the fi rst year with sales. Please note that FIRSTNONBLANK 
returns a table as a result, with the data lineage of Date[Calendar Year]. The CustomersFirstYear variable 
retrieves the list of all customers in that fi rst year. The last step is the easiest because it only applies 
the fi lter on the customer; in each cell of the report, the value of Sales Amount is restricted to only the 
customers found during the second step. The KEEPFILTERS modifi er makes it possible to fi lter these 
customers by country, for example.

The result is visible in Figure 12-16, indicating that—after the fi rst year—sales made to those cus-
tomers are decreasing over time.
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FIGURE 12-16 The report shows sales over the years, focusing only on customers acquired in 2007.

This latter example is important to learn. Indeed, there are several scenarios where one needs to 
place a fi lter over time, compute a set, and fi nally analyze the behavior of this set (of customers, prod-
ucts, stores) over different years. With this pattern one can easily implement same-store analyses or 
any other calculation with similar requirements.

Computing new customers
In a previous section of this chapter about EXCEPT, we showed how to compute new customers. In this 
section we provide a much better implementation of the same calculation that—again—makes heavy 
use of table functions.

The idea in this new algorithm is the following: First we determine the earliest day when each cus-
tomer made a purchase. Once this table is available, the formula checks if the fi rst sale to the customer 
falls within the current time period. If that holds true, it means that the customer—in the current 
period—is a new customer.

Here is the code of the measure:

New Customers :=
VAR CustomersFirstSale =
    CALCULATETABLE (
        ADDCOLUMNS (
            VALUES ( Sales[CustomerKey] ),
            "FirstSale", CALCULATE (
                MIN ( Sales[Order Date] )
            )
        ),
        ALL ( 'Date' )
    )
VAR CustomersWith1stSaleInCurrentPeriod =
    FILTER (
        CustomersFirstSale,
        [FirstSale] IN VALUES ( 'Date'[Date] )
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    )
VAR Result =
    COUNTROWS ( CustomersWith1stSaleInCurrentPeriod )
RETURN Result

The CustomersFirstSale variable needs to use ALL on the Date table to fi rst compute sales that hap-
pened before the current time period. You can see the resulting report in Figure 12-17.

FIGURE 12-17 The report shows the number of customers and new customers over the year 2007.

The way it is written now, if a user further fi lters other tables like the product category, a customer 
will be considered new when they buy the selected category for the fi rst time. Thus, one individual 
customer might be considered new multiple times, depending on the fi lters applied. By adding further 
CALCULATE modifi ers to the computation of the fi rst variable, it is possible to implement several dif-
ferent variations of the same code. For example, by adding ALL ( Product ), then customers are only 
considered new when they buy any product. By adding ALL ( Store ), customers are only new the fi rst 
time they buy in any store.

   

Using IN, CONTAINSROW, and CONTAINS

In the previous example, as in many others, we used the IN keyword to check whether a 
value is present in a table. Internally, IN is translated into a CONTAINSROW function call, 
so there are no differences in performance between the two syntaxes. The two following 
expressions are equivalent:

Product[Color] IN { "Red", "Blue", "Yellow" }
CONTAINSROW ( { "Red", "Blue", "Yellow" }, Product[Color] )
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The syntax also works with tables containing multiple columns:

( 'Date'[Year], 'Date'[MonthNumber] ) IN { ( 2018, 12 ), ( 2019, 1 ) }
CONTAINSROW ( { ( 2018, 12 ), ( 2019, 1 ) }, 'Date'[Year], 'Date'[MonthNumber] )

IN and CONTAINSROW are not available in older versions of DAX. An alternative to 
these functions is CONTAINS, which requires us to provide pairs of columns and values to 
search for the presence of a row in a table. However, CONTAINS is less effi cient than IN 
and CONTAINSROW. Because the syntax of table constructors is not available in versions 
of DAX without IN and CONTAINSROW, using CONTAINS requires a much more verbose 
syntax:

VAR Colors = 
    UNION ( 
        ROW ( "Color", "Red" ), 
        ROW ( "Color", "Blue" ), 
        ROW ( "Color", "Yellow" ) 
    )
RETURN 
    CONTAINS ( Colors, [Color], Product[Color] )

At the time of writing, IN is the most convenient way of searching for a value in a table; it is 
much easier to read than any other function of its category, and it provides the same perfor-
mance as CONTAINSROW.

Reusing table expressions with DETAILROWS
The PivotTable in Excel offers a feature to retrieve the underlying data used to compute a cell. That 
feature is called “Show Details” in the Excel user interface, and its more technical name is “drillthrough.” 
This name could be confusing because in Power BI the term “drillthrough” refers to a feature that allows 
the user to move from one report page to another, in a manner controlled by the report author. For this 
reason, a feature that allows control over the “Show Details” result was called “Detail Rows Expression” 
in the Tabular model and was introduced in SQL Server Analysis Services 2017. As of April 2019, it is not 
available in Power BI, but it should be planned for a future release.

The Detail Rows Expression is a DAX table expression associated with a measure and invoked to 
retrieve the table for the Show Details feature. This expression is executed in the fi lter context of the 
measure. The idea is that if a measure changes the fi lter context to compute a variable, the Detail Rows 
Expression should apply a similar transformation to the fi lter context.

For example, consider Sales YTD that computes the year-to-date value of Sales Amount:

Sales YTD :=
CALCULATE (
    [Sales Amount],
    DATESYTD ( 'Date'[Date] )
)
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The corresponding Detail Rows Expression should be a CALCULATETABLE that applies the same fi l-
ter context transformation as the one made by the corresponding measure. For example, the following 
expression returns all the columns of the Sales table from the beginning of the year considered in the 
calculation:

CALCULATETABLE (
    Sales,
    DATESYTD ( 'Date'[Date] )
)

A DAX client tool executes this measure by invoking a specifi c DAX function called DETAILROWS, 
specifying the measure that the Detail Rows Expression belongs to:

DETAILROWS ( [Sales YTD] )

The DETAILROWS function invokes a table expression stored in a measure. Therefore, one can 
defi ne hidden measures just to store long table expressions often used as fi lter arguments of many 
other DAX measures. For example, consider a Cumulative Total measure with a Detail Rows Expression 
that retrieves any dates less than or equal to the maximum date available in the fi lter context:

-- Detail Rows Expression for Cumulative Total measure
VAR LastDateSelected = MAX ( 'Date'[Date] )
RETURN
    FILTER ( 
        ALL ( 'Date'[Date] ),
        'Date'[Date] <= LastDateSelected
    )

One can reference this table expression in different measures by using the DETAILROWS function:

Cumulative Sales Amount :=
CALCULATE (
    [Sales Amount],
    DETAILROWS ( [Cumulative Total] )
)
 
Cumulative Total Cost :=
CALCULATE (
    [Total Cost],
    DETAILROWS ( [Cumulative Total] )
)

More detailed examples of this technique are available at https://www.sqlbi.com/articles/creating-
table-functions-in-dax-using-detailrows/. However, reusing table expressions with DETAILROWS is just 
a workaround for the lack of custom-defi ned functions in DAX, and it may have performance impli-
cations. Many use cases for DETAILROWS can be solved by using calculation groups, and this tech-
nique will become obsolete once DAX introduces measures returning tables or custom-defi ned DAX 
functions.

https://www.sqlbi.com/articles/creating-table-functions-in-dax-using-detailrows/
https://www.sqlbi.com/articles/creating-table-functions-in-dax-using-detailrows/
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Creating calculated tables

All the table functions shown in the previous sections can be used either as table fi lters in CALCULATE 
or to create calculated tables and queries. Earlier on, we described the ones more likely to be used as 
table fi lters, whereas in this section we describe some additional functions that are mostly used when 
creating calculated tables. There are other table functions whose main usage is in authoring queries; 
we will describe them in the next chapter. Nevertheless, be mindful that there are no limits in the use of 
table functions. Nothing is preventing anyone from using DATATABLE, SELECTCOLUMNS, or GENERATE -
SERIES (some of the functions described later) in a measure or as a table fi lter. It is only a matter of 
convenience: Some functions better fi t certain specifi c needs.

Using SELECTCOLUMNS
SELECTCOLUMNS is useful to reduce the number of columns in a table, and it also provides the capa-
bility to add new columns like ADDCOLUMNS does. In practice, SELECTCOLUMNS implements projec-
tion of columns like the SQL SELECT statement.

The most common usage of SELECTCOLUMNS is to scan a table and only return some of the col-
umns. For example, the following expression only returns the customer education and gender, that is, 
two columns:

SELECTCOLUMNS ( 
    Customer,
    "Education", Customer[Education],
    "Gender", Customer[Gender]
)

The result contains a lot of duplicates, as you can see in Figure 12-18.

FIGURE 12-18 SELECTCOLUMNS returns duplicate values.

SELECTCOLUMNS is very different from SUMMARIZE. SUMMARIZE performs a grouping of the 
result, whereas SELECTCOLUMNS only reduces the number of columns. Therefore, the output of 
SELECTCOLUMNS might contain duplicates, whereas the output of SUMMARIZE does not. One needs 
to provide SELECTCOLUMNS with pairs of names and expressions for each column in the resulting set. 
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The resulting columns can also be new ones. For example, the following formula returns a new column 
named Customer containing the name followed by its code in parentheses:

SELECTCOLUMNS ( 
    Customer,
    "Education", Customer[Education],
    "Gender", Customer[Gender],
    "Customer", Customer[Name] & " (" & Customer[Customer Code] & ")"
)

You can see the result in Figure 12-19.

FIGURE 12-19 SELECTCOLUMNS can also compute new columns, like ADDCOLUMNS does.

SELECTCOLUMNS maintains the data lineage if the expression is a single column reference, whereas 
it generates a new data lineage whenever one uses an expression. Consequently, the following result 
contains two columns: The fi rst column has the data lineage of Customer[Name], whereas the second 
column has a different data lineage that cannot fi lter the original columns, even though the content of 
the two columns is the same:

SELECTCOLUMNS ( 
    Customer,
    "Customer Name with lineage", Customer[Name],
    "Customer Name without lineage", Customer[Name] & ""
)

Creating static tables with ROW
ROW is a simple function that returns a table with only one row. ROW requires pairs of name and 
expression, and the result is a table with one row and a suitable number of columns. For example, the 
following expression is a table with one row and two columns, containing the sales amount and the 
quantity sold:

ROW ( 
    "Sales", [Sales Amount],
    "Quantity", SUM ( Sales[Quantity] ) 
)
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The result is a table with one row and two columns, as you can see in Figure 12-20.

FIGURE 12-20 ROW creates a table with one single row.

ROW is no longer commonly used since the table constructor syntax was introduced. Indeed, the 
previous expression can be written as:

{
    ( [Sales Amount], SUM ( Sales[Quantity] ) )
}

The column names are generated automatically by the table constructor syntax, as shown in 
Figure 12-21.

FIGURE 12-21 The table constructor generates column names automatically.

When using the table constructor syntax, commas separate rows. To include multiple columns, 
one needs to use parentheses to encapsulate multiple columns in a single row. The main difference 
between the ROW function and the curly braces syntax is that ROW specifi es names for the columns, 
whereas the curly braces automatically generate names for the columns. The latter makes it harder to 
later reference column values.

Creating static tables with DATATABLE
ROW is useful when wanting to create a table with a single row. On the other hand, to create multiple 
rows, one would use DATATABLE. DATATABLE creates a table specifying not only the column names, but 
also the data type of each column and its content. For example, if one needs a table with three rows to 
cluster prices, an easy way to build the table is the following expression:

DATATABLE (
    "Segment", STRING,
    "Min", DOUBLE,
    "Max", DOUBLE,
    {
        { "LOW", 0, 20 },
        { "MEDIUM", 20, 50 },
        { "HIGH", 50, 99 }
    }
)

You can see the result in Figure 12-22.
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FIGURE 12-22 The fi gure shows the resulting table generated with DATATABLE.

The data type of columns can be any of the following values: INTEGER, DOUBLE, STRING, BOOLEAN, 
CURRENCY, and DATETIME. The syntax is somewhat inconsistent with the new table constructor using 
curly braces. Indeed, DATATABLE uses curly braces to delimit rows, whereas the anonymous table con-
structor uses regular parentheses leaving the curly braces only to delimit the entire table.

A strong limitation of DATATABLE is that the contents of the table need to be constant values. Using 
any DAX expression would result in an error. This makes DATATABLE a function that is not used much. 
The table constructor syntax gives developers much more fl exibility in terms of expressivity.

One can use DATATABLE to defi ne simple, constant calculated tables. In SQL Server Data Tools 
(SSDT) for Analysis Services Tabular, a calculated table using DATATABLE is generated when a developer 
pastes the content of the clipboard into the model, whereas Power BI uses Power Query to defi ne con-
stant tables. This is another reason why DATATABLE is not common among Power BI users.

Using GENERATESERIES
GENERATESERIES is a utility function that generates series of values once the developer provides a 
lower boundary, an upper boundary, and a step. For example, the following expression produces a 
table containing 20 values, from 1 to 20:

GENERATESERIES ( 1, 20, 1 )

The resulting data type depends on the input; that can be either a number or a DateTime. For 
example, if the developer needs a table containing the time of the day, this expression provides a quick 
way of generating an 86,400-row table (one row per second):

Time = 
GENERATESERIES ( 
    TIME ( 0, 0, 0 ),       -- Start value
    TIME ( 23, 59, 59 ),    -- End value
    TIME ( 0, 0, 1 )        -- Step: 1 second
)

By changing the step and adding new columns, one could create a smaller table that acts as a suit-
able dimension—for example, to slice sales by time:

Time =
SELECTCOLUMNS (
    GENERATESERIES ( 
        TIME ( 0, 0, 0 ), 
        TIME ( 23, 59, 59 ), 
        TIME ( 0, 30, 0 ) 
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    ),
    "Time", [Value],
    "HH:MM AMPM", FORMAT ( [Value], "HH:MM AM/PM" ),
    "HH:MM", FORMAT ( [Value], "HH:MM" ),
    "Hour", HOUR ( [Value] ),
    "Minute", MINUTE ( [Value] )
)

You can see the result in Figure 12-23.

FIGURE 12-23 Using GENERATESERIES and SELECTCOLUMNS, one can easily create a time table.

Using GENERATESERIES in a measure is uncommon, whereas that function is called upon to create 
simple tables that become useful as slicers, so the user can select different parameters. For example, 
Power BI uses GENERATESERIES to add parameters for the what-if analysis.

Conclusions

In this chapter, we introduced many new table functions. Still, many have yet to come in the next 
chapter. Here we focused the attention on the set of table functions that are commonly used to create 
calculated tables or to implement complex fi lter arguments for CALCULATE and CALCULATETABLE. 
Always remember that the code we provide is an example of what is possible with DAX; we leave it up 
to the reader’s imagination to fi nd practical scenarios calling for the code in a specifi c model.

The main functions you learned in this chapter are:

 ■ ADDCOLUMNS, to add new columns to the input table.

 ■ SUMMARIZE, to perform grouping after the scan of a table.

 ■ CROSSJOIN, to perform the cartesian product of two tables.

 ■ UNION, INTERSECT, and EXCEPT, to compute the basic set of operations on tables.

 ■ SELECTCOLUMNS, to select certain columns of a table.

 ■ ROW, DATATABLE, and GENERATESERIES, to generate mostly constant tables as calculated tables.

In the next chapter, we will describe other table functions focusing more on complex queries or 
complex calculated tables.



  395

C H A P T E R  1 3

Authoring queries

In this chapter we continue our journey, discovering new table functions in DAX. Here, the focus is on 
functions that are more useful when preparing queries and calculated tables, rather than in mea-
sures. Keep in mind that most of the functions you learn in this chapter can be used in measures too, 
although some have limitations that we outline.

For each function, we provide examples of queries using them. The chapter has two goals: learning 
new functions and presenting useful patterns that you can implement in your data model.

All the demo fi les in this chapter are provided as a text fi le, containing the query executed with DAX 
Studio connected to a common Power BI fi le. The Power BI fi le contains the usual Contoso data model 
used through the entire book.

Introducing DAX Studio

DAX Studio is a free tool available at www.daxstudio.org that provides help in authoring queries, 
debugging code, and measuring the performance of queries.

DAX Studio is a live project with new features continuously being added to it. Here are a few of the 
most relevant features:

 ■ Connectivity to Analysis Services, Power BI, or Power Pivot for Excel.

 ■ Full text editor to author queries and code.

 ■ Automatic formatting of the code through the daxformatter.com service.

 ■ Automatic measure defi nition to debug or fi ne-tune performance.

 ■ Detailed performance information about your queries.

Though other tools are available to test and write queries in DAX, we strongly encourage the reader 
to download, install and learn DAX Studio. If you are unsure, just think that we wrote all the DAX code 
in this book using that tool. We work with DAX all day long, and we like to be productive. A complete 
documentation of DAX Studio is available at http://daxstudio.org/documentation/.

http://www.daxstudio.org
http://daxformatter.com
http://daxstudio.org/documentation/
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Understanding EVALUATE

EVALUATE is a DAX statement that is needed to execute a query. EVALUATE followed by any table 
expression returns the result of the table expression. Moreover, one or more EVALUATE statements 
can be preceded by special defi nitions like local tables, columns, measures, and variables that have the 
scope of the entire batch of EVALUATE statements executed together.

For example, the following query returns the red products by using EVALUATE, followed by a simple 
CALCULATETABLE function:

EVALUATE
CALCULATETABLE ( 
    'Product',
    'Product'[Color] = "Red" 
)

Before diving deeper into the description of more advanced table functions, we must introduce the 
syntax and the options available in EVALUATE, which we will use when writing complex queries.

Introducing the EVALUATE syntax
An EVALUATE statement is divided in three parts:

 ■ Defi nition section: Introduced by the DEFINE keyword, it includes the defi nition of local enti-
ties like tables, columns, variables, and measures. There can be a single defi nition section for the 
entire query, even though the query can contain multiple EVALUATE statements.

 ■ Query expression: Introduced by the EVALUATE keyword, it contains the table expression to 
evaluate and return as the result. There might be multiple query expressions, each introduced 
by EVALUATE and each with its own set of result modifi ers.

 ■ Result modifi ers: An optional additional section to EVALUATE, which is introduced by the key-
word ORDER BY. It includes the sort order of the result and the optional defi nition of which rows 
to return, by providing a starting point with START AT.

The fi rst and the third part of the statement are optional. Thus, one can just use EVALUATE followed 
by any table expression to produce a query. Nevertheless, by doing so, the developer cannot use many 
useful features of EVALUATE. Therefore, time spent learning the whole syntax is time well spent.

Here is an example of a query:

DEFINE
    VAR MinimumAmount = 2000000
    VAR MaximumAmount = 8000000
EVALUATE
FILTER (
    ADDCOLUMNS (
        SUMMARIZE ( Sales, 'Product'[Category] ),
        "CategoryAmount", [Sales Amount]
    ),
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    AND ( 
        [CategoryAmount] >= MinimumAmount,
        [CategoryAmount] <= MaximumAmount
    )
)
ORDER BY [CategoryAmount]

The previous query returns the result shown in Figure 13-1.

FIGURE 13-1 The result only includes the category amount included between 2,000,000 and 8,000,000.

The example defi nes two variables storing the upper and lower boundary of the sales amount. The 
query then retrieves all the categories whose total sales fall in between the boundaries defi ned by the 
variables. Finally, it sorts the result by sales amount. As simple as it is, the syntax is powerful, and in the 
next sections, we provide some important considerations about the usage of each part of the EVALU-
ATE syntax.

One important detail is that the defi nition section and the result modifi ers are only available in 
conjunction with EVALUATE. Thus, these features are only available when authoring queries. If writing 
a query that will later be used as a calculated table, a careful developer should avoid relying on the 
DEFINE and ORDER BY sections, only focusing on the query expression. A calculated table is defi ned by 
a table expression, not by a DAX query.

Using VAR in DEFINE
In the defi nition section, it is possible to use the VAR keyword to defi ne variables. Each variable is as 
simple as a name followed by an expression. Variables introduced in queries do not need the RETURN 
part required when variables are used as part of an expression. Indeed, the result is defi ned by the 
EVALUATE section. We distinguish between regular variables (variables used in expressions) and vari-
ables defi ned in the DEFINE section by naming the former expression variables, and the latter query 
variables.

As is the case with expression variables, query variables can contain both values and tables without 
restriction. For example, the query shown in the previous section can also be authored with a query 
table variable:

DEFINE
    VAR MinimumAmount = 2000000
    VAR MaximumAmount = 8000000
    VAR CategoriesSales =
        ADDCOLUMNS (
            SUMMARIZE ( Sales, 'Product'[Category] ),
            "CategoryAmount", [Sales Amount]
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        )
EVALUATE
FILTER (
    CategoriesSales,
    AND ( 
        [CategoryAmount] >= MinimumAmount, 
        [CategoryAmount] <= MaximumAmount 
    )
)
ORDER BY [CategoryAmount]

A query variable has the scope of the entire batch of EVALUATE statements executed together. This 
means that after it has been defi ned, the variable can be used anywhere in the following queries. The 
one limitation is that a variable can only be referenced after it has been defi ned. In the previous query, 
if you defi ne CategoriesSales before MinimumAmount or MaximumAmount, the result is a syntax error: 
The expression of CategoriesSales references two variables not yet defi ned. This is useful to prevent 
circular dependencies. Besides, the very same limitation exists for expression variables; therefore, query 
variables follow the same limitations as expression variables.

If the query contains multiple EVALUATE sections, query variables are available through all of them. 
For example, queries generated by Power BI use the DEFINE part to store slicer fi lters in query variables 
and then include multiple EVALUATE statements to compute the various parts of the visual.

Variables can also be defi ned in the EVALUATE section; in that case, being expression variables, they 
are local to the table expression. The previous query can be equivalently defi ned this way:

EVALUATE
VAR MinimumAmount = 2000000
VAR MaximumAmount = 8000000
VAR CategoriesSales =
    ADDCOLUMNS (
        SUMMARIZE ( Sales, 'Product'[Category] ),
        "CategoryAmount", [Sales Amount]
    )
RETURN
    FILTER (
        CategoriesSales,
        AND ( 
            [CategoryAmount] >= MinimumAmount, 
            [CategoryAmount] <= MaximumAmount 
        )
    )
ORDER BY [CategoryAmount]

As you can see, the variables are now defi ned as part of the table expression, and the RETURN key-
word is needed to defi ne the result of the expression. The scope of the expression variables, in this case, 
is the RETURN section.

Choosing between using a query variable or an expression variable comes with advantages and 
disadvantages. If the variable is needed in further table or column defi nitions, then you need to use 
a query variable. On the other hand, if the variable is not required in other defi nitions (or in multiple 
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EVALUATE sections), then it is better to use an expression variable. Indeed, if the variable is part of the 
expression, then it will be much easier to use the expression to compute a calculated table or to embed 
it into a measure. Otherwise, there will always be the need to update the syntax of the query to trans-
form it into an expression.

The rule of thumb for choosing between query variables and expression variables is simple. Use 
expression variables whenever possible and use query variables when strictly necessary; indeed, query 
variables require additional work to re-use the code in a different formula.

Using MEASURE in DEFINE
Another entity that one can defi ne locally to a query is a measure. This is achieved by using the key-
word MEASURE. A query measure behaves in all respects like a regular measure, but it exists only for 
the lifetime of the query. In the defi nition of the measure it is mandatory to specify the table that hosts 
the measure. The following is an example of a query measure:

DEFINE
    MEASURE Sales[LargeSales] =
        CALCULATE (
            [Sales Amount],
            Sales[Net Price] >= 200
        )
EVALUATE
ADDCOLUMNS (
    VALUES ( 'Product'[Category] ),
    "Large Sales", [LargeSales]
)

The result of the query is visible in Figure 13-2.

FIGURE 13-2 The LargeSales query measure is evaluated for every Category in the Large Sales column of the result.

Query measures are useful for two purposes: the fi rst, more obvious, is to write complex expres-
sions that can be called multiple times inside the query. The other reason is that query measures are 
extremely useful for debugging and for performance tuning. Indeed, if a query measure has the same 
name as a model measure, it gains precedence in the query. In other words, references to the measure 
name in the query will use the query measure and not the model measure. However, any other model 
measures that reference the redefi ned measure still use the original measure. Therefore, you should 
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include all the dependent measures as query measures to evaluate the impact of changing a measure 
in the model.

Thus, when testing the behavior of a measure, the best strategy is to write a query that uses the 
measure, add the local defi nition of the measure, and then perform various tests to either debug or 
optimize the code. Once the process is done, the code of the measure can be updated in the model 
with the new version. DAX Studio offers a specifi c feature for this purpose: It lets a developer automati-
cally add the DEFINE MEASURE statement to a query to speed up these steps.

Implementing common DAX query patterns

Now that we have described the syntax of EVALUATE, we introduce many functions that are common in 
authoring queries. For the most commonly used functions, we also provide sample queries that allow 
further elaborating on their use.

Using ROW to test measures
Introduced in the previous chapter, ROW is typically used to obtain the value of a measure or to 
perform an investigation on the measure query plan. EVALUATE requires a table as an argument, and 
it returns a table as a result. If all you need is the value of a measure, EVALUATE will not accept it as an 
argument. It will require a table instead. So, by using ROW, you can transform any value into a table, 
like in the following example:

EVALUATE
ROW ( "Result", [Sales Amount] )

The result is visible in Figure 13-3.

FIGURE 13-3 The ROW function returns a table with a single row.

Be mindful that the same behavior can be obtained by using the table constructor syntax:

EVALUATE
{ [Sales Amount] }

Figure 13-4 displays the result of the preceding example.

FIGURE 13-4 The table constructor returns a row with a column named Value.
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ROW provides the developer with control over the resulting column’s name, which on the other 
hand is generated automatically with the table constructor. ROW allows the developer to generate a 
table with more than one column, where they can provide for each column a column name and its cor-
responding expression. In case one needs to simulate the presence of a slicer, CALCULATETABLE comes 
in handy:

EVALUATE
CALCULATETABLE (
    ROW ( 
        "Sales", [Sales Amount],
        "Cost", [Total Cost] 
    ),
    'Product'[Color] = "Red"
)

The result is visible in Figure 13-5.

FIGURE 13-5 The ROW function can return multiple columns, and values provided are computed in a fi lter context.

Using SUMMARIZE
We introduced and used SUMMARIZE in previous chapters of the book. We mentioned that SUMMA-
RIZE performs two operations: grouping by columns and adding values. Using SUMMARIZE to group 
tables is a safe operation, whereas using SUMMARIZE to add new columns might lead to unexpected 
results that are hard to debug.

Though adding columns with SUMMARIZE is a bad idea, at this point we introduce two additional 
features of SUMMARIZE used in order to add columns. Our intention is to support our reader in under-
standing code they might run into, written by someone else. However, we reiterate here that using 
SUMMARIZE to add columns aggregating values should be avoided.

In case one uses SUMMARIZE to compute values, the option is there to let SUMMARIZE compute 
additional rows that represent subtotals. There is a SUMMARIZE modifi er named ROLLUP that changes 
the aggregation function of columns requiring for the subtotals to be added to the result. Look at the 
following query:

EVALUATE
SUMMARIZE (
    Sales,
    ROLLUP ( 
        'Product'[Category],
        'Date'[Calendar Year]
    ),
    "Sales", [Sales Amount]
)
ORDER BY
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    'Product'[Category],
    'Date'[Calendar Year]

ROLLUP instructs SUMMARIZE to not only compute the value of Sales for each category and year, 
but also to add additional rows that contain a blank in the year and that represent the subtotal at the 
category level. Because the category is also marked as ROLLUP, one row in the set contains a blank in 
both category and year along with the grand total for Sales. This is shown in Figure 13-6.

FIGURE 13-6 The ROLLUP function creates additional total rows in the SUMMARIZE result.

The rows added by ROLLUP contain a blank instead of the value of the column they are summing 
up. In case there are blanks in the column, then the output contains two rows with a blank category: 
one with the value for the blank category and one with the total by category. To distinguish between 
the two, and to make it easier to mark subtotal rows, one can add a new column using the ISSUBTOTAL 
function:

EVALUATE
SUMMARIZE (
    Sales,
    ROLLUP ( 
        'Product'[Category],
        'Date'[Calendar Year]
    ),
    "Sales", [Sales Amount],
    "SubtotalCategory", ISSUBTOTAL ( 'Product'[Category] ),
    "SubtotalYear", ISSUBTOTAL ( 'Date'[Calendar Year] )
)
ORDER BY
    'Product'[Category],
    'Date'[Calendar Year]

The last two columns of the previous query contain a Boolean value that is set to TRUE when the row 
contains a subtotal (on category or on year) and FALSE otherwise, as shown in Figure 13-7.
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FIGURE 13-7 The ISSUBTOTAL function returns True whenever a column is a subtotal in the SUMMARIZE result.

By adding these additional columns using ISSUBTOTAL, it is possible to clearly distinguish between 
rows containing actual data and rows containing subtotals.

 

Important SUMMARIZE should not be used to add new columns. Therefore, we mention 
the syntax of ROLLUP and ISSUBTOTAL just to be able to read existing code. You should 
never use SUMMARIZE this way, but prefer SUMMARIZECOLUMNS instead, or use ADD-
COLUMNS and SUMMARIZE when the use of SUMMARIZECOLUMNS is not possible.

 

Using SUMMARIZECOLUMNS
SUMMARIZECOLUMNS is an extremely powerful query function that is intended to be the “one func-
tion fi ts all” to run queries. In a single function, SUMMARIZECOLUMNS contains all the features needed 
to execute a query. SUMMARIZECOLUMNS lets you specify:

 ■ A set of columns used to perform the group-by, like in SUMMARIZE, with the option of produc-
ing subtotals.

 ■ A set of new columns to add to the result, like both SUMMARIZE and ADDCOLUMNS.

 ■ A set of fi lters to apply to the model prior to performing the group-by, like CALCULATETABLE.

Finally, SUMMARIZECOLUMNS automatically removes from the output any row for which all the 
added columns produce a blank value. It does not come as a surprise that Power BI uses SUMMARIZE-
COLUMNS for nearly all the queries it runs.

The following is a fi rst, simple query using SUMMARIZECOLUMNS:

EVALUATE
SUMMARIZECOLUMNS (
    'Product'[Category],
    'Date'[Calendar Year],
    "Amount", [Sales Amount]
)
ORDER BY 
    'Product'[Category],
    'Date'[Calendar Year]
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The previous query groups data by category and year, computing the sales amount in a fi lter context 
containing the given category and year for every row of the result. The result is visible in Figure 13-8.

FIGURE 13-8 The result contains the category, year, and the amount of the given category and year.

Years with no sales (like 2005) do not appear in the result. The reason is that, for that specifi c row of 
the result, the new Amount column returned a blank, so SUMMARIZECOLUMNS removed the row from 
the result. If the developer needs to ignore this behavior for certain columns, they can use the IGNORE 
modifi er like in the following variation of the same query:

EVALUATE
SUMMARIZECOLUMNS (
    'Product'[Category],
    'Date'[Calendar Year],
    "Amount", IGNORE ( [Sales Amount] )
)
ORDER BY 
    'Product'[Category],
    'Date'[Calendar Year]

As a result, SUMMARIZECOLUMNS ignores the fact that Sales Amount returns a blank; the result 
also contains sales for Audio in 2005 and 2006, as you can see in Figure 13-9.

FIGURE 13-9 Using IGNORE, combinations producing blank results in a measure are still returned.
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In case multiple columns are added by SUMMARIZECOLUMNS, it is possible to choose which one 
to tag with IGNORE and which one to use for blank checks. The common practice is that of removing 
blanks anyway, to avoid empty results.

SUMMARIZECOLUMNS offers the option of computing subtotals too, using both ROLLUPADDSUB-
TOTAL and ROLLUPGROUP. In the previous query, if you need the yearly subtotal, you should mark the 
Date[Calendar Year] column with ROLLUPADDISSUBTOTAL, also specifying the name of a column that 
indicates whether a given row is a subtotal or not:

EVALUATE
SUMMARIZECOLUMNS (
    'Product'[Category],
    ROLLUPADDISSUBTOTAL ( 
        'Date'[Calendar Year],
        "YearTotal"
    ),
    "Amount", [Sales Amount]
)
ORDER BY 
    'Product'[Category],
    'Date'[Calendar Year]

The result now contains additional rows representing the subtotal at the year level, with an addi-
tional column named YearTotal containing TRUE only for the subtotal rows. You see this in Figure 13-10 
where the subtotal rows are highlighted.

FIGURE 13-10 ROLLUPADDISSUBTOTAL creates a Boolean column indicating the presence of a subtotal, and new 
rows with the subtotal amounts.

When summarizing by multiple columns, you can mark several columns with ROLLUPADDISSUB-
TOTAL. This produces several total groups. For example, the following query produces both the subtotal 
of a category for all years and a subtotal of a year over all categories:
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EVALUATE
SUMMARIZECOLUMNS (
    ROLLUPADDISSUBTOTAL ( 
        'Product'[Category],
        "CategoryTotal"
    ),
    ROLLUPADDISSUBTOTAL ( 
        'Date'[Calendar Year],
        "YearTotal"
    ),
    "Amount", [Sales Amount] 
)
ORDER BY 
    'Product'[Category],
    'Date'[Calendar Year]

The subtotal of a year over all categories and an example of a subtotal of a category for all years are 
highlighted in that order, in Figure 13-11.

FIGURE 13-11 ROLLUPADDISSUBTOTAL can group multiple columns.

If you need subtotals for a group of columns instead of just one column, then the modifi er ROLLUP-
GROUP becomes useful. The following query produces only one subtotal for both category and year, 
adding only one extra row to the result:

EVALUATE
SUMMARIZECOLUMNS (
    ROLLUPADDISSUBTOTAL ( 
        ROLLUPGROUP ( 
            'Product'[Category], 
            'Date'[Calendar Year] 
        ),
        "CategoryYearTotal"
    ),
    "Amount", [Sales Amount]
)
ORDER BY 
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    'Product'[Category],
    'Date'[Calendar Year]

You can see the result with only one total row in Figure 13-12.

FIGURE 13-12 ROLLUPADDISSUBTOTAL creates both new rows and one new column with the subtotals.

The last feature of SUMMARIZECOLUMNS is the ability to fi lter the result, like CALCULATETABLE 
does. One can specify one or more fi lters by using tables as additional arguments. For example, the fol-
lowing query only retrieves the sales of customers with a high school education; the result is similar to 
Figure 13-13, but with smaller amounts:

EVALUATE
SUMMARIZECOLUMNS (
    ROLLUPADDISSUBTOTAL ( 
        ROLLUPGROUP ( 
            'Product'[Category], 
            'Date'[Calendar Year] 
        ),
        "CategoryYearTotal"
    ),
    FILTER ( 
        ALL ( Customer[Education] ), 
        Customer[Education] = "High School" 
    ),
    "Amount", [Sales Amount]
)

Please note that with SUMMARIZECOLUMNS, the compact syntax of fi lter arguments using predi-
cates in CALCULATE and CALCULATETABLE is not available. Thus, the following query generates a 
syntax error:

EVALUATE
SUMMARIZECOLUMNS (
    ROLLUPADDISSUBTOTAL ( 
        ROLLUPGROUP ( 
            'Product'[Category], 
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            'Date'[Calendar Year] 
        ),
        "CategoryYearTotal"
    ),
    Customer[Education] = "High School",    -- This syntax is not available
    "Amount", [Sales Amount]
)

The reason is that the fi lter arguments of SUMMARIZECOLUMNS need to be tables, and there are 
no shortcuts in this case. An easy and compact way of expressing a fi lter with SUMMARIZECOLUMNS is 
to use TREATAS:

EVALUATE
SUMMARIZECOLUMNS (
    ROLLUPADDISSUBTOTAL ( 
        ROLLUPGROUP ( 
            'Product'[Category], 
            'Date'[Calendar Year] 
        ),
        "CategoryYearTotal"
    ),
    TREATAS ( { "High School" }, Customer[Education] ), 
    "Amount", [Sales Amount]
)

SUMMARIZECOLUMNS is extremely powerful, but it comes with a strong limitation: It cannot be 
called if the external fi lter context has performed a context transition. For this reason, SUMMARIZE-
COLUMNS is useful when authoring queries; however, it is not available as a replacement for ADD-
COLUMNS and SUMMARIZE in measures because it will not work in most reports. Indeed, a measure is 
often used in a visual like a matrix or a chart, which internally executes the measure in a row context for 
each value displayed in the report.

As a further example of SUMMARIZECOLUMNS limitations in a row context, consider the following 
query that returns the total sales of all products using an ineffi cient but still valid approach:

EVALUATE
{
    SUMX (
        VALUES ( 'Product'[Category] ),
        CALCULATE (
            SUMX (
                ADDCOLUMNS (
                    VALUES ( 'Product'[Subcategory] ),
                    "SubcategoryTotal", [Sales Amount]
                ),
                [SubcategoryTotal]
            )
        )
    )
}
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If you replace the innermost ADDCOLUMNS with SUMMARIZECOLUMNS, then the query fails 
because SUMMARIZECOLUMNS is being called in a context where CALCULATE forced context transi-
tion. Therefore, the following query is not valid:

EVALUATE
{
    SUMX (
        VALUES ( 'Product'[Category] ),
        CALCULATE (
            SUMX (
                SUMMARIZECOLUMNS (
                    'Product'[Subcategory],
                    "SubcategoryTotal", [Sales Amount]
                ),
                [SubcategoryTotal]
            )
        )
    )
}

In general, SUMMARIZECOLUMNS is not suitable in measures because the measure will be called 
inside a much more complex query generated by the client tool. That query is likely to contain context 
transitions, making SUMMARIZECOLUMNS fail.

Using TOPN
TOPN is a function that sorts a table and then returns a subset of the fi rst rows only. It is useful when-
ever one needs to reduce the number of rows of a set. For example, when Power BI shows the result of 
a table, it does not retrieve the full result from the database. Instead, it only retrieves the fi rst few rows 
that are needed to produce the page on the screen. The remaining part of the result is retrieved only 
on demand, when the user scrolls down the visual. Another scenario where TOPN is useful is to retrieve 
top performers, like top products, top customers, and so on.

The top three products based on sales can be computed with the following query, which evaluates 
the Sales Amount measure for each row of the Product table:

EVALUATE
TOPN ( 
    3, 
    'Product', 
    [Sales Amount] 
)

The resulting table contains all the columns of the source table. When a table is used in a query, 
one is seldom interested in all the columns, so the input table of TOPN should reduce the columns 
to merely the ones needed. The following variation produces fewer columns than are available in the 
entire  Product table. This is shown in Figure 13-13:

EVALUATE
VAR ProductsBrands = 
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    SUMMARIZE ( 
        Sales, 
        'Product'[Product Name], 
        'Product'[Brand] 
    )
VAR Result =
    TOPN (
        3,
        ProductsBrands,
        [Sales Amount]
    )
RETURN Result
ORDER BY 'Product'[Product Name]

FIGURE 13-13 TOPN fi lters the rows of a table expression based on the value of the Sales Amount measure.

It is likely that one also needs the value of Sales Amount in the result, in order to correctly sort the 
resulting three rows. In such a case, the best option is to precompute the value inside the parameter 
of SUMMARIZE and then reference it in TOPN. Thus, the most frequently used pattern of TOPN is the 
following:

EVALUATE
VAR ProductsBrands = 
    SUMMARIZE ( 
        Sales, 
        'Product'[Product Name], 
        'Product'[Brand] 
    )
VAR ProductsBrandsSales =
    ADDCOLUMNS (
        ProductsBrands,
        "Product Sales", [Sales Amount]
    )
VAR Result =
    TOPN (
        3,
        ProductsBrandsSales,
        [Product Sales]
    )
RETURN Result
ORDER BY [Product Sales] DESC

You can see the result of this query in Figure 13-14.
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FIGURE 13-14 TOPN returns the top N rows of a table sorted by an expression.

The table can be sorted ascending or descending order to apply the top fi lter. By default, it is sorted 
in descending order so that it returns the rows with the largest values fi rst. The third, optional param-
eter can change the sort order. The values can be 0 or FALSE for the default descending order, or 1 or 
TRUE for the ascending order.

Important Do not confuse the sort order of TOPN with the sort order of the result of the 
query; the latter is managed by the ORDER BY condition of the EVALUATE statement. The third 
parameter of TOPN only affects how to sort the table generated internally by TOPN itself.

 

In the presence of ties, TOPN is not guaranteed to return the exact number of rows requested. Instead, 
it returns all the rows with the same value. For example, in the following query we request the top four 
brands, and we introduced a modifi ed calculation that uses MROUND to fi ctitiously introduce ties:

EVALUATE
VAR SalesByBrand = 
    ADDCOLUMNS (
        VALUES ( 'Product'[Brand] ),
        "Product Sales", MROUND ( [Sales Amount], 1000000 )
    )
VAR Result =
    TOPN (
        4,
        SalesByBrand,
        [Product Sales]
    )
RETURN Result
ORDER BY [Product Sales] DESC

The result contains fi ve rows, not just four, because both Litware and Proseware produce a result of 
3,000,000. Finding ties and not knowing how to differentiate between the two, TOPN returns both, as 
you can see in Figure 13-15.

FIGURE 13-15 In the presence of ties, TOPN might return more values than requested.
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A common technique to avoid this problem is to add extra columns to the expression of TOPN. 
Indeed, in the third parameter, multiple columns can be used to sort the result of TOPN. For example, 
to retrieve the top four brands and to choose the fi rst brand in alphabetical order in case of a tie, you 
can use additional sort orders:

EVALUATE
VAR SalesByBrand = 
    ADDCOLUMNS (
        VALUES ( 'Product'[Brand] ),
        "Product Sales", MROUND ( [Sales Amount], 1000000 )
    )
VAR Result =
    TOPN (
        4,
        SalesByBrand,
        [Product Sales], 0,
        'Product'[Brand], 1
    )
RETURN Result
ORDER BY [Product Sales] DESC

The result shown in Figure 13-16 removes Proseware because alphabetically it comes after Litware. 
Please note that in the query, we used a descending order for the sales and an ascending order for the 
brand.

FIGURE 13-16 Using additional sort orders, one can remove ties in the table.

Be mindful that adding columns to the sort order does not guarantee that only the right number of 
rows will be returned. TOPN can always return multiple rows in the presence of ties. Adding columns to 
the sort order only mitigates the problem by reducing the number of ties. If one needs a guarantee to 
retrieve an exact number of rows, then a column with unique values should be added to the sort order, 
removing any possible ties.

Consider a more complex example where TOPN is mixed with set functions and variables. The 
requirement is a report showing the sales of the top 10 products plus an additional “Others” row show-
ing the sales of all other products combined. A possible implementation is the following:

EVALUATE
VAR NumOfTopProducts = 10
VAR ProdsWithSales =
    ADDCOLUMNS (



 CHAPTER 13 Authoring queries 413

        VALUES ( 'Product'[Product Name] ),
        "Product Sales", [Sales Amount]
    )
VAR TopNProducts =
    TOPN ( 
        NumOfTopProducts, 
        ProdsWithSales, 
        [Product Sales] 
    )
VAR RemainingProducts =
    EXCEPT ( ProdsWithSales, TopNProducts )
VAR OtherRow =
    ROW ( 
        "Product Name", "Others", 
        "Product Sales", SUMX ( 
            RemainingProducts, 
            [Product Sales] 
        )
    ) 
VAR Result =
    UNION ( TopNProducts, OtherRow )
RETURN Result
ORDER BY [Product Sales] DESC

The ProdsWithSales variable computes a table with products and sales. Then TopNProducts only 
computes the top 10 products. The RemainingProducts variable uses EXCEPT to compute the prod-
ucts that are not in the top 10. Once the code has split the products into two sets (TopNProducts and 
RemainingProducts), it builds a single-row table containing the string “Others”; it also aggregates all 
the products in the RemainingProducts variable, summing all the remaining products. The result is then 
the UNION of the top 10 products with the additional row, computed in the formula. The result is vis-
ible in Figure 13-17.

FIGURE 13-17 The additional row containing Others is created by the query.
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Although correct, this result is not perfect yet. Indeed, the Others row appears at the beginning of 
the report, but it could actually appear in any position depending on its value. One might want to sort 
the rows in such a way that the Others row is always at the end of the report, while the top products are 
sorted by their sales, with the top performer being fi rst.

The result can be achieved by introducing a sort column that moves the Others row to the end by 
using a ranking based on Product Sales for the top rows:

EVALUATE
VAR NumOfTopProducts = 10
VAR ProdsWithSales =
    ADDCOLUMNS (
        VALUES ( 'Product'[Product Name] ),
        "Product Sales", [Sales Amount]
    )
VAR TopNProducts =
    TOPN ( 
        NumOfTopProducts, 
        ProdsWithSales, 
        [Product Sales] 
    )
VAR RemainingProducts =
    EXCEPT ( ProdsWithSales, TopNProducts )
VAR RankedTopProducts = 
    ADDCOLUMNS(
        TopNProducts,
        "SortColumn", RANKX ( TopNProducts, [Product Sales] ) 
    )
VAR OtherRow =
    ROW ( 
        "Product Name", "Others", 
        "Product Sales", SUMX ( 
            RemainingProducts, 
            [Product Sales] 
        ),
        "SortColumn", NumOfTopProducts + 1
    )              
VAR Result =
    UNION ( RankedTopProducts, OtherRow )
RETURN
    Result
ORDER BY [SortColumn]

The result visible in Figure 13-18 is now sorted better.
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FIGURE 13-18 The SortColumn index is how a developer can sort the results as desired.

Using GENERATE and GENERATEALL
GENERATE is a powerful function that implements the OUTER APPLY logic from the SQL language. 
GENERATE takes two arguments: a table and an expression. It iterates the table, evaluates the expres-
sion in the row context of the iteration, and then joins the row of the iteration with the rows returned 
by the table expression. Its behavior is like a regular join, but instead of joining with a table, it joins with 
an expression evaluated for each row. It is an extremely versatile function.

To demonstrate its behavior, we extend the previous TOPN example. Instead of computing the top 
products of all time, the requirement is to compute the top three products by year. We can split this 
problem into two steps: fi rst, computing the top three products, and then repeating this calculation for 
every year. One possible solution for the top three products is the following:

EVALUATE
VAR ProductsSold =
    SUMMARIZE (
        Sales,
        'Product'[Product Name]
    )
VAR ProductsSales =
    ADDCOLUMNS (
        ProductsSold,
        "Product Sales", [Sales Amount]
    )
VAR Top3Products =
    TOPN (
        3,
        ProductsSales,
        [Product Sales]
    )
RETURN
    Top3Products
ORDER BY [Product Sales] DESC
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The result shown in Figure 13-19 contains just three products.

FIGURE 13-19 TOPN returns the top three products of all time.

If the previous query is evaluated in a fi lter context that fi lters the year, the result is different: It 
returns the top three products of the given year. Here is where GENERATE comes in handy: We use 
GENERATE to iterate the years, and for each year we compute the TOPN expression. During each itera-
tion, TOPN returns the top three products of the selected year. Finally, GENERATE joins the years with 
the result of the expression at each iteration. This is the complete query:

EVALUATE
GENERATE (
    VALUES ( 'Date'[Calendar Year] ),
    CALCULATETABLE (
        VAR ProductsSold =
            SUMMARIZE ( Sales, 'Product'[Product Name] )
        VAR ProductsSales =
            ADDCOLUMNS ( ProductsSold, "Product Sales", [Sales Amount] )
        VAR Top3Products =
            TOPN ( 3, ProductsSales, [Product Sales] )
        RETURN Top3Products
    )
)
ORDER BY 
    'Date'[Calendar Year],
    [Product Sales] DESC

The result of the query is visible in Figure 13-20.

FIGURE 13-20 GENERATE joins the years with the top three products by year.
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If one needs to compute the top products by category, the only thing that needs to be updated 
in the formula is the table iterated by GENERATE. The following produces the top three products by 
category:

EVALUATE
GENERATE (
    VALUES ( 'Product'[Category] ),
    CALCULATETABLE (
        VAR ProductsSold =
            SUMMARIZE ( Sales, 'Product'[Product Name] )
        VAR ProductsSales =
            ADDCOLUMNS ( ProductsSold, "Product Sales", [Sales Amount] )
        VAR Top3Products =
            TOPN ( 3, ProductsSales, [Product Sales] )
        RETURN Top3Products
    )
)
ORDER BY 
    'Product'[Category],
    [Product Sales] DESC

As shown in Figure 13-21, the result now contains three products for each category.

FIGURE 13-21 Iterating over the categories, the result shows the top three products by category.

If the expression provided as the second argument of GENERATE produces an empty table, then 
GENERATE skips the row from the result. If one needs to also retrieve rows of the fi rst table producing 
an empty result, then GENERATEALL is needed. For example, there are no sales in 2005, so there are no 
top three products in 2005; GENERATE does not return any row for 2005. The following query lever-
ages GENERATEALL and returns 2005 and 2006:

EVALUATE
GENERATEALL (
    VALUES ( 'Date'[Calendar Year] ),
    CALCULATETABLE (
        VAR ProductsSold =
            SUMMARIZE ( Sales, 'Product'[Product Name] )
        VAR ProductsSales =
            ADDCOLUMNS ( ProductsSold, "Product Sales", [Sales Amount] )
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        VAR Top3Products =
            TOPN ( 3, ProductsSales, [Product Sales] )
        RETURN Top3Products
    )
)
ORDER BY 
    'Date'[Calendar Year],
    [Product Sales] DESC

The result of this query is visible in Figure 13-22.

FIGURE 13-22 GENERATEALL returns years for which there are no sales, whereas GENERATE did not.

Using ISONORAFTER
ISONORAFTER is a utility function. It is heavily used by Power BI and reporting tools to provide pagi-
nation, and it is seldom used by developers in queries and measures. When a user browses a report 
in Power BI, the engine only retrieves the rows needed for the current page from the data model. To 
obtain this, it always uses a TOPN function.

If a user is browsing a products table, they might reach a certain point during the scanning. For 
example, in Figure 13-23 the last row shown is Stereo Bluetooth Headphones New Gen, and the arrow 
shows the relative position in the list.
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FIGURE 13-23 The user is browsing the Product table and has reached a certain point in the list.

When the user scrolls down, they might reach the bottom of the rows retrieved previously; at this 
point, Power BI needs to retrieve the next rows. The query that retrieves the next rows will still be a 
TOPN because Power BI always retrieves a subset of the whole data. Moreover, it needs to be the next 
TOPN. This is where ISONORAFTER comes in. This is the full query executed by Power BI when scrolling 
down, and its result is shown in Figure 13-24:

EVALUATE
TOPN (
    501,
    FILTER (
        KEEPFILTERS (
            SUMMARIZECOLUMNS (
                'Product'[Category],
                'Product'[Color],
                'Product'[Product Name],
                "Sales_Amount", 'Sales'[Sales Amount]
            )
        ),
        ISONORAFTER (
            'Product'[Category], "Audio", ASC,
            'Product'[Color], "Yellow", ASC,
            'Product'[Product Name], 
                "WWI Stereo Bluetooth Headphones New Generation M370 Yellow", ASC
        )
    ),
    'Product'[Category], 1,
    'Product'[Color], 1,
    'Product'[Product Name], 1
)
ORDER BY
    'Product'[Category],
    'Product'[Color],
    'Product'[Product Name]
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FIGURE 13-24 This is the next set of rows starting from the last row in the previous fi gure.

The code executes a TOPN 501 of a FILTER. FILTER is used to remove previously retrieved rows, and 
in order to obtain the scope, it leverages ISONORAFTER. That same condition of ISONORAFTER could 
have been expressed with standard Boolean logic. Indeed, the whole preceding ISONORAFTER expres-
sion could be written this way:

'Product'[Category] > "Audio" 
|| ( 'Product'[Category] = "Audio" && 'Product'[Color] > "Yellow" )
|| ( 'Product'[Category] = "Audio" 
         && 'Product'[Color] = "Yellow"
         && 'Product'[Product Name] 
                 >= "WWI Stereo Bluetooth Headphones New Generation M370 Yellow"
   )

The advantage of using ISONORAFTER is twofold: The code is easier to write, and the query plan is 
potentially better.

Using ADDMISSINGITEMS
ADDMISSINGITEMS is another function frequently used by Power BI and seldom used in authoring 
data models. Its purpose is to add rows that might have been skipped by SUMMARIZECOLUMNS. 
For example, the following query uses SUMMARIZECOLUMNS grouping by year; its result is visible in 
Figure 13-25.

EVALUATE
SUMMARIZECOLUMNS (
    'Date'[Calendar Year],
    "Amt", [Sales Amount]
)
ORDER BY 'Date'[Calendar Year]

FIGURE 13-25 SUMMARIZECOLUMNS does not include years without sales where Amt column would be blank.
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Years with no sales are not returned by SUMMARIZECOLUMNS. To retrieve the rows removed by 
SUMMARIZECOLUMNS, one option is to use ADDMISSINGITEMS:

EVALUATE
ADDMISSINGITEMS (
    'Date'[Calendar Year],
    SUMMARIZECOLUMNS (
        'Date'[Calendar Year],
        "Amt", [Sales Amount]
    ),
    'Date'[Calendar Year]
)
ORDER BY 'Date'[Calendar Year]

The result of this query is visible in Figure 13-26, where we highlighted the rows returned by SUM-
MARIZECOLUMNS. The rows with a blank in the Amt column were added by ADDMISSINGITEMS.

FIGURE 13-26 ADDMISSINGITEMS added the rows with a blank value for Amt.

ADDMISSINGITEMS accepts several modifi ers and parameters to better control the result for subto-
tals and other fi lters.

Using TOPNSKIP
The TOPNSKIP function is used extensively by Power BI to send just a few rows of a large raw dataset 
to the Data View of Power BI. Other tools, such as Power Pivot and SQL Server Data Tools, use other 
techniques to quickly browse and fi lter the raw data of a table. The reason for using them is to quickly 
browse over a large table without having to wait for the materialization of the entire set of rows. 
Both TOPNSKIP and other techniques are described in the article at http://www.sqlbi.com/articles/
querying-raw-data-to-tabular/.

Using GROUPBY
GROUPBY is a function used to group a table by one or more columns, aggregating other data similarly 
to what is possible using ADDCOLUMNS and SUMMARIZE. The main difference between SUMMARIZE 
and GROUPBY is that GROUPBY can group columns whose data lineage does not correspond to 
columns in the data model, whereas SUMMARIZE can only use columns defi ned in the data model. 

http://www.sqlbi.com/articles/querying-raw-data-to-tabular/
http://www.sqlbi.com/articles/querying-raw-data-to-tabular/
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In addition, columns added by GROUPBY need to use an iterator that aggregates data such as SUMX, 
AVERAGEX, or other “X” aggregation functions.

For example, consider the requirement to group sales by year and month and compute the sales 
amount. This is a possible solution using GROUPBY; the query result is visible in Figure 13-27:

EVALUATE
GROUPBY (
    Sales,
    'Date'[Calendar Year],
    'Date'[Month],
    'Date'[Month Number],
    "Amt", AVERAGEX ( 
        CURRENTGROUP (), 
        Sales[Quantity] * Sales[Net Price] 
    )    
)
ORDER BY 
    'Date'[Calendar Year],
    'Date'[Month Number]

FIGURE 13-27 GROUPBY in this example aggregates the average of the line amount by year and month.

Performance-wise, GROUPBY can be slow in handling larger datasets—tens of thousands of rows or 
more. Indeed, GROUPBY performs the grouping after having materialized the table; it is thus not the 
suggested option to scan larger datasets. Besides, most queries can be expressed more easily by using 
the ADDCOLUMNS and SUMMARIZE pair. Indeed, the previous query is better written as:

EVALUATE
ADDCOLUMNS (
    SUMMARIZE (
        Sales,
        'Date'[Calendar Year],
        'Date'[Month],
        'Date'[Month Number],
    ),
    "Amt", AVERAGEX (
        RELATEDTABLE ( Sales ),
        Sales[Quantity] * Sales[Net Price]
    )
)
ORDER BY
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    'Date'[Calendar Year],
    'Date'[Month Number]

 

Note In the previous query, it is worthwhile to note that the result of SUMMARIZE is 
a table containing columns from the Date table. Therefore, when AVERAGEX later iter-
ates over the result of RELATEDTABLE, the table returned by RELATEDTABLE is the table of 
the year and month currently iterated by ADDCOLUMNS over the result of SUMMARIZE. 
Remember that data lineage is kept; therefore, the result of SUMMARIZE is a table along 
with its data lineage.

 

One advantage of GROUPBY is its option to group by columns added to the query by ADDCOLUMNS 
or SUMMARIZE. The following is an example where SUMMARIZE would not be an alternative:

EVALUATE
VAR AvgCustomerSales =
    AVERAGEX (
        Customer,
        [Sales Amount]
    )
VAR ClassifiedCustomers =
    ADDCOLUMNS (
        VALUES ( Customer[Customer Code] ),
        "Customer Category", IF (
            [Sales Amount] >= AvgCustomerSales,
            "Above Average",
            "Below Average"
        )
    )
VAR GroupedResult =
    GROUPBY (
        ClassifiedCustomers,
        [Customer Category],
        "Number of Customers", SUMX (
            CURRENTGROUP (),
            1
        )
    )
RETURN GroupedResult
ORDER BY [Customer Category]

You can see the result in Figure 13-28.

FIGURE 13-28 GROUPBY can group columns computed during the query.
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The previous formula shows both the advantages and the disadvantages of GROUPBY at the same 
time. Indeed, the code fi rst creates a new column in the customer table that checks if the customer 
sales are above or below the average sales. It then groups by this temporary column, and it returns the 
number of customers.

Grouping by a temporary column is a useful feature; however, to compute the number of customers, 
the code needs to use a SUMX over a CURRENTGROUP using a constant expression of 1. The reason is 
that columns added by GROUPBY need to be iterations over CURRENTGROUP. A simple function like 
COUNTROWS ( CURRENTGROUP () ) would not work here.

There are only a few scenarios where GROUPBY is useful. In general, GROUPBY can be used when 
there is the need to group by a column added in the query, but be mindful that the column used to 
group by should have a small cardinality. Otherwise, you might face performance and memory con-
sumption issues.

Using NATURALINNERJOIN and NATURALLEFTOUTERJOIN
DAX uses model relationships automatically whenever a developer runs a query. Still, it might be useful 
to join two tables that have no relationships. For example, one might defi ne a variable containing a 
table and then join a calculated table with that variable.

Consider the requirement to compute the average sales per category and to then build a report 
showing the categories below, around, and above the average. This column is easy to compute with a 
simple SWITCH function. However, if the results need to be sorted in a particular way, then it is neces-
sary to compute both the category description and the sort order (as a new column) at the same time, 
using a similar piece of code.

Another approach would be to compute only one of the two values and then use a temporary table 
with a temporary relationship to retrieve the description. This is exactly what the following query does:

EVALUATE
VAR AvgSales =
    AVERAGEX (
        VALUES ( 'Product'[Brand] ),
        [Sales Amount]
    )
VAR LowerBoundary = AvgSales * 0.8
VAR UpperBoundary = AvgSales * 1.2
VAR Categories =
    DATATABLE (
        "Cat Sort", INTEGER,
        "Category", STRING,
        {
            { 0, "Below Average" },
            { 1, "Around Average" },
            { 2, "Above Average" }
        }
    )
VAR BrandsClassified =
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    ADDCOLUMNS (
        VALUES ( 'Product'[Brand] ),
        "Sales Amt", [Sales Amount],
        "Cat Sort", SWITCH (
            TRUE (),
            [Sales Amount] <= LowerBoundary, 0,
            [Sales Amount] >= UpperBoundary, 2,
            1
        )
    )
VAR JoinedResult =
    NATURALINNERJOIN (
        Categories,
        BrandsClassified
    )
RETURN JoinedResult
ORDER BY 
    [Cat Sort], 
    'Product'[Brand]

It is useful to look at the result of the query shown in Figure 13-29 before commenting on it.

FIGURE 13-29 The Cat Sort column must be used as the “sort by column” argument on Category.

The query fi rst builds a table containing the brands, the sales amounts, and a column with values 
between 0 and 2. The value will be used as a key in the Categories variable to retrieve the category 
description. This fi nal join between the temporary table and the variable is performed by NATURAL-
INNERJOIN, which joins the two tables based on the Cat Sort column.

NATURALINNERJOIN performs the join between two tables based on columns that have the same 
name in both tables. NATURALLEFTOUTERJOIN performs the same operation, but instead of an inner 
join, it uses a left outer join. By using a left outer join, NATURALLEFTOUTERJOIN keeps rows in the fi rst 
table even if there are no matches in the second table.

In case the two tables are physically defi ned in the data model, they can only be joined using a 
relationship. This can be useful to obtain the result of the join between two tables—similarly to what is 
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possible in a SQL query. Both NATURALINNERJOIN and NATURALLEFTOUTERJOIN use the relationship 
between the tables if it exists. Otherwise, they need the same data lineage to perform the join.

For example, this query returns all the rows in Sales that have corresponding rows in Product, only 
including all the columns of the two tables once:

EVALUATE
NATURALINNERJOIN ( Sales, Product )

The following query returns all the rows in Product, also showing the products that have no Sales:

EVALUATE
NATURALLEFTOUTERJOIN ( Product, Sales )

In both cases, the column that defi nes the relationship is only present once in the result, which 
includes all the other columns of the two tables.

However, one important limitation of these join functions is that they do not match two columns 
of the data model with different data lineage and no relationship. In practice, two tables of the data 
model that have one or more columns with the same name and no relationship cannot be joined 
together. As a workaround, one can use TREATAS to change the data lineage of a column so that the 
join becomes possible. The article at https://www.sqlbi.com/articles/from-sql-to-dax-joining-tables/ 
describes this limitation and a possible workaround in detail.

NATURALINNERJOIN or NATURALLEFTOUTERJOIN are useful in a limited number of cases; in DAX, 
they are not as frequent as the equivalent join function in the SQL language.

 

Important NATURALINNERJOIN and NATURALLEFTOUTERJOIN are useful to join the 
result of temporary tables, where the data lineage of certain columns does not point to 
physical columns of the data model. In order to join tables in the model that do not have 
a proper relationship, it is necessary to use TREATAS to change the data lineage of the 
 columns to use in the join operation.

 

Using SUBSTITUTEWITHINDEX
The SUBSTITUTEWITHINDEX function can replace the columns in a row set corresponding to the 
column headers of a matrix, with indexes representing their positions. SUBSTITUTEWITHINDEX is not a 
function a developer would use in a regular query because its behavior is quite intricate. One possible 
usage might be when creating a dynamic user interface for querying DAX. Indeed, Power BI internally 
uses SUBSTITUTEWITHINDEX for matrix charts.

For example, consider the Power BI matrix in Figure 13-30.

https://www.sqlbi.com/articles/from-sql-to-dax-joining-tables/describes
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FIGURE 13-30 A matrix in Power BI is populated using a query with SUBSTITUTEWITHINDEX.

The result of a DAX query is always a table. Each cell of the matrix in the report corresponds to a 
single row of the table returned by the DAX query. In order to correctly display the data in the report, 
Power BI uses SUBSTITUTEWITHINDEX to translate the column names of the matrix (CY 2007, CY 2008, 
and CY 2009) into sequential numbers, making it easier to populate the matrix when reading the result. 
The following is a simplifi ed version of the DAX request generated for the previous matrix:

DEFINE
    VAR SalesYearCategory =
        SUMMARIZECOLUMNS (
            'Product'[Category],
            'Date'[Calendar Year],
            "Sales_Amount", [Sales Amount]
        )
    VAR MatrixRows =
        SUMMARIZE (
            SalesYearCategory,
            'Product'[Category]
        )
    VAR MatrixColumns =
        SUMMARIZE (
            SalesYearCategory,
            'Date'[Calendar Year]
        )
    VAR SalesYearCategoryIndexed =
        SUBSTITUTEWITHINDEX (
            SalesYearCategory,
            "ColumnIndex", MatrixColumns,
            'Date'[Calendar Year], ASC
        )
 
-- First result: matrix column headers
EVALUATE 
MatrixColumns
ORDER BY 'Date'[Calendar Year]
 
-- Second result: matrix rows and content
EVALUATE 
NATURALLEFTOUTERJOIN (
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    MatrixRows,
    SalesYearCategoryIndexed
)
ORDER BY
    'Product'[Category],
    [ColumnIndex]

The request contains two EVALUATE statements. The fi rst EVALUATE returns the content of the 
 column headers, as shown in Figure 13-31.

FIGURE 13-31 Result of the column headers of a matrix in Power BI.

The second EVALUATE returns the remaining content of the matrix, providing one row for each cell 
of the matrix content. Every row in the result has the columns required to populate the row header of 
the matrix followed by the numbers to display, and one column containing the column index computed 
by using the SUBSTITUTEWITHINDEX function. This is shown in Figure 13-32.

FIGURE 13-32 Result of the rows’ content of a matrix in Power BI generated using SUBSTITUTEWITHINDEX.

SUBSTITUTEWITHINDEX is mainly used to build visuals like the matrix in Power BI.

Using SAMPLE
SAMPLE returns a sample of rows from a table. Its arguments are the number of rows to be returned, 
the table name, and a sort order. SAMPLE returns the fi rst and the last rows of the table, plus additional 
rows up to exactly the number of rows requested. SAMPLE picks evenly distributed rows from the 
source table.
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For example, the following query returns exactly 10 products after having sorted the input table by 
Product Name:

EVALUATE
SAMPLE ( 
    10,
    ADDCOLUMNS ( 
        VALUES ( 'Product'[Product Name] ),
        "Sales", [Sales Amount]
    ),
    'Product'[Product Name] 
)
ORDER BY 'Product'[Product Name]

The result of the previous query is visible in Figure 13-33.

FIGURE 13-33 SAMPLE returns a subset of a table by choosing evenly distributed rows.

SAMPLE is useful for a DAX client tool to generate values for the axis of a chart. Another scenario is 
an analysis where the user needs a sample of a table to perform a statistical calculation.

Understanding the auto-exists behavior in DAX queries

Many DAX functions use a behavior known as auto-exists. Auto-exists is a mechanism used when 
a function joins two tables. It is important when authoring queries because, although it is usually 
 intuitive, it might produce unexpected results.

Consider the following expression:

EVALUATE
SUMMARIZECOLUMNS ( 
    'Product'[Category],
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    'Product'[Subcategory] 
)
ORDER BY
    'Product'[Category],
    'Product'[Subcategory]

The result can be either the full cross-join of categories and subcategories, or only the existing 
combinations of categories and subcategories. Indeed, each category contains just a subset of subcat-
egories. Thus, the list of existing combinations is smaller than the full cross-join.

The most intuitive answer would be that SUMMARIZECOLUMNS only returns the existing 
combination. This is exactly what happens because of the auto-exists feature. The result in Fig-
ure 13-34 shows no more than three subcategories for the Audio category, and not a list of all the 
subcategories.

FIGURE 13-34 SUMMARIZECOLUMNS only returns the existing combinations of values.

Auto-exists kicks in whenever the query groups by columns coming from the same table. When the 
auto-exists logic is used, existing combinations of values are generated exclusively. This reduces the 
number of rows to evaluate, generating better query plans. On the other hand, if one uses columns 
coming from different tables, then the result is different. If the columns used in SUMMARIZECOLUMNS 
are from different tables, then the result is the full cross-join of the two tables. This is made visible by 
the following query whose result is shown in Figure 13-35:

EVALUATE
SUMMARIZECOLUMNS ( 
    'Product'[Category],
    'Date'[Calendar Year] 
)
ORDER BY
    'Product'[Category],
    'Date'[Calendar Year]

Though the two tables are linked to the Sales table through relationships and there are years with-
out transactions, the auto-exists logic is not used when the columns do not come from the same table.
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FIGURE 13-35 Columns coming from different tables generate the full cross-join.

Be mindful that SUMMARIZECOLUMNS removes the columns if all the additional columns comput-
ing aggregation expressions are blank. Thus, if the previous query also includes the Sales Amount mea-
sure, SUMMARIZECOLUMNS removes the years and categories without sales, as shown in Figure 13-36:

DEFINE
    MEASURE Sales[Sales Amount] =
        SUMX (
            Sales,
            Sales[Quantity] * Sales[Net Price]
        )
EVALUATE
SUMMARIZECOLUMNS (
    'Product'[Category],
    'Date'[Calendar Year],
    "Sales", [Sales Amount]
)
ORDER BY
    'Product'[Category],
    'Date'[Calendar Year]

FIGURE 13-36 The presence of an aggregation expression removes the rows with a blank result.
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The behavior of the previous query does not correspond to an auto-exists logic because it is based 
on the result of an expression that includes an aggregation. Constant expressions are ignored on this 
basis. For example, the presence of a 0 instead of a blank generates a list with all the years and catego-
ries. The result of the following query is visible in Figure 13-37:

DEFINE
    MEASURE Sales[Sales Amount] =
        SUMX (
            Sales,
            Sales[Quantity] * Sales[Net Price]
        )
EVALUATE
SUMMARIZECOLUMNS (
    'Product'[Category],
    'Date'[Calendar Year],
    "Sales", [Sales Amount] + 0 -- Returns 0 instead of blank
)
ORDER BY
    'Product'[Category],
    'Date'[Calendar Year]

FIGURE 13-37 An aggregation expression resulting in 0 instead of blank maintains the rows in the SUMMARIZE-
COLUMNS results.

However, the same approach does not produce additional combinations for columns coming from 
the same table. The auto-exists behavior is always applied to columns of the same table. The following 
query solely generates existing combinations of Category and Subcategory values, despite the measure 
expression returning 0 instead of blank:
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DEFINE
    MEASURE Sales[Sales Amount] =
        SUMX (
            Sales,
            Sales[Quantity] * Sales[Net Price]
        )
EVALUATE
SUMMARIZECOLUMNS ( 
    'Product'[Category],
    'Product'[Subcategory],
    "Sales", [Sales Amount] + 0 
)
ORDER BY
    'Product'[Category],
    'Product'[Subcategory]

The result is visible in Figure 13-38.

FIGURE 13-38 SUMMARIZECOLUMNS applies the auto-exists to columns from the same table even when aggrega-
tion expressions return 0.

It is important to consider the auto-exists logic when using ADDMISSINGITEMS. Indeed, ADD-
MISSINGITEMS only adds rows that are removed because of blank results in SUMMARIZECOLUMNS. 
ADDMISSINGITEMS does not add rows removed by auto-exists for columns of the same table. The 
following query thus returns the same result as the one shown in Figure 13-38:

DEFINE
    MEASURE Sales[Sales Amount] =
        SUMX (
            Sales,
            Sales[Quantity] * Sales[Net Price]
        )
EVALUATE
ADDMISSINGITEMS (
    'Product'[Category],
    'Product'[Subcategory],
    SUMMARIZECOLUMNS (
        'Product'[Category],
        'Product'[Subcategory],
        "Sales", [Sales Amount] + 0
    ),
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    'Product'[Category],
    'Product'[Subcategory]
)
ORDER BY
    'Product'[Category],
    'Product'[Subcategory]

Auto-exists is an important aspect to consider when using SUMMARIZECOLUMNS. On the other 
hand, the behavior of SUMMARIZE is different. SUMMARIZE always requires a table to use as a bridge 
between the columns, acting as an auto-exists between different tables. For example, the following 
SUMMARIZE produces just the combinations of category and year where there are corresponding rows 
in the Sales table, as shown by the result in Figure 13-39:

EVALUATE
SUMMARIZE (
    Sales,
    'Product'[Category], 
    'Date'[Calendar Year] 
)

FIGURE 13-39 SUMMARIZE only returns combinations between categories and year where there are matching 
rows in Sales.

The reason why nonexisting combinations are not returned is because SUMMARIZE uses the Sales 
table as the starting point to perform the grouping. Thus, any value in category or year not referenced 
in Sales is not part of the result. Even though the result is identical, SUMMARIZE and SUMMARIZE-
COLUMNS achieve the same result through different techniques.

Be mindful that the user experience might be different when using a specifi c client tool. Indeed, if a 
user puts the category and the year in a Power BI report without including any measure, the result only 
shows the existing combinations in the Sales table. The reason is not that auto-exists is in place. The 
reason is that Power BI adds its own business rules to the auto-exists logic of DAX. A simple report with 
just Year and Category in a table produces a complex query like the following one:
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EVALUATE
TOPN (
    501,
    SELECTCOLUMNS (
        KEEPFILTERS (
            FILTER (
                KEEPFILTERS (
                    SUMMARIZECOLUMNS (
                        'Date'[Calendar Year],
                        'Product'[Category],
                        "CountRowsSales", CALCULATE ( COUNTROWS ( 'Sales' ) )
                    )
                ),
                OR (
                    NOT ( ISBLANK ( 'Date'[Calendar Year] ) ),
                    NOT ( ISBLANK ( 'Product'[Category] ) )
                )
            )
        ),
        "'Date'[Calendar Year]", 'Date'[Calendar Year],
        "'Product'[Category]", 'Product'[Category]
    ),
    'Date'[Calendar Year], 1,
    'Product'[Category], 1
)

The highlighted row shows that Power BI adds a hidden calculation that computes the number of 
rows in Sales. Because SUMMARIZECOLUMNS removes all the rows where the aggregation expression 
is blank, this results in a behavior similar to the auto-exists obtained by combining columns of the same 
table.

Power BI only adds this calculation if there are no measures in the report, including a table that has 
a many-to-one relationship with all the tables used in SUMMARIZECOLUMNS. As soon as one adds a 
calculation by using a measure, Power BI stops this behavior and checks for the measure value instead 
of the number of rows in Sales.

Overall, the behavior of SUMMARIZECOLUMNS and SUMMARIZE is intuitive most of the time. 
However, in complex scenarios like many-to-many relationships, the results might be surprising. In this 
short section we only introduced auto-exists. A more detailed explanation of how these functions work 
in complex scenarios is available in the article “Understanding DAX Auto-Exist,” available at https://
www.sqlbi.com/articles/understanding-dax-auto-exist/. The article also shows how this behavior might 
produce reports with unexpected—or just counterintuitive—results.

Conclusions

This chapter presented several functions that are useful to author queries. Always remember that 
any of these functions (apart from SUMMARIZECOLUMNS and ADDMISSINGITEMS) can be used in 
measures too. Some experience is needed to learn how to mix these functions together to build more 
complex queries.

https://www.sqlbi.com/articles/understanding-dax-auto-exist/
https://www.sqlbi.com/articles/understanding-dax-auto-exist/
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Here is the list of the most relevant topics covered in the chapter:

 ■ Some functions are more useful in queries. Others are so technical and specialized that their 
purpose is more to serve client tools generating queries, rather than data modelers writing DAX 
expressions manually. Regardless, it is important to read about all of them; at some point, it 
could become necessary to read somebody else’s code, so basic knowledge of all the functions 
is important.

 ■ EVALUATE introduces a query. Using EVALUATE, you can defi ne variables and measures that 
only exist for the duration of the query.

 ■ EVALUATE cannot be used to create calculated tables. A calculated table comes from an expres-
sion. Thus, when creating a query for a calculated table, you cannot create local measures or 
columns.

 ■ SUMMARIZE is useful to perform grouping, and it is usually side-by-side with ADDCOLUMNS.

 ■ SUMMARIZECOLUMNS is one-function-fi ts-all. It is useful and powerful to generate complex 
queries, and it is used extensively by Power BI. However, SUMMARIZECOLUMNS cannot be 
used in a fi lter context that contains a context transition. This usually prevents the use of 
SUMMARIZECOLUMNS in measures.

 ■ TOPN is extremely useful to retrieve the top (or the bottom) performers out of a category.

 ■ GENERATE implements the OUTER APPLY logic of SQL. It becomes handy whenever you need 
to produce a table with a fi rst set of columns that act as a fi lter and a second set of columns that 
depends on the values of the fi rst set.

 ■ Many other functions are mostly useful for query generators.

Finally, remember that all the table functions described in previous chapters can be used to author 
queries. The options available to produce queries are not limited to the functions demonstrated in this 
chapter.
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Advanced DAX concepts

So far in the book, we have provided a complete description of the pillars of DAX: row context, fi lter 
context and context transition. In previous chapters, we made several references to this chapter as the 
chapter where we would uncover all the secrets of DAX. You might want to read this chapter multiple 
times, for a complete understanding of certain concepts. In our experience, the fi rst read can make a 
developer wonder, “Why should it be so complicated?” However, after learning the concepts outlined 
here for the fi rst time, readers start to realize that many of the concepts they struggled in learning have 
a common denominator; once they grasp it, everything becomes clear.

We introduced several chapters saying that the goal of the chapter was to move the reader to the 
next level. If each chapter is a level, this is the boss level! Indeed, the concepts of expanded tables and 
of shadow fi lter contexts are hard to learn. Once learned, they shed a completely different light upon 
everything described so far. It is fair to say that—after fi nishing this chapter—a second read of the 
whole book is strongly suggested. A second read will likely uncover many details that did not seem 
helpful at fi rst read. We realize that a full second read of the book takes a lot of effort. But then we did 
promise that reading The Defi nitive Guide to DAX would transform the reader into a DAX guru. We 
never said it would be an easy task.

Introducing expanded tables

The fi rst—and most important—concept to learn is that of expanded tables. In DAX, every table has a 
matching expanded version. The expanded version of a table contains all the columns of the original 
table, plus all the columns of the tables that are on the one-side of a chain of many-to-one relation-
ships starting from the source table.

Consider the model in Figure 14-1.

Table expansion goes towards the one-side. Therefore, to expand a table, one starts from the base 
table and adds to the base table all the columns of the related tables that are on the one-side of any 
relationships. For example, Sales has a many-to-one relationship with Product, so the expanded version 
of Sales contains also all the columns of Product. On the other hand, the expanded version of Product 
Category only contains the base table. Indeed, the only table with a relationship with Product Category 
is Product Subcategory, but it is on the many-side of the relationship. Thus, table expansion goes from 
Product Subcategory to Product Category, but not the other way around.
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FIGURE 14-1 The fi gure shows the model used to describe the concept of expanded tables.

Table expansion does not stop at the fi rst level. For example, from Sales one can reach Product 
 Category following only many-to-one relationships. Thus, the expanded version of Sales contains 
Product, Product Subcategory, and Product Category columns. Moreover, because Sales is on the many 
side of a many-to-one relationship with Date, the expanded version of Sales contains Date too. In 
other words, the expanded version of Sales contains the entire data model.

The Date table requires a bit more attention. In fact, it can be fi ltered by Sales because the relation-
ship that links Sales and Date has a bidirectional fi lter direction. Though this relationship is bidirec-
tional, it is not a many-to-one: It is a one-to-many. The expanded version of Date only contains Date 
itself, even though Date can be fi ltered by Sales, Product, Product Subcategory, and Product Category. 
When fi ltering occurs because a relationship is bidirectional, the mechanism that applies the fi ltering is 
not that of expanded tables. Instead, fi lters are injected by the DAX code using a different mechanism, 
which is out of the scope of this chapter. Bidirectional fi lter propagation is discussed in Chapter 15, 
“Advanced relationships.”

When repeating the same exercise for the other tables in the data model, we create the expanded 
tables described in Table 14-1.

TABLE 14-1 Expanded versions of the tables

Table Expanded Version

Date Date

Sales All the tables in the entire model

Product Product, Product Subcategory, Product Category

Product Subcategory Product Subcategory, Product Category

Product Category Product Category
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There might be different kinds of relationships in a data model: one-to-one relationships, one-
to-many relationships, and many-to-many relationships. The rule is always the same: Expansion goes 
towards the one-side of a relationship. Nevertheless, some examples might help in understanding the 
concept better. For example, consider the data model in Figure 14-2, which does not follow best prac-
tices in data modeling but is useful for educational purposes.

FIGURE 14-2 In this model both relationships have a bidirectional fi lter. One relationship is one-to-one, and the 
other is many-to-many.

We purposely used complex kinds of relationships in this model, where the Product Category table 
has one row for each value in Subcategory, so there are multiple rows for each category in such a 
table, and the ProductCategoryKey column does not contain unique values. Both relationships have a 
bidirectional fi lter. The relationship between Product and Product Details is a one-to-one relationship, 
whereas the one between Product and Product Category is a weak relationship where both sides are the 
many-side. The rule is always the same: Expansion goes towards the one-side of a relationship, regard-
less of the side it starts from.

Consequently, Product Details expands to Product, and Product expands to Product Details at the 
same time. The expanded version of the two tables, Product and Product Details, is indeed the same. 
Moreover, Product Category does not expand to Product, nor does Product expand to Product Cat-
egory. The reason is that both tables are on the many-side of a weak relationship. When both sides of a 
relationship are the many-side, expansion does not happen. When both sides of a relationship are set 
as the many-side, the relationship becomes automatically a weak relationship. Not that they have any 
kind of weakness—weak relationships, like bidirectional fi ltering, work with a different goal than that of 
table expansion.

Expanded tables are a useful concept because they provide a clear explanation of how fi lter context 
propagation works within a DAX formula. Once a fi lter is being applied to a column, all the expanded 
tables containing that column are fi ltered. This statement deserves further explanation.

We present the expanded tables of the model used in Figure 14-1 on a diagram, which is shown in 
Figure 14-3.
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FIGURE 14-3 Presenting the data model on a diagram makes it easier to visualize expanded tables.

The chart in Figure 14-3 lists all the columns of the model on the horizontal lines and each table 
name on the vertical lines. Please note that some column names appear multiple times. Duplicate 
column names come from the fact that different tables may have column names in common. We col-
ored the cells to distinguish between the columns of the base table and the columns belonging to the 
expanded table. There are two types of columns:

 ■ Native columns are the columns that originally belong to the base table, colored in a slightly 
darker grey.

 ■ Related columns are the columns added to the expanded table by following the existing rela-
tionships. These columns are light grey in the diagram.

The diagram helps in fi nding which tables are fi ltered by a column. For example, the following mea-
sure uses CALCULATE to apply a fi lter on the Product[Color] column:

RedSales :=
CALCULATE (
    SUM ( Sales[Quantity] ),
    'Product'[Color] = "Red"
)

We can use the diagram to highlight the tables containing the Product[Color] column. Looking at 
Figure 14-4, we can immediately conclude that both Product and Sales are the affected tables.



 CHAPTER 14 Advanced DAX concepts 441

FIGURE 14-4 Coloring the line corresponding to a column makes it evident which tables are fi ltered.

We can use the same diagram to check how the fi lter context propagates through relationships. 
Once DAX fi lters any column on the one-side of a relationship, it fi lters all the tables that contain 
that column in their expanded version. This includes all the tables that are on the many-side of the 
relationships.

Thinking in terms of expanded tables makes the whole fi lter context propagation much easier. 
Indeed, a fi lter context operates on all the expanded tables containing the fi ltered columns. When speak-
ing in terms of expanded tables, one no longer needs to consider relationships as part of the discus-
sion. Table expansion uses relationships. Once a table has been expanded, the relationships have been 
included in the expanded tables. They no longer need to be taken into account.

 

Note Please note that the fi lter on Color propagates to Date too, though technically, Color 
does not belong to the expanded version of Date. This is the effect of bidirectional fi ltering 
at work. It is important to note that the fi lter on Color reaches Date through a completely 
different process, not through expanded tables. Internally, DAX injects a specifi c fi ltering 
code to make bidirectional relationships work, whereas fi ltering on expanded tables occurs 
automatically. The difference is only internal, yet it is important to point it out. The same 
applies for weak relationships: They do not use expanded tables. Weak relationships use fi l-
ter injection instead.

 

Understanding RELATED
Whenever one references a table in DAX, it is always the expanded table. From a semantic point of 
view, the RELATED keyword does not execute any operation. Instead, it gives a developer access to the 
related columns of an expanded table. Thus, in the following code the Unit Price column belongs to 
the expanded table of Sales, and RELATED permits access to it through the row context pointing to the 
Sales table:



442 CHAPTER 14 Advanced DAX concepts

SUMX ( 
    Sales,
    Sales[Quantity] * RELATED ( 'Product'[Unit Price] )
)

One important aspect of table expansion is that it takes place when a table is defi ned, not when it is 
being used. For example, consider the following query:

EVALUATE
VAR SalesA =
    CALCULATETABLE (
        Sales,
        USERELATIONSHIP ( Sales[Order Date], 'Date'[Date] )
    )
VAR SalesB =
    CALCULATETABLE (
        Sales,
        USERELATIONSHIP ( Sales[Delivery Date], 'Date'[Date] )
    )
RETURN
    GENERATE (
        VALUES ( 'Date'[Calendar Year] ),
        VAR CurrentYear = 'Date'[Calendar Year]
        RETURN
            ROW (
                "Sales From A", COUNTROWS (
                    FILTER (
                        SalesA,
                        RELATED ( 'Date'[Calendar Year] ) = CurrentYear
                    )
                ),
                "Sales From B", COUNTROWS (
                    FILTER (
                        SalesB,
                        RELATED ( 'Date'[Calendar Year] ) = CurrentYear
                    )
                )
            )
    )

SalesA and SalesB are two copies of the Sales table, evaluated in a fi lter context where two differ-
ent relationships are active: SalesA uses the relationship between Order Date and Date, whereas SalesB 
activates the relationship between Delivery Date and Date.

Once the two variables are evaluated, GENERATE iterates over the years; it then creates two addi-
tional columns. The two additional columns contain the count of SalesA and SalesB, applying a further 
fi lter for the rows where RELATED ( 'Date'[Calendar Year] ) equals the current year. Please note that we 
had to write rather convoluted code in order to avoid any context transition. Indeed, no context transi-
tions are taking place in the whole GENERATE function call.

The question here is understanding what happens when the two highlighted RELATED functions 
are called. Unless one thinks in terms of expanded tables, the answer is problematic. When RELATED 
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is executed, the active relationship is the one between Sales[Order Date] and Date[Date] because the 
two variables have already been computed earlier and both USERELATIONSHIP modifi ers have fi nished 
their job. Nevertheless, both SalesA and SalesB are expanded tables, and the expansion occurred when 
there were two different relationships active. Because RELATED only gives access to an expanded 
column, the consequence is that when iterating over SalesA, RELATED returns the order year, whereas 
while iterating over SalesB, RELATED returns the delivery year.

We can appreciate the difference by looking at the result in Figure 14-5. Without the expanded 
table, we would have expected the same number of rows for each order year in both columns.

FIGURE 14-5 The two calculations fi lter different years.

Using RELATED in calculated columns
The RELATED function accesses the expanded columns of a table. The table expansion occurs when the 
table is defi ned, not when it is used. Because of these facts, changing the relationships in a calculated 
column turns out to be problematic.

As an example, look at the model in Figure 14-6, with two relationships between Sales and Date.

FIGURE 14-6 There are two relationships between Sales and Date, but only one can be active.

A developer might be interested in adding a calculated column in Sales that checks whether 
the delivery happened in the same quarter as the order. The Date table contains a column—
Date[Calendar Year Quarter]—that can be used for the comparison. Unfortunately, it is easy to 
obtain the quarter of the order date, whereas retrieving the quarter of the delivery proves to be 
more challenging.
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Indeed, RELATED ( 'Date'[Calendar Year Quarter] ) returns the quarter of the order date by using the 
default active relationship. Nevertheless, writing an expression like the following will not change the 
relationship used for RELATED:

Sales[DeliveryQuarter] = 
CALCULATE ( 
    RELATED ( 'Date'[Calendar Year Quarter] ),
    USERELATIONSHIP ( 
        Sales[Delivery Date], 
        'Date'[Date] 
    )
)

There are several problems here. The fi rst is that CALCULATE removes the row context, but CALCU-
LATE is needed to change the active relationship for RELATED. Thus, RELATED cannot be used inside 
the formula argument of CALCULATE because RELATED requires a row context. There is a second 
sneaky problem: Even if it were possible to do that, RELATED would not work because the row context 
of a calculated column is created when the table is defi ned. The row context of a calculated column is 
generated automatically, so the table is always expanded using the default relationship.

There is no perfect solution to this problem. The best option is to rely on LOOKUPVALUE. LOOK-
UPVALUE is a search function that retrieves a value from a table, searching for columns that are equal 
to certain values provided. The delivery quarter can be computed using the following code:

Sales[DeliveryQuarter] = 
LOOKUPVALUE (      
    'Date'[Calendar Year Quarter],     -- Returns the Calendar Year quarter
    'Date'[Date],                      -- where the Date[Date] column is equal
    Sales[Delivery Date]               -- to the value of Sales[Delivery Date]
)

LOOKUPVALUE searches for values that are equal. One cannot add more complex conditions. If 
needed, then a more complex expression using CALCULATE would be required. Moreover, in this case 
we used LOOKUPVALUE in a calculated column, so the fi lter context is empty. But even in cases where 
the fi lter context is actively fi ltering the model, LOOKUPVALUE would ignore it. LOOKUPVALUE always 
searches for a row in a table ignoring any fi lter context. Finally, LOOKUPVALUE accepts a last argument, 
if provided alone, that is the default value in case there is no match.

Understanding the difference between table fi lters and 
column fi lters

In DAX there is a huge difference between fi ltering a table and fi ltering a column. Table fi lters are 
powerful tools in the hands of an experienced DAX developer, but they can get quite confusing if used 
improperly. We will start by looking at a scenario where table fi lters produce an incorrect result. Later 
in this section, we will demonstrate how to leverage table fi lters properly in complex scenarios.
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Often a novice DAX developer makes the mistake of thinking that the two following expressions 
compute the same value:

CALCULATE (
    [Sales Amount],
    Sales[Quantity] > 1
)
 
CALCULATE (
    [Sales Amount],
    FILTER (
        Sales,
        Sales[Quantity] > 1
    )
)

The two defi nitions are actually very different. One is fi ltering a column; the other is fi ltering a table. 
Even though the two versions of the code provide the same result in several scenarios, they are, in fact, 
computing a completely different expression. To demonstrate their behavior, we included the two 
defi nitions in a query:

EVALUATE
ADDCOLUMNS (
    VALUES ( 'Product'[Brand] ),
    "FilterCol", CALCULATE (
        [Sales Amount],
        Sales[Quantity] > 1
    ),
    "FilterTab", CALCULATE (
        [Sales Amount],
        FILTER (
            Sales,
            Sales[Quantity] > 1
        )
    )
)

The result is surprising to say the least, as we can see in Figure 14-7.

FilterCol returns the expected values, whereas FilterTab always returns the same number that cor-
responds to the grand total of all the brands. Expanded tables play an important role in understanding 
the reason for this result.

We can examine the behavior of the FilterTab calculation in detail. The fi lter argument of CALCU-
LATE iterates over Sales and returns all the rows of Sales with a quantity greater than 1. The result of 
FILTER is a subset of rows of the Sales table. Remember: In DAX a table reference always references the 
expanded table. Because Sales has a relationship with Product, the expanded table of Sales contains the 
whole Product table too. Among the many columns, it also contains Product[Brand].
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FIGURE 14-7 The fi rst column computes the correct results, whereas the second column always shows a higher 
number corresponding to the grand total.

The fi lter arguments of CALCULATE are evaluated in the original fi lter context, ignoring the 
 context transition. The fi lter on Brand comes into effect after CALCULATE has performed the 
 context transition. Consequently, the result of FILTER contains the values of all the brands related 
to rows with a quantity greater than 1. Indeed, there are no fi lters on Product[Brand] during the 
 iteration made by FILTER.

When generating the new fi lter context, CALCULATE performs two consecutive steps:

 1. It operates the context transition.

 2. It applies the fi lter arguments.

Therefore, fi lter arguments might override the effects of context transition. Because ADDCOLUMNS 
is iterating over the product brand, the effects of context transition on each row should be that of fi l-
tering an individual brand. Nevertheless, because the result of FILTER also contains the product brand, 
it overrides the effects of the context transition. The net result is that the value shown is always the 
total of Sales Amount for all the transactions whose quantity is greater than 1, regardless of the product 
brand.

Using table fi lters is always challenging because of table expansion. Whenever one applies a fi lter 
to a table, the fi lter is really applied to the expanded table, and this can cause several side effects. The 
golden rule is simple: Try to avoid using table fi lters whenever possible. Working with columns leads to 
simpler calculations, whereas working with tables is much more problematic.
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Note The example shown in this section might not be easily applied to a measure defi ned 
in a data model. This is because the measure is always executed in an implicit CALCULATE to 
produce the context transition. For example, consider the following measure:

Multiple Sales :=
CALCULATE (
    [Sales Amount],
    FILTER (
        Sales,
        Sales[Quantity] > 1
    )
)

When executed in a report, a possible DAX query could be:

EVALUATE
ADDCOLUMNS (
    VALUES ( 'Product'[Brand] ),
    "FilterTabMeasure", [Multiple Sales]
)

The expansion of the table drives the execution of this corresponding query:

EVALUATE
ADDCOLUMNS (
    VALUES ( 'Product'[Brand] ),
    "FilterTabMeasure", CALCULATE (
        CALCULATE (
            [Sales Amount],
            FILTER (
                Sales,
                Sales[Quantity] > 1
            )
        )
    )     
)

The fi rst CALCULATE performs the context transition that affects both arguments of 
the second CALCULATE, including the FILTER argument. Even though this produces the 
same result as FilterCol, the use of a table fi lter has a negative impact on performance. 
Therefore, it is always better to use column fi lters whenever possible.

 

Using table fi lters in measures
In the previous section, we showed a fi rst example where being familiar with expanded tables helped 
make sense of a result. However, there are several other scenarios where expanded tables prove to be 
useful. Besides, in previous chapters we used the concept of expanded tables multiple times, although 
we could not describe what was happening in detail just yet.
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For example in Chapter 5, “Understanding CALCULATE and CALCULATETABLE,” while explaining 
how to remove all the fi lters applied to the model, we used the following code in a report that was slic-
ing measures by category:

Pct All Sales := 
VAR CurrentCategorySales = 
    [Sales Amount]
VAR AllSales = 
    CALCULATE ( 
        [Sales Amount], 
        ALL ( Sales )
    )
VAR Result =
    DIVIDE ( 
        CurrentCategorySales, 
        AllSales
    )
RETURN
    Result

Why does ALL ( Sales ) remove any fi lter? If one does not think in terms of expanded tables, 
ALL should only remove fi lters from the Sales table, keeping any other fi lter untouched. In fact, using 
ALL on the Sales table means removing any fi lter from the expanded Sales table. Because Sales expands 
to all the related tables, including Product, Customer, Date, Store, and any other related tables, using 
ALL ( Sales ) removes any fi lter from the entire data model used by that example.

Most of the time this behavior is the one desired and it works intuitively. Still, understanding the 
internal behavior of expanded tables is of paramount importance; failing to gain that understanding 
might be a root cause for inaccurate calculations. In the next example, we demonstrate how a simple 
calculation can fail simply due to a subtlety of expanded tables. We will see why it is better to avoid 
using table fi lters in CALCULATE statements, unless the developer is purposely looking to take advan-
tage of the side effects of expanded tables. The latter are described in the following sections.

Consider the requirements of a report like the one in Figure 14-8. The report contains a slicer that 
fi lters the Category, and a matrix showing the sales of subcategories and their respective percentage 
against the total.

FIGURE 14-8 The Pct column shows the percentage of a subcategory against the total sales.
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Because the percentage needs to divide the current Sales Amount by the corresponding Sales 
Amount for all the subcategories of the selected category, a fi rst (inaccurate) solution might be the 
following:

Pct :=
DIVIDE (
    [Sales Amount],
    CALCULATE (
        [Sales Amount],
        ALL ( 'Product Subcategory' )
    )
)

The idea is that by removing the fi lter on Product Subcategory, DAX retains the fi lter on Category 
and produces the correct result. However, the result is wrong, as we can see in Figure 14-9.

FIGURE 14-9 The fi rst implementation of Pct produces the wrong result.

The problem with this formula is that ALL ( 'Product Subcategory' ) refers to the expanded Product 
Subcategory table. Product Subcategory expands to Product Category. Consequently, ALL removes the 
fi lter not only from the Product Subcategory table, but also from the Product Category table. Therefore, 
the denominator returns the grand total of all the categories, in turn calculating the wrong percentage.

There are multiple solutions available. In the current report, they all compute the same value, even 
though they use slightly different approaches. For example, the following Pct Of Categories mea-
sure computes the percentage of the selected subcategories compared to the total of the related 
 categories. After removing the fi lter from the expanded table of Product Subcategory, VALUES restores 
the fi lter of the Product Category table:

Pct Of Categories :=
DIVIDE (
    [Sales Amount],
    CALCULATE (
        [Sales Amount],
        ALL ( 'Product Subcategory' ),
        VALUES ( 'Product Category' )
    )
)
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Another possible solution is the Pct Of Visual Total measure, which uses ALLSELECTED without an 
argument. ALLSELECTED restores the fi lter context of the slicers outside the visual, without the devel-
oper having to worry about expanded tables:

Pct Of Visual Total :=
DIVIDE (
    [Sales Amount],
    CALCULATE (
        [Sales Amount],
        ALLSELECTED () 
    )
)

ALLSELECTED is attractive because of its simplicity. However, in a later section of this chapter 
we introduce shadow fi lter contexts. These will provide the reader with a fuller understanding of 
 ALLSELECTED. ALLSELECTED can be powerful, but it is also a complex function that must be used 
 carefully in convoluted expressions.

Finally, another solution is available using ALLEXCEPT, thus comparing the selected subcategories 
with the categories selected in the slicer:

Pct :=
DIVIDE (
    [Sales Amount],
    CALCULATE (
        [Sales Amount],
        ALLEXCEPT ( 'Product Subcategory', 'Product Category' )
    )
)

This last formula leverages a particular ALLEXCEPT syntax that we have never used so far in the 
book: ALLEXCEPT with two tables, instead of a table and a list of columns.

ALLEXCEPT removes fi lters from the source table, with the exception of any columns provided as 
further arguments. That list of columns can include any column (or table) belonging to the expanded 
table of the fi rst argument. Because the expanded table of Product Subcategory contains the whole 
Product Category table, the code provided is a valid syntax. It removes any fi lter from the whole 
expanded table of Product Subcategory, except for the columns of the expanded table of Product 
Category.

It is worth noting that expanded tables tend to cause more issues when the data model is not 
correctly denormalized. As a matter of fact, in most of this book we use a version of Contoso where 
Category and Subcategory are stored as columns in the Product table, instead of being tables by 
themselves. In other words, we denormalized the category and subcategory tables as attributes of 
the Product table. In a correctly denormalized model, table expansion takes place between Sales and 
Product in a more natural way. So as it often happens, putting some thought into the model makes the 
DAX code easier to author.
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Understanding active relationships
When working with expanded tables, another important aspect to consider is the concept of active 
relationships. It is easy to get confused in a model with multiple relationships. In this section, we want 
to share an example where the presence of multiple relationships proves to be a real challenge.

Imagine needing to compute Sales Amount and Delivered Amount. These two measures can be com-
puted by activating the correct relationship with USERELATIONSHIP. The following two measures work:

Sales Amount :=
SUMX (
    Sales,
    Sales[Quantity] * Sales[Net Price]
)
 
Delivered Amount :=
CALCULATE (
    [Sales Amount],
    USERELATIONSHIP ( Sales[Delivery Date], 'Date'[Date] )
)

The result is visible in Figure 14-10.

FIGURE 14-10 Sales Amount and Delivered Amount use different relationships.

It is interesting to see a variation of the Delivered Amount measure that does not work because it 
uses a table fi lter:

Delivered Amount =
CALCULATE (
    [Sales Amount],
    CALCULATETABLE (
        Sales,
        USERELATIONSHIP ( Sales[Delivery Date], 'Date'[Date] )
    )
)

This new—and unfortunate—formulation of the measure produces a blank result, as we can see in 
Figure 14-11.
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FIGURE 14-11 Using a table fi lter, Delivered Amount only produces a blank value.

We now investigate why the result is a blank. This requires paying a lot of attention to expanded 
tables. The result of CALCULATETABLE is the expanded version of Sales, and among other tables it 
contains the Date table. When Sales is evaluated by CALCULATETABLE, the active relationship is the 
one with Sales[Delivery Date]. CALCULATETABLE therefore returns all the sales delivered in a given year, 
as an expanded table.

When CALCULATETABLE is used as a fi lter argument by the outer CALCULATE, the result of 
 CALCULATETABLE fi lters Sales and Date through the Sales expanded table, which uses the relationship 
between Sales[Delivery Date] and Date[Date]. Nevertheless, once CALCULATETABLE ends its execution, 
the default relationship between Sales[Order Date] and Date[Date] becomes the active relationship 
again. Therefore, the dates being fi ltered are now the order dates, not the delivery dates any more. 
In other words, a table containing delivery dates is used to fi lter order dates. At this point, the only rows 
that remain visible are the ones where Sales[Order Date] equals Sales[Delivery Date]. There are no rows 
in the model that satisfy this condition; consequently, the result is blank.

To further clarify the concept, imagine that the Sales table contains just a few rows, like the ones in 
Table 14-2.

TABLE 14-2 Example of Sales table with only two rows

Order Date Delivery Date Quantity

12/31/2007 01/07/2008 100

01/05/2008 01/10/2008 200

If the year 2008 is selected, the inner CALCULATETABLE returns the expanded version of Sales, con-
taining, among many others, the columns shown in Table 14-3.

TABLE 14-3 The result of CALCULATETABLE is the expanded Sales table, including Date[Date] using the 
Sales[Delivery Date] relationship

Order Date Delivery Date Quantity Date

12/31/2007 01/07/2008 100 01/07/2008

01/05/2008 01/10/2008 200 01/10/2008
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When this table is used as a fi lter, the Date[Date] column uses the active relationship, which is the 
one between Date[Date] and Sales[Order Date]. At this point, the expanded table of Sales appears as in 
Table 14-4.

TABLE 14-4 The expanded Sales table using the default active relationship using the Sales[Order Date] 
column

Order Date Delivery Date Quantity Date

12/31/2007 01/07/2008 100 12/31/2007

01/05/2008 01/10/2008 200 01/05/2008

The rows visible in Table 14-3 try to fi lter the rows visible in Table 14-4. However, the Date column 
is always different in the two tables, for each corresponding row. Because they do not have the same 
value, the fi rst row will be removed from the active set of rows. Following the same reasoning, the 
second row is excluded too.

At the end, only the rows where Sales[Order Date] equals Sales[Delivery Date] survive the fi lter; 
they produce the same value in the Date[Date] column of the two expanded tables generated for 
the different relationships. This time, the complex fi ltering effect comes from the active relationship. 
Changing the active relationship inside a CALCULATE statement only affects the computation inside 
CALCULATE, but when the result is used outside of CALCULATE, the relationship goes back to the 
default.

As usual, it is worth pointing out that this behavior is the correct one. It is complex, but it is 
correct. There are good reasons to avoid table filters as much as possible. Using table filters might 
result in the correct behavior, or it might turn into an extremely complex and unpredictable sce-
nario. Moreover, the measure with a column filter instead of a table filter works fine and it is easier 
to read.

The golden rule with table fi lters is to avoid them. The price to pay for developers who do not follow 
this simple suggestion is twofold: A signifi cant amount of time will be spent understanding the fi ltering 
behavior, and performance becomes the worst it could possibly be.

Difference between table expansion and fi ltering
As explained earlier, table expansion solely takes place from the many-side to the one-side of a rela-
tionship. Consider the model in Figure 14-12, where we enabled bidirectional fi ltering in all the relation-
ships of the data model.
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FIGURE 14-12 All the relationships in this model are set with bidirectional cross-fi lter.

Though the relationship between Product and Product Subcategory is set with bidirectional fi ltering, 
the expanded Product table contains subcategories, whereas the expanded Product Subcategory table 
does not contain Product.

The DAX engine injects fi ltering code in the expressions to make bidirectional fi ltering work as if the 
expansion went both ways. A similar behavior happens when using the CROSSFILTER function. There-
fore, in most cases a measure works just as if table expansion took place in both directions. However, 
be mindful that table expansion actually does not go in the many-side direction.

The difference becomes important with the use of SUMMARIZE or RELATED. If a developer uses 
SUMMARIZE to perform a grouping of a table based on another table, they have to use one of the 
columns of the expanded table. For example, the following SUMMARIZE statement works well:

EVALUATE
SUMMARIZE ( 
    'Product', 
    'Product Subcategory'[Subcategory] 
)

Whereas the next one—which tries to summarize subcategories based on product color—does 
not work:

EVALUATE
SUMMARIZE ( 
    'Product Subcategory', 
    'Product'[Color] 
)
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The error is “The column ‘Color’ specifi ed in the ‘SUMMARIZE’ function was not found in the input 
table,” meaning that the expanded version of Product Subcategory does not contain Product[Color]. 
Like SUMMARIZE, RELATED also works with columns that belong to the expanded table exclusively.

Similarly, one cannot group the Date table by using columns from other tables, even when these 
tables are linked by a chain of bidirectional relationships:

EVALUATE
SUMMARIZE ( 'Date', 'Product'[Color] )

There is only one special case where table expansion goes in both directions, which is the case of a 
relationship defi ned as one-to-one. If a relationship is a one-to-one relationship, then both tables are 
expanded one into the other. This is because a one-to-one relationship makes the two tables seman-
tically identical: Each row in one table has a direct relationship with a single row in the other table. 
Therefore, it is fair to think of the two tables as being one, split into two sets of columns.

Context transition in expanded tables
The expanded table also infl uences context transition. The row context converts into an equivalent 
fi lter context for all the columns that are part of the expanded table. For example, consider the follow-
ing query returning the category of a product using two techniques: the RELATED function in a row 
context and the SELECTEDVALUE function with a context transition:

EVALUATE
SELECTCOLUMNS (
    'Product',
    "Product Key", 'Product'[ProductKey],
    "Product Name", 'Product'[Product Name],
    "Category RELATED", RELATED ( 'Product Category'[Category] ),
    "Category Context Transition", CALCULATE (
        SELECTEDVALUE ( 'Product Category'[Category] )
    )
)
ORDER BY [Product Key]

The result of the query includes two identical columns, Category RELATED and Category Context 
Transition, as shown in Figure 14-13.

FIGURE 14-13 The category of each product is displayed in two columns computed with different techniques.

The Category RELATED column shows the category corresponding to the product displayed on the 
same line of the report. This value is retrieved by using RELATED when the row context on Product is 
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available. The Category Context Transition column uses a different approach, generating a context 
transition by invoking CALCULATE. The context transition fi lters just one row in the Product table; 
this fi lter is also applied to Product Subcategory and Product Category, fi ltering the corresponding 
rows for the product. Because at this point the fi lter context only fi lters one row in Product Category, 
 SELECTEDVALUE returns the value of the Product Category column in the only row fi ltered in the 
 Product Category table.

While this side effect is well known, it is not effi cient to rely on this behavior when wanting to 
retrieve a value from a related table. Even though the result is identical, performance could be very dif-
ferent. The solution using a context transition is particularly expensive if used for many rows in Product. 
Context transition comes at a signifi cant computational cost. Thus, as we will see later in the book, 
reducing the number of context transitions is important in order to improve performance. There-
fore, RELATED is a better solution to this specifi c problem; it avoids the context transition required for 
SELECTEDVALUE to work.

Understanding ALLSELECTED and shadow fi lter contexts

ALLSELECTED is a handy function that hides a giant trap. In our opinion, ALLSELECTED is the most com-
plex function in the whole DAX language, even though it looks harmless. In this section we provide an 
exhaustive technical description of the ALLSELECTED internals, along with a few suggestions on when 
to use and when not to use ALLSELECTED.

ALLSELECTED, as any other ALL* function, can be used in two different ways: as a table function or 
as a CALCULATE modifi er. Its behavior differs in these two scenarios. Moreover, ALLSELECTED is the 
only DAX function that leverages shadow fi lter contexts. In this section, we fi rst examine the behavior 
of ALLSELECTED, then we introduce shadow fi lter contexts, and fi nally we provide a few tips on using 
ALLSELECTED optimally.

ALLSELECTED can be used quite intuitively. For example, consider the requirements for the report in 
Figure 14-14.

FIGURE 14-14 The report shows the sales amount of a few selected brands, along with their percentages.
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The report uses a slicer to fi lter certain brands. It shows the sales amount of each brand, along with 
the percentage of each given brand over the total of all selected brands. The percentage formula is 
simple:

Pct :=
DIVIDE (
    [Sales Amount],
    CALCULATE (
        [Sales Amount],
        ALLSELECTED ( 'Product'[Brand] )
    )
)

Intuitively, our reader likely knows that ALLSELECTED returns the values of the brands selected 
outside of the current visual—that is, the brands selected between Adventure Works and Proseware. 
But what Power BI sends to the DAX engine is a single DAX query that does not have any concept of 
“current visual.”

How does DAX know about what is selected in the slicer and what is selected in the matrix? The 
answer is that it does not know these. ALLSELECTED does not return the values of a column (or table) 
fi ltered outside a visual. What it does is a totally different task, which as a side effect returns the 
same result most of the time. The correct defi nition of ALLSELECTED consists of the two following 
statements:

 ■ When used as a table function, ALLSELECTED returns the set of values as visible in the last 
shadow fi lter context.

 ■ When used as a CALCULATE modifi er, ALLSELECTED restores the last shadow fi lter context on its 
parameter.

These last two sentences deserve a much longer explanation.

Introducing shadow fi lter contexts
In order to introduce shadow fi lter contexts, it is useful to look at the query that is executed by Power BI 
to produce the result shown in Figure 14-14:

DEFINE
    VAR __DS0FilterTable =
        TREATAS (
            {
                "Adventure Works",
                "Contoso",
                "Fabrikam",
                "Litware",
                "Northwind Traders",
                "Proseware" 
            },
            'Product'[Brand]
        )
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EVALUATE
TOPN (
    502,
    SUMMARIZECOLUMNS (
        ROLLUPADDISSUBTOTAL ( 
            'Product'[Brand], 
            "IsGrandTotalRowTotal" 
        ),
        __DS0FilterTable,
        "Sales_Amount", 'Sales'[Sales Amount],
        "Pct", 'Sales'[Pct]
    ),
    [IsGrandTotalRowTotal], 0,
    'Product'[Brand], 1
)
ORDER BY
    [IsGrandTotalRowTotal] DESC,
    'Product'[Brand]

The query is a bit too complex to analyze—not because of its inherent complexity but because it is 
generated by an engine and is thus not designed to be human-readable. The following is a version of 
the formula that is close enough to the original, but easier to understand and describe:

EVALUATE
VAR Brands =
    FILTER (
        ALL ( 'Product'[Brand] ),
        'Product'[Brand] 
            IN {
                "Adventure Works",
                "Contoso",
                "Fabrikam",
                "Litware",
                "Northwind Traders",
                "Proseware" 
            }
    )
RETURN
    CALCULATETABLE (
        ADDCOLUMNS (
            VALUES ( 'Product'[Brand] ),
            "Sales_Amount", [Sales Amount],
            "Pct", [Pct]
        ),
        Brands
    )

The result of this latter query is nearly the same as the report we examined earlier, with the notice-
able difference that it is missing the total. We see this in Figure 14-15.
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FIGURE 14-15 The query provides almost the same result as the prior report. The only missing part is the total.

Here are some useful notes about the query:

 ■ The outer CALCULATETABLE creates a fi lter context containing six brands.

 ■ ADDCOLUMNS iterates over the six brands visible inside the CALCULATETABLE.

 ■ Both Sales Amount and Pct are measures executed inside an iteration. Therefore, a context tran-
sition is taking place before the execution of both measures, and the fi lter context of each of the 
two measures only contains the currently iterated brand.

 ■ Sales Amount does not change the fi lter context, whereas Pct uses ALLSELECTED to modify the 
fi lter context.

 ■ After ALLSELECTED modifi es the fi lter context inside Pct, the updated fi lter context shows all six 
brands instead of the currently iterated brand.

The last point is the most helpful point in order to understand what a shadow fi lter context is and 
how DAX uses it in ALLSELECTED. Indeed, the key is that ADDCOLUMNS iterates over six brands, the 
context transition makes only one of them visible, and ALLSELECTED needs a way to restore a fi lter 
context containing the six iterated brands.

Here is a more detailed description of the query execution, where we introduce shadow fi lter con-
texts in step 3:

 1. The outer CALCULATETABLE creates a fi lter context with six brands.

 2. VALUES returns the six visible brands and returns the result to ADDCOLUMNS.

 3. Being an iterator, ADDCOLUMNS creates a shadow fi lter context containing the result of 
 VALUES, right before starting the iteration.

• The shadow fi lter context is like a fi lter context, but it remains dormant, not affecting the 
evaluation in any way.

• A shadow fi lter context can only be activated by ALLSELECTED, as we are about to explain. 
For now, just remember that the shadow fi lter context contains the six iterated brands.

• We distinguish between a shadow fi lter context and a regular fi lter context by calling the 
latter an explicit fi lter context.



460 CHAPTER 14 Advanced DAX concepts

 4. During the iteration, the context transition occurs on one given row. Therefore, the context 
transition creates a new explicit fi lter context containing solely the iterated brand.

 5. When ALLSELECTED is invoked during the evaluation of the Pct measure, ALLSELECTED does 
the following: ALLSELECTED restores the last shadow fi lter context on the column or 
table passed as parameter, or on all the columns if ALLSELECTED has no arguments. 
(The behavior of ALLSELECTED without parameters is explained in the following section.)

• Because the last shadow fi lter context contained six brands, the selected brands become 
visible again.

This simple example allowed us to introduce the concept of shadow fi lter context. The previous 
query shows how ALLSELECTED takes advantage of shadow fi lter contexts to retrieve the fi lter context 
outside of the current visual. Please note that the description of the execution does not use the Power 
BI visuals anywhere. Indeed, the DAX engine is not cognizant of which visual it is helping to produce. 
All it receives is a DAX query.

Most of the time ALLSELECTED retrieves the correct fi lter context; indeed, all the visuals in Power BI 
and, in general, most of the visuals generated by any client tool all generate the same kind of query. 
Those auto-generated queries always include a top-level iterator that generates a shadow fi lter context 
on the items it is displaying. This is the reason why ALLSELECTED seems to restore the fi lter context out-
side of the visual.

Having taken our readers one step further in their understanding of ALLSELECTED, we now need to 
examine more closely the conditions required for ALLSELECTED to work properly:

 ■ The query needs to contain an iterator. If there is no iterator, then no shadow fi lter context is 
present, and ALLSELECTED does not perform any operation.

 ■ If there are multiple iterators before ALLSELECTED is executed, then ALLSELECTED restores the 
last shadow fi lter context. In other words, nesting ALLSELECTED inside an iteration in a measure 
will most likely produce unwanted results because the measure is almost always executed in 
another iteration of the DAX query produced by a client tool.

 ■ If the columns passed to ALLSELECTED are not fi ltered by a shadow fi lter context, then 
ALLSELECTED does not do anything.

At this point, our readers can see more clearly that the behavior of ALLSELECTED is quite complex. 
Developers predominantly use ALLSELECTED to retrieve the outer fi lter context of a visualization. 
We also used ALLSELECTED previously in the book for the very same purpose. In doing so, we always 
double-checked that ALLSELECTED was used in the correct environment, even though we did not 
explain in detail what was happening.

The fuller semantics of ALLSELECTED are related to shadow fi lter contexts, and merely by chance (or, 
to be honest, by careful and masterful design) does its effect entail the retrieving of the fi lter context 
outside of the current visual.
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A good developer knows exactly what ALLSELECTED does and only uses it in the scenarios where 
ALLSELECTED works the right way. Overusing ALLSELECTED by relying on it in conditions where it is 
not expected to work can only produce unwanted results, at which point the developer is to blame, not 
ALLSELECTED.…

The golden rule for ALLSELECTED is quite simple: ALLSELECTED can be used to retrieve the outer 
fi lter context if and only if it is being used in a measure that is directly projected in a matrix or 
in a visual. By no means should the developer expect to obtain correct results by using a measure 
containing ALLSELECTED inside an iteration, as we are going to demonstrate in the following sections. 
Because of this, we, as DAX developers, use a simple rule: If a measure contains ALLSELECTED any-
where in the code, then that measure cannot be called by any other measure. This is to avoid the risk 
that in the chain of measure calls, a developer could start an iteration that includes a call to a measure 
containing ALLSELECTED.

ALLSELECTED returns the iterated rows
To further demonstrate the behavior of ALLSELECTED, we make a small change to the previous 
query. Instead of iterating over VALUES ( Product[Brand] ), we make ADDCOLUMNS iterate over 
ALL ( Product[Brand] ):

EVALUATE
VAR Brands =
    FILTER (
        ALL ( 'Product'[Brand] ),
        'Product'[Brand]
            IN {
                "Adventure Works",
                "Contoso",
                "Fabrikam",
                "Litware",
                "Northwind Traders",
                "Proseware" 
            }
    )
RETURN
    CALCULATETABLE (
        ADDCOLUMNS (
            ALL ( 'Product'[Brand] ),
            "Sales_Amount", [Sales Amount],
            "Pct", [Pct]
        ),
        Brands
    )

In this new scenario, the shadow fi lter context created by ADDCOLUMNS before the iteration 
contains all the brands—not simply the selected brands. Therefore, when called in the Pct measure, 
ALLSELECTED restores the shadow fi lter context, thus making all brands visible. The result shown in 
Figure 14-16 is different from that of the previous query shown in Figure 14-15.
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FIGURE 14-16 ALLSELECTED restores the currently iterated values, not the previous fi lter context.

As you can see, all the brands are visible—and this is expected—but the numbers are different than 
before, even though the code computing them is the same. The behavior of ALLSELECTED in this sce-
nario is correct. Developers might think that it behaves unexpectedly because the fi lter context defi ned 
by the Brands variable is ignored by the Pct measure; however, ALLSELECTED is indeed behaving as it 
was designed to. ALLSELECTED returns the last shadow fi lter context; In this latter version of the query, 
the last shadow fi lter context contains all brands, not only the fi ltered ones. Indeed, ADDCOLUMNS 
introduced a shadow fi lter context on the rows it is iterating, which includes all brands.

If one needs to retain the previous fi lter context, they cannot rely solely on ALLSELECTED. The CAL-
CULATE modifi er that retains the previous fi lter context is KEEPFILTERS. It is interesting to see the result 
when KEEPFILTERS comes into play:

EVALUATE
VAR Brands =
    FILTER (
        ALL ( 'Product'[Brand] ),
        'Product'[Brand]
            IN {
                "Adventure Works",
                "Contoso",
                "Fabrikam",
                "Litware",
                "Northwind Traders",
                "Proseware" 
            }
    )
RETURN
    CALCULATETABLE (
        ADDCOLUMNS (
            KEEPFILTERS ( ALL ( 'Product'[Brand] ) ), 
            "Sales_Amount", [Sales Amount],
            "Pct", [Pct]
        ),
        Brands
    )
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When used as a modifi er of an iterator, KEEPFILTERS does not change the result of the iterated table. 
Instead, it instructs the iterator to apply KEEPFILTERS as an implicit CALCULATE modifi er whenever con-
text transition occurs while iterating on the table. As a result, ALL returns all the brands and the shadow 
fi lter context also contains all the brands. When the context transition takes place, the previous fi lter 
applied by the outer CALCULATETABLE with the Brands variable is kept. Thus, the query returns all the 
brands, but values are computed considering only the selected brands, as we can see in Figure 14-17.

FIGURE 14-17 ALLSELECTED with KEEPFILTERS produces another result, containing many blanks.

ALLSELECTED without parameters
As the name suggests, ALLSELECTED belongs to the ALL* family. As such, when used as a CALCULATE 
modifi er, it acts as a fi lter remover. If the column used as a parameter is included in any shadow fi lter 
context, then it restores the last shadow fi lter context on that column only. Otherwise, if there is no 
shadow fi lter context then it does not do anything.

When used as a CALCULATE modifi er, ALLSELECTED, like ALL, can also be used without any param-
eter. In that case, ALLSELECTED restores the last shadow fi lter context on any column. Remember that 
this happens if and only if the column is included in any shadow fi lter context. If a column is fi ltered 
through explicit fi lters only, then its fi lter remains untouched.

The ALL* family of functions

Because of the complexity of the ALL* family of functions, in this section we provide a summary of their 
behavior. Every ALL* function behaves slightly differently, so mastering them takes time and experi-
ence. In this chapter about advanced DAX concepts, it is time to sum up the main concepts.

The ALL* family includes the following functions: ALL, ALLEXCEPT, ALLNOBLANKROW, ALLCROSS-
FILTERED, and ALLSELECTED. All these functions can be used either as table functions or as CALCU-
LATE modifi ers. When used as table functions, they are much easier to understand than when used as 
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CALCULATE modifi ers. Indeed, when used as CALCULATE modifi ers, they might produce unexpected 
results because they act as fi lter removers.

Table 14-5 provides a summary of the ALL* functions. In the remaining part of this section we pro-
vide a more complete description of each function.

TABLE 14-5 Summary of the ALL* family of functions 

Function Table function CALCULATE modifi er

ALL Returns all the distinct values of a 
column or of a table.

Removes any fi lter from columns or expanded tables. It 
never adds a fi lter; it only removes them if present.

ALLEXCEPT Returns all the distinct values of 
a table, ignoring fi lters on some 
of the columns of the expanded 
table.

Removes fi lters from an expanded table, except from the 
columns (or tables) passed as further arguments.

ALLNOBLANKROW Returns all the distinct values 
of a column or table, ignoring 
the blank row added for invalid 
relationships.

Removes any fi lter from columns or expanded tables; also 
adds a fi lter that only removes the blank row. Thus, even if 
there are no fi lters, it actively adds one fi lter to the context.

ALLSELECTED Returns the distinct values of a col-
umn or a table, as they are visible 
in the last shadow fi lter context.

Restores the last shadow fi lter context on tables or columns, 
if a shadow fi lter context is present. Otherwise, it does not 
do anything. It always adds fi lters, even in the case where 
the fi lter shows all the values.

ALLCROSSFILTERED Not available as a table function. Removes any fi lter from an expanded table, including also 
the tables that can be reached directly or indirectly through 
bidirectional cross-fi lters. ALLCROSSFILTERED never adds a 
fi lter; it only removes fi lters if present.

The “Table function” column in Table 14-5 corresponds to the scenario where the ALL* function is 
being used in a DAX expression, whereas the “CALCULATE modifi er” column is the specifi c case when 
the ALL* function is the top-level function of a fi lter argument in CALCULATE.

Another signifi cant difference between the two usages is that when one retrieves the result of these 
ALL* functions through an EVALUATE statement, the result contains only the base table columns and 
not the expanded table. Nevertheless, internal calculations like the context transition always use the 
corresponding expanded table. The following examples of DAX code show the different uses of the ALL 
function. The same concepts can be applied to any function of the ALL* family.

In the following example, ALL is used as a simple table function.

SUMX ( 
    ALL ( Sales ),                                  -- ALL is a table function
    Sales[Quantity] * Sales[Net Price]
)

In the next example there are two formulas, involving iterations. In both cases the Sales Amount 
measure reference generates the context transition, and the context transition happens on the 
expanded table. When used as a table function, ALL returns the whole expanded table.
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FILTER ( 
    Sales, 
    [Sales Amount] > 100                            -- The context transition takes place
                                                    -- over the expanded table 
)
 
FILTER ( 
    ALL ( Sales ),                                  -- ALL is a table function
    [Sales Amount] > 100                            -- The context transition takes place 
                                                    -- over the expanded table anyway
)

In the next example we use ALL as a CALCULATE modifi er to remove any fi lter from the expanded 
version of Sales:

CALCULATE (
    [Sales Amount],
    ALL ( Sales )                                   -- ALL is a CALCULATE modifier
)

This latter example, although similar to the previous one, is indeed very different. ALL is not used 
as a CALCULATE modifi er; instead, it is used as an argument of FILTER. In such a case, ALL behaves as a 
regular table function returning the entire expanded Sales table.

CALCULATE (
    [Sales Amount],
    FILTER ( ALL ( Sales ), Sales[Quantity] > 0 )   -- ALL is a table function
                                                    -- The filter context receives the
                                                    -- expanded table as a filter anyway
)

The following are more detailed descriptions of the functions included in the ALL* family. These 
functions look simple, but they are rather complex. Most of the time, their behavior is exactly what 
is needed, but they might produce undesired effects in boundary cases. It is not easy to remember 
all these rules and all the specifi c behaviors. We hope our reader fi nds Table 14-5 useful when unsure 
about an ALL* function.

ALL
When used as a table function, ALL is a simple function. It returns all the distinct values of one or more 
columns, or all the values of a table. When used as a CALCULATE modifi er, it acts as a hypothetical 
REMOVEFILTER function. If a column is fi ltered, it removes the fi lter. It is important to note that if a col-
umn is cross-fi ltered, then the fi lter is not removed. Only direct fi lters are removed by ALL. Thus, using 
ALL ( Product[Color] ) as a CALCULATE modifi er might still leave Product[Color] cross-fi ltered in case 
there is a fi lter on another column of the Product table. ALL operates on the expanded table. This is why 
ALL ( Sales ) removes any fi lter from the tables in the sample model: the expanded Sales table includes 
all the tables of the entire model. ALL with no arguments removes any fi lter from the entire model.



466 CHAPTER 14 Advanced DAX concepts

ALLEXCEPT
When used as a table function, ALLEXCEPT returns all the distinct values of the columns in a table, 
except the columns listed. If used as a fi lter, the result includes the full expanded table. When used as a 
fi lter argument in CALCULATE, ALLEXCEPT acts exactly as an ALL, but it does not remove the fi lter from 
the columns provided as arguments. It is important to remember that using ALL/VALUES is not the 
same as ALLEXCEPT. ALLEXCEPT only removes fi lters, whereas ALL removes fi lters while VALUES retains 
cross-fi ltering by imposing a new fi lter. Though subtle, this difference is important.

ALLNOBLANKROW
When used as a table function, ALLNOBLANKROW behaves like ALL, but it does not return the blank 
row potentially added because of invalid relationships. ALLNOBLANKROW can still return a blank row, 
if blanks are present in the table. The only row that is never returned is the one added automatically 
by the engine to fi x invalid relationships. When used as a CALCULATE modifi er, ALLNOBLANKROW 
replaces all the fi lters with a new fi lter that only removes the blank row. Therefore, all the columns will 
only fi lter out the blank value.

ALLSELECTED
When used as a table function, ALLSELECTED returns the values of a table (or column) as fi ltered in the 
last shadow fi lter context. When used as a CALCULATE modifi er, it restores the last shadow fi lter con-
text on each column. If multiple columns are present in different shadow fi lter contexts, it uses the last 
shadow fi lter context for each column.

ALLCROSSFILTERED
ALLCROSSFILTERED can be used only as a CALCULATE modifi er and cannot be used as a table  function. 
ALLCROSSFILTERED has only one argument that must be a table. ALLCROSSFILTERED removes all the 
fi lters on an expanded table (like ALL) and on columns and tables that are cross-fi ltered because of 
bidirectional cross-fi lters set on relationships directly or indirectly connected to the expanded table.

Understanding data lineage

We introduced data lineage in Chapter 10, “Working with the fi lter context,” and we have shown 
our readers how to control data lineage using TREATAS. In Chapter 12, “Working with tables,” and 
 Chapter 13, “Authoring queries,” we described how certain table functions can manipulate the data 
lineage of the result. This section is a summary of the rules to remember about data lineage, with 
 additional information we could not cover in previous chapters.

Here are the basic rules of data lineage:

 ■ Each column of a table in a data model has a unique data lineage.
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 ■ When a fi lter context fi lters the model, it fi lters the model column with the same data lineage of 
the columns included in the fi lter context.

 ■ Because a fi lter is the result of a table, it is important to know how a table function may affect 
the data lineage of the result:

• In general, columns used to group data keep their data lineage in the result.

• Columns containing the result of an aggregation always have a new data lineage.

• Columns created by ROW and ADDCOLUMNS always have a new data lineage.

• Columns created by SELECTEDCOLUMNS keep the data lineage of the original column 
whenever the expression is just a copy of a column in the data model; otherwise, they have a 
new data lineage.

For example, the following code seems to produce a table where each product color has a cor-
responding Sales Amount value summing all the sales for that color. Instead, because C2 is a column 
created by ADDCOLUMNS, it does not have the same lineage as Product[Color], even though it has 
the same content. Please note that we had to use several steps: fi rst, we create the C2 column; then 
we select that column only. If other columns remain in the same table, then the result would be very 
different.

DEFINE
    MEASURE Sales[Sales Amount] = 
        SUMX ( Sales, Sales[Quantity] * Sales[Net Price] )
EVALUATE
VAR NonBlueColors = 
    FILTER ( 
        ALL ( 'Product'[Color] ), 
        'Product'[Color] <> "Blue" 
    )
VAR AddC2 =
    ADDCOLUMNS (
        NonBlueColors,
        "[C2]", 'Product'[Color]
    )
VAR SelectOnlyC2 =
    SELECTCOLUMNS ( AddC2, "C2", [C2] )
VAR Result = 
    ADDCOLUMNS ( SelectOnlyC2, "Sales Amount", [Sales Amount] )
RETURN Result
ORDER BY [C2]

The previous query produces a result where the Sales Amount column always has the same value, 
corresponding to the sum of all the rows in the Sales table. This is shown in Figure 14-18.
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FIGURE 14-18 The C2 column does not have the same data lineage as Product[Color].

TREATAS can be used to transform the data lineage of a table. For example, the following code 
restores the data lineage to Product[Color] so that the last ADDCOLUMNS computes Sales Amount 
leveraging the context transition over the Color column:

DEFINE
    MEASURE Sales[Sales Amount] = 
        SUMX ( Sales, Sales[Quantity] * Sales[Net Price] )
EVALUATE
VAR NonBlueColors = 
    FILTER ( 
        ALL ( 'Product'[Color] ), 
        'Product'[Color] <> "Blue" 
    )
VAR AddC2 =
    ADDCOLUMNS (
        NonBlueColors,
        "[C2]", 'Product'[Color]
    )
VAR SelectOnlyC2 =
    SELECTCOLUMNS ( AddC2, "C2", [C2] )
VAR TreatAsColor = 
    TREATAS ( SelectOnlyC2, 'Product'[Color] )
VAR Result = 
    ADDCOLUMNS ( TreatAsColor, "Sales Amount", [Sales Amount] )
RETURN Result
ORDER BY 'Product'[Color]
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As a side effect, TREATAS also changes the column name, which must be correctly referenced in the 
ORDER BY condition. The result is visible in Figure 14-19.

FIGURE 14-19 The Color column in the result has the same data lineage as Product[Color].

Conclusions

In this chapter we introduced two complex concepts: expanded tables and shadow fi lter contexts.

Expanded tables are at the core of DAX. It takes some time before one gets used to thinking in 
terms of expanded tables. However, once the concept of expanded tables has become familiar, they are 
much simpler to work with than relationships. Only rarely does a developer have to deal with expanded 
tables, but knowing about them proves to be invaluable when they are the only way to make sense of a 
result.

In this regard, shadow fi lter contexts are like expanded tables: They are hard to see and understand, 
but when they come into play in the evaluation of a formula, they explain exactly how the numbers 
were computed. Making sense of a complex formula that uses ALLSELECTED without fi rst mastering 
shadow fi lter contexts is nearly impossible.

However, both concepts are so complex that the best thing to do is to try to avoid them. We do 
show a few examples of expanded tables being useful in Chapter 15. Shadow fi lter contexts are useless 
in code; they are merely a technical means for DAX to let developers compute totals at the visual level.
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Try to avoid using expanded tables by only using column fi lters and not table fi lters in CALCULATE 
fi lter arguments. Doing this, the code will be much easier to understand. Usually, it is possible to ignore 
expanded tables, as long as they are not required for some complex measure.

Try to avoid shadow fi lter context by never letting ALLSELECTED be called inside an iteration. The 
only iteration before ALLSELECTED needs to be the outermost iteration created by the query engine—
mostly Power BI. Calling a measure containing ALLSELECTED from inside an iteration makes the calcu-
lation more complex.

When you follow these two pieces of advice, your DAX code will be correct and easy to understand. 
Remember that experts can appreciate complexity, but they also understand when it is better to stay 
away from complexity. Avoiding table fi lters and ALLSELECTED inside iterations does not make a devel-
oper look uneducated. Rather, it puts the developer in the category of experts that want their code to 
always work smoothly.
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Advanced relationships

At this point in the book, there are no more DAX secrets to share. In previous chapters we covered all 
there is to know about the syntax and the functionalities of DAX. Still, there is a long way to go. There 
are another two chapters dedicated to DAX, and then we will talk about optimization. The next chapter 
is dedicated to advanced DAX calculations. In this chapter we describe how to leverage DAX to create 
advanced types of relationships. These include calculated physical relationships and virtual relation-
ships. Then, while on the topic of relationships, we want to share a few considerations about different 
types of physical relationships: one-to-one, one-to-many, and many-to-many. Each of these types of 
relationships is worth describing in its peculiarities. Moreover, a topic that still needs some attention is 
ambiguity. A DAX model can be—or become—ambiguous; this is a serious problem you need to be 
aware of, in order to handle it well.

At the end of this chapter we cover a topic that is more relevant to data modeling than to DAX, 
which is relationships with different granularity. When a developer needs to analyze budget and sales, 
they are likely working with multiple tables with different granularity. Knowing how to manage them 
properly is a useful skill for DAX developers.

Implementing calculated physical relationships

The fi rst set of relationships we describe is calculated physical relationships. In scenarios where the rela-
tionship cannot be set because a key is missing, or when one needs to compute the key with complex 
formulas, a good option is to leverage calculated columns to set the relationship. The result is still a 
physical relationship; the only difference with a standard relationship is that the relationship key is a 
calculated column instead of being a column from the data source.

Computing multiple-column relationships
A Tabular model allows the creation of relationships based on a single column only. It does not support 
relationships based on multiple columns. Nevertheless, relationships based on multiple columns are 
useful when they appear in data models that cannot be changed. Here are two methods to work with 
relationships based on multiple columns:

 ■ Defi ne a calculated column containing the composition of the keys; then use it as the new key 
for the relationship.

 ■ Denormalize the columns of the target table—the one-side in a one-to-many relationship—
using the LOOKUPVALUE function.
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As an example, consider the case of Contoso offering a “Products of the Day” promotion. On certain 
days, a discount is offered on a set of products. The model is visible in Figure 15-1.

FIGURE 15-1 The Discounts table needs a relationship based on two columns with Sales.

The Discounts table contains three columns: Date, ProductKey, and Discount. If a developer needs 
this information in order to compute the amount of the discount, they are faced with a problem: for 
any given sale, the discount depends on ProductKey and Order Date. Thus, it is not possible to create 
the relationship between Sales and Discounts; it would involve two columns, and DAX only supports 
relationships based on a single column.

The fi rst option is to create a new column in both Discount and Sales, containing the combination of 
the two columns:

Sales[DiscountKey] = 
COMBINEVALUES (
    "-", 
    Sales[Order Date], 
    Sales[ProductKey] 
)
 
Discounts[DiscountKey] =
COMBINEVALUES(
    "-",
    Discounts[Date],
    Discounts[ProductKey] 
)

The calculated columns use the COMBINEVALUES function. COMBINEVALUES requires a separa-
tor and a set of expressions that are concatenated as strings, separated by the separator provided. 
One could obtain the same result in terms of column values by using a simpler string concatenation, 
but COMBINEVALUES offers a few advantages. Indeed, COMBINEVALUES is particularly useful when 
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creating relationships based on calculated columns if the model uses DirectQuery. COMBINEVALUES 
assumes—but does not validate—that when the input values are different, the output strings are also 
different. Based on this assumption, when COMBINEVALUES is used to create calculated columns to 
build a relationship that joins multiple columns from two DirectQuery tables, an optimized join condi-
tion is generated at query time.

 

Note More details about optimizations obtained by using COMBINEVALUES with Direct-
Query are available at https://www.sqlbi.com/articles/using-combinevalues-to-optimize-
directquery-performance/.

 

Once the two columns are in place, one can fi nally create the relationship between the two tables. 
Indeed, a relationship can be safely created on top of calculated columns.

This solution is straightforward and works well. Yet there are scenarios where this is not the best 
option because it requires the creation of two calculated columns with potentially many different 
values. As you learn in later chapters about optimization, this might have a negative impact on both 
model size and query speed.

The second option is to use the LOOKUPVALUE function. Using LOOKUPVALUE, one can denormal-
ize the discount in the Sales table by defi ning a new calculated column containing the discount:

Sales[Discount] =
LOOKUPVALUE (
    Discounts[Discount],
    Discounts[ProductKey], Sales[ProductKey],
    Discounts[Date], Sales[Order Date] 
)

Following this second pattern, no relationship is created. Instead, the Discount value is denormalized 
in the Sales table by performing a lookup.

Both options work well, and picking the right one depends on several factors. If Discount is the only 
column needed, then denormalization is the best option because it makes the code simple to author, 
and it reduces memory usage. Indeed, it requires a single calculated column with fewer distinct values 
compared to the two calculated columns required for a relationship.

On the other hand, if the Discounts table contains many columns needed in the code, then each 
of them should be denormalized in the Sales table. This results in a waste of memory and possibly in 
decreased processing performance. In that case, the calculated column with the new composite key 
might be preferable.

This simple fi rst example is important because it demonstrates a common and important feature of 
DAX: the ability to create relationships based on calculated columns. This demonstrates that a user can 
create a new relationship, provided that they can compute and materialize the key in a calculated col-
umn. The next example demonstrates how to create relationships based on static ranges. By extending 
the concept, it is possible to create several kinds of relationships.

https://www.sqlbi.com/articles/using-combinevalues-to-optimize-directquery-performance/
https://www.sqlbi.com/articles/using-combinevalues-to-optimize-directquery-performance/
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Implementing relationships based on ranges
In order to show why calculated physical relationships are a useful tool, we examine a scenario where 
one needs to perform a static segmentation of products based on their list price. The price of a product 
has many different values and performing an analysis slicing by price does not provide useful insights. 
In that case, a common technique is to partition the different prices into separate buckets, using a con-
fi guration table like the one in Figure 15-2.

FIGURE 15-2 This is the Confi guration table for the price ranges.

As was the case in the previous example, it is not possible to create a direct relationship between the 
Sales table and the Confi guration table. The reason is that the key in the confi guration table depends 
on a relationship based on a range of values (also known as a between condition), which is not sup-
ported by DAX. We could compute a key in the Sales table by using nested IF statements; however, 
this would require including the values of the confi guration table in the formula like in the following 
example, which is not the suggested solution:

Sales[PriceRangeKey] = 
SWITCH ( 
    TRUE (),
    Sales[Net Price] <=  10, 1,
    Sales[Net Price] <=  30, 2,
    Sales[Net Price] <=  80, 3,
    Sales[Net Price] <= 150, 4,
    5
)

A good solution should not include the boundaries in the formula. Instead, the code should be 
designed to adapt to the contents of the table, so that updating the confi guration table updates the 
whole model.

In this case a better solution is to denormalize the price range directly in the Sales table by using a 
calculated column. The pattern of the code is quite similar to the previous one—the main difference 
being the formula, which, this time, cannot be a simple LOOKUPVALUE:

Sales[PriceRange] =
VAR FilterPriceRanges =
    FILTER (
        PriceRanges,
        AND (
            PriceRanges[MinPrice] <= Sales[Net Price],
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            PriceRanges[MaxPrice] > Sales[Net Price]
        )
    )
VAR Result =
    CALCULATE (
        VALUES ( PriceRanges[PriceRange] ),
        FilterPriceRanges
    )
RETURN 
    Result

It is interesting to note the usage of VALUES to retrieve a single value: VALUES returns a table, not 
a value. However, as explained in Chapter 3, “Using basic table functions,” whenever a table contains a 
single row and a single column, the table is automatically converted into a scalar value if required by 
the expression.

Because of the way FILTER computes its result, it always returns a single row from the confi gura-
tion table. Therefore, VALUES is guaranteed to always return a single row; the result of CALCULATE is 
thus the description of the price range containing the net price of the current row in the Sales table. 
This expression works well if the confi guration table is well designed. But if the ranges contain holes 
or overlaps in range of values, then VALUES might return multiple rows, and the expression might 
result in an error.

The previous technique denormalizes values in the Sales table. Going one step further means  
denormalizing the key instead of the description and then building a physical relationship based on 
the new calculated column. This additional step requires some level of attention in the defi nition of the 
calculated column. A simple modifi cation of the PriceRange column is enough to retrieve the key, but it 
is still not enough to create the relationship. The following is the code required to retrieve the key and 
blank the result in case of errors:

Sales[PriceRangeKey] =
VAR FilterPriceRanges =
    FILTER (
        PriceRanges,
        AND (
            PriceRanges[MinPrice] <= Sales[Net Price],
            PriceRanges[MaxPrice] > Sales[Net Price]
        )
    )
VAR Result =
    CALCULATE (
        IFERROR (
            VALUES ( PriceRanges[PriceRangeKey] ), 
            BLANK ()
        ),
        FilterPriceRanges 
    )
RETURN
    Result
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The column computes the correct value. Unfortunately, trying to build the relationship between 
PriceRanges and Sales based on the newly created PriceRangeKey column results in an error because of 
a circular dependency. Circular dependencies frequently occur when creating relationships based on 
calculated columns or calculated tables.

In this example, the fi x is indeed simple: you need to use DISTINCT instead of VALUES in the high-
lighted row of the formula. Once DISTINCT is in place, the relationship can be created. The result is 
visible in Figure 15-3.

FIGURE 15-3 Slicing by price range is possible once the relationship is set correctly.

Prior to using DISTINCT, the presence of VALUES would generate a circular dependency. Replacing 
VALUES with DISTINCT works like magic. The underlying mechanisms are quite intricate. The next sec-
tion provides a complete explanation of circular dependencies that might appear because of relation-
ships with calculated columns or calculated tables, along with a complete explanation of why DISTINCT 
removes the problem.

Understanding circular dependency in calculated 
physical relationships
In the previous example, we created a calculated column and then used it in a relationship. This 
resulted in a circular dependency error. As soon as you start working with calculated physical rela-
tionships, this error can appear quite often. Therefore, it is useful to spend some time understanding 
exactly the source of the error. This way, you will also learn how to avoid it.

Let us recall the code of the calculated column in its shorter form:

Sales[PriceRangeKey] =
CALCULATE (
    VALUES ( PriceRanges[PriceRangeKey] ),
    FILTER (
        PriceRanges,
        AND (
            PriceRanges[MinPrice] <= Sales[Net Price],
            PriceRanges[MaxPrice] > Sales[Net Price]
        )
    )
)
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The PriceRangeKey column depends on the PriceRanges table. If a change is detected in the 
PriceRanges table, then Sales[PriceRangeKey] must be recalculated. Because the formula contains several 
references to the PriceRanges table, the dependency is clear. What is less obvious is that creating a rela-
tionship between this column and the PriceRanges table creates a dependency the other way around.

In Chapter 3 we mentioned that the DAX engine creates a blank row on the one-side of a relation-
ship if the relationship is invalid. Thus, when a table is on the one-side of a relationship, its content 
depends on the validity of the relationship. In turn, the validity of the relationship depends on the 
content of the column used to set the relationship.

In our scenario, if one could create a relationship between Sales and PriceRanges based on 
Sales[PriceRangeKey], then PriceRanges might have a blank row or not, depending on the value of 
Sales[PriceRangeKey]. In other words, when the value of Sales[PriceRangeKey] changes, the content 
of the PriceRanges table might also change. But in turn, if the value of PriceRanges changes, then 
Sales[PriceRangeKey] might require an update—even though the added blank row should never be 
used. This is the reason why the engine detects a circular dependency. It is hard to spot for a human, 
but the DAX algorithm fi nds it immediately.

If the engineers who created DAX had not worked on the problem, it would have been impossible to 
create relationships based on calculated columns. Instead, they added some logic in DAX specifi cally to 
handle scenarios like this.

Instead of having only one kind of dependency, in DAX there are two types of dependencies: for-
mula dependency and blank row dependency. In our example, this is the situation:

 ■ Sales[PriceRangeKey] depends on PriceRanges both because of the formula (it references the 
PriceRanges table) and because of the blank row (it uses the VALUES function, which might 
return the additional blank row).

 ■ PriceRanges depends on Sales[PriceRangeKey] only because of the blank row. A change in the 
value of Sales[PriceRangeKey] does not change the content of PriceRanges. It only affects the 
presence of the blank row.

To break the chain of the circular dependency, it is enough to break the dependency of 
Sales[PriceRangeKey] from the presence of the blank row in PriceRanges. This can be obtained by mak-
ing sure that all the functions used in the formula do not depend on the blank row. VALUES includes 
the additional blank row if present. Therefore, VALUES depends on the blank row. DISTINCT, on the 
other hand, always has the same value, regardless of the presence of the additional blank row. Conse-
quently, DISTINCT does not depend on the blank row.

If you use DISTINCT instead of VALUES, then Sales[PriceRangeKey] no longer depends on the blank 
row. The net effect is that the two entities—the table and the column—still depend on each other, 
but for different reasons. PriceRanges depends on Sales[PriceRangeKey] for the blank row, whereas 
Sales[PriceRangeKey] depends on Sales because of the formula. Being two unrelated dependencies, the 
circular dependency disappears and it is possible to create the relationship.
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Whenever creating columns that might later be used to set relationships, you need to pay special 
attention to the following details:

 ■ Using DISTINCT instead of VALUES.

 ■ Using ALLNOBLANKROW instead of ALL.

 ■ Beware of CALCULATE with fi lters using the compact syntax.

The fi rst two points are quite clear. The following elaborates on the last point—paying attention to 
CALCULATE. For example, consider the following expression:

= 
CALCULATE ( 
    MAX ( Customer[YearlyIncome] ),
    Customer[Education] = "High school"
)

At fi rst sight, it looks like this formula does not depend on the blank row in Customer. But in fact, 
it does. The reason is that DAX expands the syntax of CALCULATE with the compact syntax of a fi lter 
argument, into a complete fi lter over a table corresponding to the following code:

= 
CALCULATE ( 
    MAX ( Customer[YearlyIncome] ),
    FILTER ( 
        ALL ( Customer[Education] ),
        Customer[Education] = "High school"
    )
)

The highlighted row containing the ALL function creates a dependency on the blank row. In general, 
blank row dependencies might be hard to spot. But once you understand the basic principle of circular 
dependencies, they are not complex to remove. The previous example can easily be rewritten this way:

= 
CALCULATE ( 
    MAX ( Customer[YearlyIncome] ),
    FILTER ( 
        ALLNOBLANKROW ( Customer[Education] ),
        Customer[Education] = "High school"
    )
)

By using ALLNOBLANKROW instead of ALL, the dependency on the additional blank row in Cus-
tomer table disappears.

It is important to note that often, the presence of functions that rely on the blank row is hidden 
within the code. As an example, consider the code used in the previous section where we created the 
calculated physical relationship based on the price range. Here is the original code:
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Sales[PriceRangeKey] =
CALCULATE (
    VALUES ( PriceRanges[PriceRangeKey] ),
    FILTER (
        PriceRanges,
        AND (
            PriceRanges[MinPrice] <= Sales[Net Price],
            PriceRanges[MaxPrice] > Sales[Net Price]
        )
    )
)

In the previous formula, the presence of VALUES is very clear. Yet, a different way to author the 
same code without using VALUES is to rely on SELECTEDVALUE, which does not return an error in case 
multiple rows are visible:

Sales[PriceRangeKey] =
VAR FilterPriceRanges =
    FILTER (
        PriceRanges,
        AND (
            PriceRanges[MinPrice] <= Sales[Net Price],
            PriceRanges[MaxPrice] > Sales[Net Price]
        )
    )
VAR Result =
    CALCULATE (
        SELECTEDVALUE ( PriceRanges[PriceRangeKey] ),
        FilterPriceRanges
    )
RETURN Result

Unfortunately, as soon as you try to create the relationship, this code raises a circular dependency 
error too, although it looks like VALUES is not present. Indeed, though hidden, VALUES is present. The 
reason is that SELECTEDVALUE internally implements the following logic:

Sales[PriceRangeKey] =
VAR FilterPriceRanges =
    FILTER (
        PriceRanges,
        AND (
            PriceRanges[MinPrice] <= Sales[Net Price],
            PriceRanges[MaxPrice] > Sales[Net Price]
        )
    )
VAR Result =
    CALCULATE (
        IF (
            HASONEVALUE ( PriceRanges[PriceRangeKey] ),
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            VALUES ( PriceRanges[PriceRangeKey] ),
            BLANK ()
        ),
        FilterPriceRanges 
    )
RETURN
    Result

By expanding the code of SELECTEDVALUES, now the presence of VALUES is more evident. Hence, 
so is the dependency on the blank row that generates the circular dependency.

Implementing virtual relationships

In the previous sections we discussed how to leverage calculated columns to create physical relation-
ships. However, there are scenarios where a physical relationship is not the right solution and virtual 
relationships are a better approach. A virtual relationship mimics a real relationship. From a user point 
of view, a virtual relationship looks like a real relationship although there is no relationship in the physi-
cal model. Because there is no relationship, you need to author DAX code to transfer a fi lter from one 
table to another.

Transferring fi lters in DAX
One of the most powerful features of DAX is its ability to move a fi lter from one table to another by 
following relationships. Yet, there are scenarios where it is hard—if not impossible—to create a physical 
relationship between two entities. A DAX expression can mimic the relationship in multiple ways. This 
section shows a few techniques by using a somewhat elaborate scenario.

Contoso advertises in local newspapers and on the web, choosing one or more brands to promote 
each month. This information is stored in a table named Advertised Brands that contains the year, the 
month, and the brand—if any—on sale. You can see an excerpt of the table in Figure 15-4.

FIGURE 15-4 The table contains one row for each brand in the month where it was advertised.
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It is important to note that there is no unique column in the table. Although all the rows are unique, 
each column has many duplicates. Therefore, the table cannot be on the one-side of a relationship. This 
fact becomes of higher importance as soon as we further outline the requirements.

The requirement is to create a measure that computes the sales amount of the products, only 
within the time period when they were being advertised. In order to solve that scenario, it is neces-
sary to determine whether a brand is being advertised or not in a given month. If it were possible to 
create a relationship between Sales and the Advertised Brands table, the code would be simple to 
author. Unfortunately, the relationship is not easy to create (and this is by design for the purpose of 
this teaching).

One possible solution is to create a new calculated column in both tables containing the con-
catenation of year, month, and brand. This follows the technique outlined earlier in this chapter, 
to create a relationship between two tables based on multiple columns. Nevertheless, in this 
scenario there are other interesting alternatives worth exploring that avoid the creation of new 
 calculated columns.

A fi rst yet suboptimal solution is to rely on iterations. One could iterate the Sales table row by row, 
and on each row check if the brand of the product being sold was being advertised in that month. 
Thus, the following measure solves the scenario, but it is not the best solution:

Advertised Brand Sales :=
SUMX (
    FILTER (
        Sales,
        CONTAINS (
            'Advertised Brands',
            'Advertised Brands'[Brand], RELATED ( 'Product'[Brand] ),
            'Advertised Brands'[Calendar Year], RELATED ( 'Date'[Calendar Year] ),
            'Advertised Brands'[Month], RELATED ( 'Date'[Month] )
        )
    ),
    Sales[Quantity] * Sales[Net Price]
)

The measure uses the CONTAINS function, which searches for the presence of a row in a table. 
CONTAINS accepts the table to search in as its fi rst parameter. Following are pairs of parameters: the 
fi rst one being a column in the table to search and the second one being the value to search. In the 
example, CONTAINS returns True if in Advertised Brands there is at least one row where the brand is 
the current brand, the year is the current year, and the month is the current month—where “current” 
means the Sales row currently iterated by FILTER.

The measure computes a correct result, as shown in Figure 15-5, but there are several issues.
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FIGURE 15-5 Advertised Brand Sales represents the sales of only the brands being advertised.

Here are the two most problematic issues of the previous code:

 ■ FILTER iterates over Sales—which is a large table—and for each row it calls the CONTAINS function. 
Even though CONTAINS is a fast function, calling it millions of times results in poor performance.

 ■ The measure does not take advantage of the presence of the Sales Amount measure, which 
already computes the sales amount. In this case the duplicated code is a simple multiplica-
tion, but if the measure to compute were more complex, this approach would not be the best. 
Indeed, it requires duplicating the expression to compute within the iteration.

A much better option to solve the scenario is to use CALCULATE to transfer the fi lter from the Adver-
tised Brands table both to the Product table (using the brand as a fi lter) and to the Date table (using the 
year and the month). This can be accomplished in several ways, as shown in the next sections.

Transferring a fi lter using TREATAS
The fi rst and best option is using TREATAS to move the fi lter from the Advertised Brands over to the 
other tables. As explained in Chapters 10, “Working with the fi lter context,” 12, “Working with tables,” 
and 13, “Authoring queries,” TREATAS changes the data lineage of a table so that its content can be 
used as a fi lter on specifi c columns of the data model.

Advertised Brands has no relationships with any other table in the model. Thus, normally its content 
cannot be used as a fi lter. By using TREATAS, one can change the data lineage of Advertised Brands so 
that it can be used as a fi lter argument of CALCULATE and propagate its fi lter to the entire model. The 
following measure performs exactly this operation: 

Advertised Brand Sales TreatAs :=
VAR AdvertisedBrands =
    SUMMARIZE (
        'Advertised Brands',
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        'Advertised Brands'[Brand],
        'Advertised Brands'[Calendar Year],
        'Advertised Brands'[Month]
    )
VAR FilterAdvertisedBrands =
    TREATAS (
        AdvertisedBrands,
        'Product'[Brand],
        'Date'[Calendar Year],
        'Date'[Month]
    )
VAR Result =
    CALCULATE ( [Sales Amount], KEEPFILTERS ( FilterAdvertisedBrands ) )
RETURN
    Result

SUMMARIZE retrieves the brand, year, and month advertised. TREATAS receives this table and 
changes its lineage, so that it will fi lter the product brand and the year and month in Date. The resulting 
table in FilterAdvertisedBrands has the correct data lineage. Therefore, it fi lters the model showing only 
the brands in the year and month when they are being advertised.

It is important to note that KEEPFILTERS is required. Indeed, forgetting it means that CALCULATE will 
override the fi lter context on the brand, year, and month—and this is unwanted. The Sales table needs 
to receive both the fi lter coming from the visual (which might be fi ltering only one year or one brand) 
and the fi lter coming from the Advertised Brands table. Therefore, KEEPFILTERS is mandatory to obtain 
a correct result.

This version of the code is much better than the one using the iteration. It uses the Sales Amount 
measure, thus avoiding the need to rewrite its code, and it does not iterate over the Sales table to 
perform the lookup. This code only scans the Advertised Brands table, which is expected to be on the 
smaller side; it then applies the fi lter to the model prior to calling the Sales Amount measure. Even 
though this version might be less intuitive, it performs much better than the example based on CON-
TAINS shown in the previous section.

Transferring a fi lter using INTERSECT
Another option to obtain the same result is to use the INTERSECT function. Compared to the previous 
example using TREATAS, the logic is similar; performance-wise there is a small difference in favor of the 
TREATAS version, which is still the best option. The following code implements the technique based on 
INTERSECT:

Advertised Brand Sales Intersect :=
VAR SelectedBrands =
    SUMMARIZE (
        Sales,
        'Product'[Brand],
        'Date'[Calendar Year],
        'Date'[Month]
    )
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VAR AdvertisedBrands =
    SUMMARIZE (
        'Advertised Brands',
        'Advertised Brands'[Brand],
        'Advertised Brands'[Calendar Year],
        'Advertised Brands'[Month]
    )
VAR Result =
    CALCULATE (
        [Sales Amount],
        INTERSECT (
            SelectedBrands,
            AdvertisedBrands
        )
    )
RETURN
    Result

INTERSECT retains the data lineage of the fi rst table it receives. Therefore, the resulting table is still a 
table that can fi lter Product and Date. This time, KEEPFILTERS is not needed because the fi rst SUMMA-
RIZE already only contains the visible brands and months; INTERSECT only removes from this list the 
ones that are not being advertised.

From a performance point of view, this code requires a scan of the Sales table to produce the list 
of existing brands and months, plus another scan to compute the sales amount. Therefore, it is slower 
than the version using TREATAS. But it is worth learning this technique because it might be useful in 
other scenarios involving other set functions, like UNION and EXCEPT. The set functions in DAX can be 
combined to create fi lters, authoring powerful measures in a relatively simple way.

Transferring a fi lter using FILTER
A third alternative is available to the DAX developer: using FILTER and CONTAINS. The code is similar to 
the fi rst version with SUMX—the main differences being that it uses CALCULATE instead of SUMX, and 
it avoids iterating over the Sales table. The following code implements this alternative:

Advertised Brand Sales Contains :=
VAR SelectedBrands =
    SUMMARIZE (
        Sales,
        'Product'[Brand],
        'Date'[Calendar Year],
        'Date'[Month]
    )
VAR FilterAdvertisedBrands =
    FILTER (
        SelectedBrands,
        CONTAINS (
            'Advertised Brands',
            'Advertised Brands'[Brand], 'Product'[Brand],
            'Advertised Brands'[Calendar Year], 'Date'[Calendar Year],
            'Advertised Brands'[Month], 'Date'[Month]
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        )
    )
VAR Result =
    CALCULATE (
        [Sales Amount],
        FilterAdvertisedBrands
    )
RETURN
    Result

The FILTER function used as a fi lter argument to CALCULATE uses the same CONTAINS technique 
used in the fi rst example. This time, instead of iterating Sales, it iterates over the result of SUMMARIZE. 
As explained in Chapter 14, “Advanced DAX concepts,” using the Sales table as a fi lter argument in 
CALCULATE would be wrong because of the expanded table. Therefore, fi ltering only three columns is a 
better approach. The result of SUMMARIZE already has the correct data lineage; moreover, KEEPFILTERS 
is not required because SUMMARIZE already only retains the existing values for brand, year, and month.

Performance-wise this is the worst solution among the last three, even though it is faster than the 
original code based on SUMX. Moreover, all the solutions based on CALCULATE share the signifi cant 
advantage that they do not need to duplicate the business logic of the calculation included in the Sales 
Amount measure, as our fi rst trial with SUMX did.

Implementing dynamic segmentation using virtual relationships 
In all the variations demonstrated earlier, we used DAX code to compute values and transfer a fi lter in 
absence of a relationship, though it would have been possible to create a physical relationship modify-
ing the data model. However, there are scenarios where the relationship cannot be created in any way, 
like the one described in this section.

The virtual relationship solves a variation of the static segmentation learned earlier in this chapter. 
In the static segmentation, we assigned each sale to a specifi c segment using a calculated column. In 
dynamic segmentation, the assignment occurs dynamically; also, it is not based on a column like the 
net price but rather on a calculation like the sales amount. The dynamic segmentation must have a 
fi lter target: In this example, the segmentation fi lters customers based on the Sales Amount measure.

The confi guration table contains the segment names and their boundaries, as shown in Figure 15-6.

FIGURE 15-6 Confi guration table for dynamic segmentation.
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If a customer spends between 75 and 100 USD in one sale, then they are assigned to the Low seg-
ment as per the confi guration table. One important detail about dynamic segmentation is that the 
value of the measure depends on the user selection in the report. For example, if a user selects one 
color, then the assignment of a customer to a segment must be executed only considering the sales of 
products of that given color. Because of this dynamic calculation, using a relationship is not an option. 
Consider the following report in Figure 15-7 that shows how many customers belong to each segment 
every year, only fi ltering a selection of categories.

FIGURE 15-7 Each customer is assigned a segment, possibly a different one every year.

One customer might belong to different segments over the years. One customer can be in the Very 
Low segment in 2008 and then move to the Medium segment the next year. Moreover, by changing 
the selection on the categories, all the numbers must be updated accordingly.

In other words, a user browsing the model has the perception that a relationship is indeed present, 
meaning that each customer is uniquely assigned to one segment. However, this assignment cannot be 
made by using a physical relationship. The reason is that the same customer can be assigned to differ-
ent segments in different cells of the report. In this scenario, DAX is the only way to solve the problem.

The measure to compute is the number of customers belonging to a specifi c segment. In other 
words, the measure counts how many customers belong to a segment considering all the fi lters in the 
current fi lter context. The formula looks simple, and yet its behavior requires a little clarifi cation:

CustInSegment :=
SUMX (
    Segments,
    COUNTROWS (
        FILTER (
            Customer,
            VAR SalesOfCustomer = [Sales Amount]
            VAR IsCustomerInSegment = 
                AND (
                    SalesOfCustomer > Segments[MinSale],
                    SalesOfCustomer <= Segments[MaxSale]
                )
            RETURN
                IsCustomerInSegment
        )
    )
)
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Apart from the grand total, every row of the report in Figure 15-7 has a fi lter context fi ltering one 
segment only. Thus, SUMX iterates only one row. SUMX is useful to make it easy to retrieve the seg-
ment boundaries (MinSale and MaxSale) and to correctly compute the total in the presence of fi lters. 
Inside SUMX, COUNTROWS counts the number of customers whose sales (saved in the SalesOfCus-
tomer variable for performance reasons) fall between the boundaries of the current segment.

The resulting measure is additive against segments and customers, and nonadditive against all 
other fi lters. You can note that in the fi rst row of the report, the Total result 213 is lower than the sum 
of the three years, which is 214. The reason is that at the Total level, the formula counts the number of 
customers that are in the Very Low segment over the three years. It appears that one of those custom-
ers bought enough products in three years to be moved to the next segment at the total level.

Though it is somewhat counterintuitive, the nonadditive behavior over time is a good feature. 
Indeed, to make it additive over the years, one would need to update the formula to include the time as 
part of the calculation. For instance, the following version of the code is additive over time. Yet, it is less 
powerful because one can no longer produce meaningful results if the year is not part of the report:

CustInSegment Additive :=
SUMX (
    VALUES ( 'Date'[Calendar Year] ),
    SUMX (
        Segments,
        COUNTROWS (
            FILTER (
                Customer,
                VAR SalesOfCustomer = [Sales Amount]
                VAR IsCustomerInSegment = 
                    AND (
                        SalesOfCustomer > Segments[MinSale],
                        SalesOfCustomer <= Segments[MaxSale]
                    )
                RETURN
                    IsCustomerInSegment
            )
        )
    )
)

As shown in Figure 15-8, the rows now sum up correctly in the Total column, even though the Grand 
Total—that is, the total of all years and segments—might be inaccurate.

FIGURE 15-8 Now the rows sum up correctly, but the column total might be inaccurate.
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The problem is that by obtaining the correct sum for one segment, one needs to sacrifi ce the 
grand total cumulating multiple segments and years. For example, one customer might be in the Very 
Low cluster in 2009 and in the Very High cluster in 2008; therefore, in the Grand Total they would be 
counted twice. The Grand Total shown in Figure 15-8 is 1,472, whereas the total number of customers 
is 1,437 as reported accurately in Figure 15-7.

Unfortunately with these kinds of calculations, additivity is more of a problem than a feature. By 
nature these calculations are nonadditive. Trying to make them additive might be appealing at fi rst 
sight, but it is likely to produce misleading results. Therefore, it is always important to pay attention to 
these details, and our suggestion is to not force a measure to be additive without carefully considering 
the implications of that choice.

Understanding physical relationships in DAX

A relationship can be strong or weak. In a strong relationship the engine knows that the one-side of the 
relationship contains unique values. If the engine cannot check that the one-side of the relationship 
contains unique values for the key, then the relationship is weak. A relationship can be weak because 
either the engine cannot ensure the uniqueness of the constraint, due to technical reasons we outline 
later in this section, or the developer defi ned it as such. A weak relationship is not used as part of table 
expansion described in Chapter 14.

Starting from 2018, Power BI allows composite models. In a composite model it is possible to cre-
ate tables in a model containing data in both VertiPaq mode (a copy of data from the data source is 
preloaded and cached in memory) and in DirectQuery mode (the data source is accessed only at query 
time). DirectQuery and VertiPaq engines are explained in Chapter 17, “The DAX engines.”

A single data model can contain some tables stored in VertiPaq and some others stored in Direct-
Query. Moreover, tables in DirectQuery can originate from different data sources, generating several 
DirectQuery data islands.

In order to differentiate between data in VertiPaq and data in DirectQuery, we talk about data in the 
continent (VertiPaq) or in the islands (DirectQuery data sources), as depicted in Figure 15-9.

VertiPaq Continent

DirectQuery Island

DirectQuery Island

FIGURE 15-9 A composite model contains tables in different islands.
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The VertiPaq store is nothing but another data island. We call it the continent only because it is the 
most frequently used data island.

A relationship links two tables. If both tables belong to the same island, then the relationship is an 
intra-island relationship. If the two tables belong to different islands, then it is a cross-island relation-
ship. Cross-island relationships are always weak relationships. Therefore, table expansion never crosses 
islands.

Relationships have a cardinality, of which there are three types. The difference between them is 
both technical and semantical. Here we do not cover the reasoning behind those relationships because 
it would involve many data modeling digressions that are outside of the scope of the book. Instead, we 
need to cover the technical details of physical relationships and the impact they have on the DAX code.

These are the three types of relationship cardinality available:

 ■ One-to-many relationships: This is the most common type of relationship cardinality. On the 
one-side of the relationship the column must have unique values; on the many-side the value 
can (and usually does) contain duplicates. Some client tools differentiate between one-to-many 
relationships and many-to-one relationships. Still, they are the same type of relationship. It all 
depends on the order of the tables: a one-to-many relationship between Product and Sales is 
the same as a many-to-one relationship between Sales and Product.

 ■ One-to-one relationships: This is a rather uncommon type of relationship cardinality. On both 
sides of the relationship the columns need to have unique values. A more accurate name would 
be “zero-or-one”-to-“zero-or-one” relationship because the presence of a row in one table 
does not imply the presence of a corresponding row in the other table.

 ■ Many-to-many relationships: On both sides of the relationship the columns can have dupli-
cates. This feature was introduced in 2018, and unfortunately its name is somewhat confusing. 
Indeed, in common data modeling language “many-to-many” refers to a different kind of 
implementation, created by using pairs of one-to-many and many-to-one relationships. It is 
important to understand that in this scenario many-to-many does not refer to the many-to-
many relationship but, instead, to the many-to-many cardinality of the relationship.

In order to avoid ambiguity between the canonical terminology, which uses many-to-many for a 
different kind of implementation, we use acronyms to describe the cardinality of a relationship:

 ■ One-to-many relationship: We call them SMR, which stands for Single-Many-Relationship.

 ■ One-to-one relationship : We use the acronym SSR, which stands for Single-Single-Relationship.

 ■ Many-to-many relationship: We call them MMR, which stands for Many-Many-Relationship.

Another important detail is that an MMR relationship is always weak, regardless of whether the two 
tables belong to the same island or not. If the developer defi nes both sides of the relationship as the 
many-side, then the relationship is automatically treated as a weak relationship, with no table expan-
sion happening.
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In addition, each relationship has a cross-fi lter direction. The cross-fi lter direction is the direction 
used by the fi lter context to propagate its effect. The cross-fi lter can be set to one of two values:

 ■ Single: The fi lter context is always propagated in one direction of the relationship and not the 
other way around. In a one-to-many relationship, the direction is always from the one-side of 
the relationship to the many-side. This is the standard and most desirable behavior.

 ■ Both: The fi lter context is propagated in both directions of the relationship. This is also called 
a bidirectional cross-fi lter and sometimes just a bidirectional relationship. In a one-to-many 
relationship, the fi lter context still retains its feature of propagating from the one-side to the 
many-side, but it also propagates from the many-side to the one-side.

The cross-fi lter directions available depend on the type of relationship.

 ■ In an SMR relationship one can always choose single or bidirectional.

 ■ An SSR relationship always uses bidirectional fi ltering. Because both sides of the relationship 
are the one-side and there is no many-side, bidirectional fi ltering is the only option available.

 ■ In an MMR relationship both sides are the many-side. This scenario is the opposite of the SSR 
relationship: Both sides can be the source and the target of a fi lter context propagation. Thus, 
one can choose the cross-fi lter direction to be bidirectional, in which case the propagation 
always goes both ways. Or if the developer chooses single propagation, they also must choose 
which table to start the fi lter propagation from. As with all other relationships, single propaga-
tion is the best practice. Later in this chapter we expand on this topic.

Table 15-1 summarizes the different types of relationships with the available cross-fi lter directions, 
their effect on the fi lter context propagation, and the options for weak/strong relationship.

TABLE 15-1 Different types of relationships

Type of 
Relationship

Cross-fi lter 
Direction Filter Context Propagation Weak / Strong Type

SMR Single From the one side to the many side Weak if cross-island, strong otherwise

SMR Both Bidirectional Weak if cross-island, strong otherwise

SSR Both Bidirectional Weak if cross-island, strong otherwise

MMR Single Must choose the source table Always weak

MMR Both Bidirectional Always weak

When two tables are linked through a strong relationship, the table on the one-side might contain 
the additional blank row in case the relationship is invalid. Thus, if the many-side of a strong relation-
ship contains values not present in the table on the one-side, then a blank row is appended to the one-
side table. This was further explained in Chapter 3. The additional blank row is never added to a weak 
relationship.

As explained earlier, we are not going to discuss why one would choose one type of relationship 
over another. The choice between different types of relationships and fi lter propagation is in the hands 
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of the data modeler; their decision fl ows from a deep reasoning on the semantics of the model itself. 
However, from a DAX point of view each relationship behaves differently, and it is important to under-
stand the differences among the relationships and the impact they have on DAX code.

The next sections provide useful information about the differences between these types of relation-
ships and several tips on which relationship to use in your models.

Using bidirectional cross-fi lters

Bidirectional cross-fi lters can be enabled in two ways: in the data model or by using the CROSS FILTER 
modifi er in a CALCULATE function, as explained in Chapter 5, “Understanding CALCULATE and 
CALCULATETABLE.” As a rule, a bidirectional cross-fi lter should not be enabled in the data model unless 
strictly needed. The reason is that bidirectional cross-fi lters quickly increase the complexity of the fi lter 
context propagation, up to a point where it is hard to predict and control how the fi lter context will 
propagate.

Nevertheless, there are scenarios where bidirectional cross-fi ltering is a useful feature. For example, 
look at the report in Figure 15-10; it is built on top of the usual Contoso model with all relationships set 
to single cross-fi lter propagation.

FIGURE 15-10 The CountryRegion slicer shows countries with no sales.

There are two slicers: Brand, which fi lters the Product[Brand] column; and CountryRegion, which 
fi lters the Customer[CountryRegion] column. Even though there are no sales for Northwind Traders in 
Armenia, the CountryRegion slicer shows Armenia as valid options to select.

The reason for this is that the fi lter context on Product[Brand] affects Sales because of the one-
to-many relationship between Product and Brand. But then from Sales, the fi lter does not move to 
Customer because Customer is on the one-side of the one-to-many relationship between Customer 
and Sales. Therefore, the slicer shows all the possible values of CountryRegion. In other words, the two 
slicers are not in sync. The matrix does not show Armenia because the value of Sales Amount is a blank 
for this country, and by default a matrix does not show rows containing blank values from measures.
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If slicer syncing is important, then it is possible to enable the bidirectional cross-fi lter between 
 Customer and Sales, generating a model like the one in Figure 15-11.

FIGURE 15-11 The cross-fi lter direction between Customer and Sales is now set to bidirectional.

Setting the cross-fi lter direction of the relationship to bidirectional ensures that the CountryRegion 
slicer only shows the rows that are referenced by Sales. Figure 15-12 shows that the slicers are now 
synced, improving user experience.

FIGURE 15-12 By enabling bidirectional cross-fi lter, the slicers are now synced.

Bidirectional fi ltering is convenient, but it comes at a price. First, from a performance point of view, 
the bidirectional cross-fi lter slows down the model because the fi lter context must be propagated to 
both sides of the relationship. It is much faster to fi lter the many-side starting from the one-side rather 
than going in the opposite direction. Thus, with the goal of optimal performance in mind, bidirectional 
cross-fi ltering is one of the features to avoid. Moreover, bidirectional cross-fi lters increase chances to 
generate ambiguous data models. We discuss ambiguity later in this chapter.
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Note Using visual level fi lters, it is possible to reduce the members visible in a Power BI 
visual without using the bidirectional fi lter in a relationship. Unfortunately, visual level fi lters 
are not supported for slicers in Power BI as of April 2019. Once visual level fi lters will also 
be available for slicers, using bidirectional fi lters will be no longer necessary to reduce the 
members visible in a slicer.

 

Understanding one-to-many relationships

One-to-many relationships are the most common and desirable type of relationships in a data model. 
For example, a one-to-many relationship relates Product with Sales. Given one product there can be 
many sales related to it, whereas for one given sale there is only one product. Consequently, Product is 
on the one-side and Sales is on the many-side.

Moreover, when analyzing data, users expect to be able to slice by a product attribute and compute values 
from Sales. Therefore, the default behavior is that a fi lter on Product (one-side) is propagated to Sales (many-
side). If needed, one can change this behavior by enabling a bidirectional cross-fi lter in the relationship.

With strong one-to-many relationships, table expansion always goes towards the one-side. More-
over, in case the relationship is invalid, the table sitting on the one-side of the relationship might 
receive the blank row. Semantically, weak one-to-many relationships behave the same, except from the 
blank row. Performance-wise, weak one-to-many relationships generally generate slower queries.

Understanding one-to-one relationships

One-to-one relationships are quite uncommon in data models. Two tables linked through a one-to-
one relationship are really just the same table split into two. In a well-designed model, these two tables 
would have been joined together before being loaded into the data model.

Therefore, the best way to handle one-to-one relationships is to avoid them by merging the two 
tables into a single table. One exception to this best practice is when data is going into one same busi-
ness entity from different data sources that must be refreshed independently. In those cases, one might 
prefer to import two separate tables into the data model, avoiding complex and expensive transforma-
tions during the refresh operation. In any case, when handling one-to-one relationships, users need to 
pay attention to the following details:

 ■ The cross-fi lter direction is always bidirectional. One cannot set the cross-fi lter direction to single 
on a one-to-one relationship. Thus, a fi lter on one of the two tables is always propagated to the 
other table, unless the relationship is deactivated—either by using CROSSFILTER or in the model.

 ■ From a table expansion point of view, as described in Chapter 14 in a strong one-to-one rela-
tionship each table expands the other table that is part of that relationship. In other words, a 
strong one-to-one relationship produces two identical expanded tables.
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 ■ Because both sides of the relationship are on the one-side, if the relationship is both strong and 
invalid—that is, there are values for the key in one table that are not matched in the other—
then both tables might contain the blank row. Moreover, the values of the column used for the 
relationship need to be unique in both tables.

Understanding many-to-many relationships

Many-to-many relationships are an extremely powerful modeling tool, and they appear much more 
often than one-to-one relationships. Handling them correctly is not trivial, yet it is useful to master 
them because of their analytical power.

A many-to-many relationship is present in a model whenever two entities cannot be related 
through a simple one-to-many relationship. There are two different types of many-to-many relation-
ships, and several ways to solve the two scenarios. The next sections present several techniques to 
manage many-to-many relationships.

Implementing many-to-many using a bridge table
The following example comes from a banking scenario. The bank stores accounts in one table and cus-
tomers in a different table. One account can be owned by multiple customers, while one customer may 
own multiple accounts. Therefore, it is not possible to store the customer name in the account, and at 
the same time it is not possible to store the account number in the customer table. This scenario cannot 
be modeled by using regular relationships between accounts and customers.

The canonical solution to this scenario is to build a table to store the relationship between custom-
ers and accounts. This is called a bridge table, and is shown in the model in Figure 15-13.

FIGURE 15-13 The AccountsCustomers table is related to both Accounts and Customers.
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In this model, the many-to-many relationship between Account and Customers is implemented 
through the bridge table called AccountsCustomers. A row in the bridge table indicates that one 
account is owned by one customer.

As it is now, the model is not working yet. Indeed, a report slicing by Account works well 
because Accounts filters Transactions, Accounts being on the one-side of a one-to-many relation-
ship. On the other hand, slicing by Customers does not work because Customers filters Accounts-
Customers, but then AccountsCustomers does not propagate the filter to Accounts because the 
cross-filter goes in the other direction. Moreover, this last relationship must have its one-side on 
the Accounts table because AccountKey has unique values in Accounts and contains duplicates in 
AccountsCustomers.

Figure 15-14 shows that the CustomerName values do not apply any kind of fi lter to the sum of 
Amount displayed in the matrix.

FIGURE 15-14 Accounts on rows fi lters the amount, whereas Customers on columns does not.

This scenario can be solved by enabling the bidirectional cross-fi lter in the relationship between 
AccountsCustomers and Accounts; this is achieved either by updating the data model or by using 
CROSSFILTER as in the following measure:

-- Version using CROSSFILTER
SumOfAmt CF := 
CALCULATE ( 
    SUM ( Transactions[Amount] ),
    CROSSFILTER ( 
        AccountsCustomers[AccountKey], 
        Accounts[AccountKey], 
        BOTH 
    ) 
)

Either way, the formula will now produce the expected result, as shown in Figure 15-15.
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FIGURE 15-15 By enabling the bidirectional cross-fi lter, the measure now returns the correct result.

Setting the bidirectional cross-fi lter in the data model has the advantage of ensuring that it is 
automatically applied to any calculation—also working on implicit measures generated by client tools 
such as Excel or Power BI. However, the presence of bidirectional cross-fi lters in a data model increases 
the complexity of the fi lter propagation and might have a negative impact on the performance of 
measures that should not be affected by said fi lter. Moreover, if new tables are later added to the data 
model, the presence of the bidirectional cross-fi lter might generate ambiguities that require a change 
in the cross-fi lter. This could potentially break other, pre-existing reports. For these reasons, before 
enabling bidirectional cross-fi lters on a relationship, one should think twice and carefully check that the 
model is still sound.

You are of course free to use bidirectional cross-fi lter in your models. But for all the reasons 
described in the book, our personal attitude is to never enable bidirectional cross-fi lter on a relation-
ship. Because we love simplicity and sound models, we strongly prefer the CROSSFILTER solution 
applied to every measure. Performance-wise, enabling the bidirectional cross-fi lter in the data model 
or using CROSSFILTER in DAX is identical.

Another way of achieving our goal is by using more complex DAX code. Despite its complexity, that 
code also brings an increased level of fl exibility. One option to author the SumOfAmt measure without 
using CROSSFILTER is to rely on SUMMARIZE and use it as a CALCULATE fi lter argument:

-- Version using SUMMARIZE
SumOfAmt SU := 
CALCULATE ( 
    SUM ( Transactions[Amount] ),
    SUMMARIZE ( 
        AccountsCustomers, 
        Accounts[AccountKey] 
    ) 
)
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SUMMARIZE returns a column with the data lineage of Accounts[AccountKey], actively fi ltering the 
Accounts and then the Transactions table. Another way of obtaining a similar result is by using TREATAS:

-- Version using TREATAS
SumOfAmt TA := 
CALCULATE ( 
    SUM ( Transactions[Amount] ),
    TREATAS ( 
        VALUES ( AccountsCustomers[AccountKey] ), 
        Accounts[AccountKey] 
    ) 
)

Also in this case, VALUES returns the values of AccountsCustomers[AccountKey] fi ltered by the 
Customers table, and TREATAS changes the data lineage to make it fi lter the Accounts and then the 
Transactions table.

Lastly, an even simpler formulation of the same expression is to use table expansion. Noting that 
the bridge table expands to both the Customers and the Accounts tables, the following code produces 
almost the same result as the previous ones. It is, however, noticeably shorter:

-- Version using Expanded Table
SumOfAmt ET := 
CALCULATE ( 
    SUM ( Transactions[Amount] ),
    AccountsCustomers 
)

Despite the many variations, all these solutions can be grouped into two options:

 ■ Using the bidirectional cross-fi lter feature of DAX.

 ■ Using a table as a fi lter argument in CALCULATE.

These two groups behave differently if the relationship between Transactions and Accounts is 
invalid. Indeed, if a relationship is invalid, the table on the one-side of the relationship contains an addi-
tional blank row. In case the Transactions table relates to accounts that are not available in the Accounts 
table, the relationship between Transactions and Accounts is invalid and the blank row is added to the 
Accounts table. This effect does not propagate to Customers. Therefore, in this case the Customers 
table has no blank row, and only the Accounts table has one blank row.

Consequently, slicing Transactions by Account shows the blank row, whereas slicing Transactions by 
CustomerName does not show transactions linked to the blank row. This behavior might be confusing; 
to demonstrate the behavior, we added a row to the Transactions table with an invalid AccountKey and 
a value of 10,000.00. The different results are visible in Figure 15-16, where the matrix on the left slices 
by Account and the matrix on the right slices by CustomerName. The measure shown is the one using 
CROSSFILTER.
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FIGURE 15-16 CustomerName does not contain a blank row; consequently, the total on the right looks wrong.

When the matrix is slicing by Account, the blank row is present and the value of 10,000.00 is visible. 
When the matrix is slicing by CustomerName, there is no blank row to show. The fi lter starts from the 
CustomerName column in the Customers table, but there are no values in AccountsCustomers that can 
include in the fi lter the blank row in Accounts. The value related to the blank row is only visible at the 
grand total because the fi lter on CustomerName is no longer present there. Consequently, at the grand 
total level the Accounts table is no longer cross-fi ltered; all the rows of Accounts become active, includ-
ing the blank row, and 15,000.00 is displayed as a result.

Be mindful that we are using the blank row as an example, but the same scenario would happen 
whenever there are accounts that are not linked to any customer. Starting the fi lter from the customer, 
their value will not show up other than on the grand total. The reason is that the fi lter on the customer 
removes accounts not linked to any customer from any row. This consideration is important because 
the behavior observed in Figure 15-16 is not necessarily related to the presence of an invalid relation-
ship. For example, if the transaction with the value of 10,000.00 were related to a Service account 
defi ned in the Accounts table but not related to any Customer, the Account name would be visible in the 
report—despite the fact that this value still would not be related to any single customer. This is shown 
in Figure 15-17.

FIGURE 15-17 The value related to the Service account does not appear related to any single CustomerName.
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Note The scenario depicted in Figure 15-17 does not violate any referential integrity con-
straints in a relational database, as was the case in Figure 15-16. Thus, validating data making 
sure that this condition is not present requires additional validation logic in the relational 
database.

 

If, instead of using the CROSSFILTER technique, we rely on table fi ltering in CALCULATE, then the 
behavior is different. The rows that are not reachable from the bridge table are always fi ltered out. 
Because the fi lter is always forced by CALCULATE, they will not show even at the grand total level. In 
other words, the fi lter is always forced to be active. You can look at the result in Figure 15-18.

FIGURE 15-18 Using the table fi lter technique, the blank row disappears everywhere and is not included in the total.

Not only does the total now show a lower value; this time, even slicing by Account does not show 
the blank row anymore. The reason is that the blank row is fi ltered out by the table fi lter applied by 
CALCULATE.

Neither of these values is totally correct or totally wrong. Moreover, if the bridge table references all 
the rows in Transactions starting from Customers, then the two measures behave the same way. Devel-
opers should choose the technique that better fi t their needs, paying attention to details and making 
sense of unexpected values, if any.

 

Note Performance-wise, the solutions based on using a table as a fi lter argument in CAL-
CULATE always involve paying the price of scanning the bridge table (AccountsCustomers). 
This means that any report using the measure without a fi lter over Customers will pay the 
highest possible price, which is useless in case every account has at least one customer. 
Therefore, the solutions based on the bidirectional cross-fi lter should be the default choice 
whenever the data consistency guarantees the same result with both techniques. Moreover, 
remember that any solution involving table expansion works only with strong relationships. 
Therefore, the presence of weak relationships might force the solution in favor of the bidi-
rectional cross-fi lter. More details about these considerations are available in the article at 
https://www.sqlbi.com/articles/many-to-many-relationships-in-power-bi-and-excel-2016/.

 

https://www.sqlbi.com/articles/many-to-many-relationships-in-power-bi-and-excel-2016/
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Implementing many-to-many using a common dimension
There is another scenario where many-to-many is a useful tool, even though from a technical point of 
view it is not a many-to-many relationship. This scenario defi nes a relationship between two entities at 
a granularity different from the primary key.

The example comes from a budgeting scenario, where the budget information is stored in a table 
containing the country, the brand, and the budget for the one year. The model is visible in Figure 15-19.

FIGURE 15-19 The Budget table contains CountryRegion, Brand, and Budget columns.

If the requirement is to produce a report that shows the sales and the budget values side-by-side, 
then it is necessary to fi lter both the Budget table and the Sales table at the same time. The Budget 
table contains CountryRegion, which is also a column in Customer. However, the CountryRegion column 
is not unique—neither in the Customer table nor in the Budget table. Similarly, Brand is a column in 
Product, but it is also not unique in either table. One could author a Budget Amt measure that simply 
sums the Budget column of the Budget table.

Budget Amt :=
SUM ( Budget[Budget] )

A matrix slicing by Customer[CountryRegion] with this data model produces the result visible in 
Figure 15-20. The Budget Amt measure always shows the same value, corresponding to the sum of all 
the rows in the Budget table.



 CHAPTER 15 Advanced relationships 501

FIGURE 15-20 Budget Amt is not fi ltered by Customer[CountryRegion] and always shows the same value.

There are several solutions to this scenario. One involves implementing a virtual relationship using 
one of the techniques previously shown in this chapter, moving the fi lter from one table to another. For 
example, by using TREATAS, one could move the fi lter from both the Customer and Product tables to 
the Budget table using this code:

Budget Amt :=
CALCULATE (
    SUM ( Budget[Budget] ),
    TREATAS (
        VALUES ( Customer[CountryRegion] ),
        Budget[CountryRegion]
    ),
    TREATAS (
        VALUES ( 'Product'[Brand] ),
        Budget[Brand]
    )
)

The Budget Amt measure now uses the fi lter coming from Customer and/or from Product properly, 
producing the correct result shown in Figure 15-21.

FIGURE 15-21 Budget Amt is now fi ltered by Customer[CountryRegion].

This solution presents a couple of limitations:

 ■ If a new brand exists in the Budget table and it is not present in the Product table, its value will 
always be fi ltered out. As a result, the fi gures of the budget will be inaccurate.

 ■ Instead of using the most effi cient technique of relying on physical relationships, the code is 
using DAX to move the fi lter. On large models, this might lead to bad performance.
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A better solution to this scenario is to slightly change the data model, adding a new table that acts as a fi l-
ter on both the Budget and the Customer tables. This can be easily accomplished with a DAX calculated table:

CountryRegions = 
DISTINCT ( 
    UNION ( 
        DISTINCT ( Budget[CountryRegion] ), 
        DISTINCT ( Customer[CountryRegion] ) 
    ) 
)

This formula retrieves all the values of CountryRegion from both Customer and Budget, then it 
merges them into a single table that contains duplicates. Finally, the formula removes duplicates from 
the table. As a result, this new table contains all the values of CountryRegion, whether they come from 
Budget or from Customer. In a similar way, a table that links to Product and Budget is needed, following 
the same process for Product[Brand] and for Budget[Brand].

Brands = 
DISTINCT ( 
    UNION ( 
        DISTINCT ( 'Product'[Brand] ),
        DISTINCT ( Budget[Brand] )
    )
)

Once the table is in the data model, one then needs to create the proper set of relationships. The 
resulting model is visible in Figure 15-22.

FIGURE 15-22 The data model contains two additional tables: CountryRegions and Brands.
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With the new model in place, the Brands table fi lters both Product and Budget, whereas the new 
CountryRegions table fi lters both Customer and Budget. Thus, there is no need to use the TREATAS 
pattern shown in the previous example. A simple SUM computes the correct value from both 
Budget and Sales as shown in the following version of the Budget Amt measure. This does require 
using the columns from the CountryRegions and Brands tables in the report, which will appear as in 
Figure 15-21.

Budget Amt :=
SUM ( Budget[Budget] )

By leveraging the bidirectional cross-fi lter between Customer and CountryRegions and between 
Product and Brands, it is possible to hide the CountryRegions and Brands tables in report view, moving 
the fi lter from Customer and Product to Budget without writing any additional DAX code. The resulting 
model shown in Figure 15-23 creates a logical relationship between Customer and Budget at the granu-
larity of the CountryRegion column. The same happens between Product and Budget at the granularity 
of the Brand column.

FIGURE 15-23 Having enabled bidirectional cross-fi ltering, the technical tables can be hidden.

The result of the report produced by this model is identical to Figure 15-21. The relationship 
between Customer and Budget is a sequence of a many-to-one and a one-to-many relationship. The 
bidirectional cross-fi lter between Customer and CountryRegions ultimately transfers the fi lter from 
Customer to Budget and not the other way around. If the bidirectional fi lter were also active between 
CountryRegions and Budget, the model would have involved some level of ambiguity that would stop 
the creation of a similar pattern between Product and Budget.
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Note The model in Figure 15-23 suffers from the same limitations as the model in  Figure 15-19: 
If there are brands or countries in the budget that are not defi ned in the  Customer and Product 
tables, that budget value might disappear in the report. This  problem  is described in more 
detail in the next section.

 

Be mindful that technically, this is not a many-to-many pattern. In this model we are linking Prod-
uct to Budget (same for Customer) using a granularity that is not the individual product. Instead, we 
are linking the two tables at the granularity level of Brand. The same operation can be achieved in a 
simpler—though less effective—way by using weak relationships, as described in the next section. 
Moreover, linking tables at different granularity conceals several complex aspects that are discussed 
later in this chapter.

Implementing many-to-many using MMR weak relationships
In the previous example we linked Products to Budget by using an intermediate—ad hoc—table. DAX 
versions from after October 2018 introduced the feature of weak relationships, which addresses the 
same scenario in a more automated way.

One can create an MMR weak relationship between two tables in case the two columns involved in the 
relationship have duplicates in both tables. In other words, the same model shown in Figure 15-23 can be 
created by directly linking Budget to Product using the Product[Brand] column, avoiding the creation of 
the intermediate Brands table used in the previous section. The resulting model is visible in Figure 15-24.

FIGURE 15-24 Budget is directly linked to Customer and Product using two weak relationships.
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When creating an MMR weak relationship, one has the option of choosing the direction of the 
fi lter context propagation. It can be bidirectional or single, as is the case with a regular one-to-many 
relationship. The choice for this example is necessarily the single direction from Customer to Budget 
and from Product to Budget. Setting a bidirectional fi lter in both relationships would create a model 
ambiguity.

In MMR relationships, both sides of the relationship are the many-side. Therefore, the columns can 
contain duplicates in both tables. This model works exactly like the model shown in Figure 15-23, and 
it computes the correct values without the need for additional DAX code in measures or calculated 
tables.

Nevertheless, a trap lies in this model that our reader must be aware of. Because the relationship 
is weak, neither of the two tables will contain the blank row in case the relationship is invalid. In other 
words, if Budget contains a country or a brand that is not present in Customer or in Product, then its 
values will be hidden, as is the case for the model in Figure 15-24.

To demonstrate this behavior, we changed the content of the Budget table, replacing Germany with 
Italy. There are no customers whose country is Italy in the model used for this example. The result of 
this change is somewhat surprising, as shown in Figure 15-25.

FIGURE 15-25 If the relationship between Budget and Customer is invalid, the missing blank row produces surpris-
ing results.

The row with Germany is empty. This is correct, because we moved the entire budget of Germany to 
Italy. But you should notice two details:

 ■ There is no row showing the budget for Italy.

 ■ The grand total of the budget is larger than the sum of the two visible rows.

When there is a fi lter on Customer[CountryRegion], the fi lter is moved to the Budget table through 
the weak relationship. As a consequence, the Budget table only shows the values of the given country. 
Because Italy does not exist in Customer[CountryRegion], no value is shown. That said, when there is no 
fi lter on Customer[CountryRegion], Budget does not receive any fi lter. As such, it shows its grand total, 
which also includes Italy.

The result of Budget Amt thus depends on the presence of a fi lter on Customer[CountryRegion]; in 
the presence of invalid relationships, the numbers produced might be surprising.

Weak MMR relationships represent a powerful tool that greatly simplifi es the creation of data mod-
els because it reduces the need to create additional tables. Nevertheless, the fact that no blank row 
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is ever added to the tables might produce unexpected results if the feature is not used properly. We 
showed the more complex technique of creating additional tables before showing weak relationships 
because they are basically the same thing: The difference is that creating additional tables makes visible 
the values that exist in just one of the two related tables—something that is not possible using weak 
MMR relationships, but that might be required in particular scenarios.

Indeed, if we perform the same substitution of Germany with Italy in the data model with the Brands 
and CountryRegions table (Figure 15-23), the result is much clearer, as shown in Figure 15-26.

FIGURE 15-26 Using the intermediate table, Italy and Germany both appear in the report with their correct values.

Choosing the right type of relationships

Complex relationships are a powerful way to generate advanced models. Working with complex sce-
narios, you face the choice between building a physical (maybe calculated) relationship and building a 
virtual relationship.

Physical and virtual relationships are similar because they fulfi ll the same goal: transferring a fi lter 
from one table to another. However, they have different performance and different implications at the 
data model level.

 ■ A physical relationship is defi ned in the data model; a virtual relationship only exists 
in DAX code. The diagram view of a data model clearly shows the relationships between 
tables. Yet virtual relationships are not visible in the diagram view; locating them requires a 
detailed review of the DAX expression used in measures, calculated columns, and calculated 
tables. If a logical relationship is used in several measures, its code must be duplicated in every 
measure requiring it, unless the logical relationship is implemented in a calculation item of a 
calculation group. Physical relationships are easier to manage and less error-prone than virtual 
relationships.

 ■ A physical relationship defi nes a constraint on the one-side table of the relationship. 
One-to-many and one-to-one relationships require that the column used on the one-side of a 
relationship have unique nonblank values. The refresh operation of a data model fails in case the 
new data would violate this constraint. From this point of view, there is a huge difference with 
the foreign key constraint defi ned in a relational database. A foreign key relationship defi nes a 
constraint on the many-side of a relationship, whose values can only be values that exist in the 
other table. A relationship in a Tabular model never enforces a foreign key constraint.
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 ■ A physical relationship is faster than a virtual relationship. The physical relationship 
defi nes an additional structure that accelerates the query execution, enabling the storage 
engine to execute part of the query involving two or more queries. A virtual relationship always 
requires additional work from the formula engine, which is slower than the storage engine. 
 Differences between formula engine and storage engine are discussed in Chapter 17.

Generally, physical relationships are a better option. In terms of query performance there is no dif-
ference between a standard relationship (based on a column coming from the data source) and a cal-
culated physical relationship (based on a calculated column). The engine computes calculated columns 
at process time (when data is refreshed), so it does not really matter how complex the expression is; the 
relationship is a physical relationship and the engine can take full advantage of it.

A virtual relationship is just an abstract concept. Technically, every time one transfers a fi lter from 
one table to another using DAX code, they are implementing a virtual relationship. Virtual relationships 
are resolved at query time, and the engine does not have the additional structures created for physical 
relationships to optimize the query execution. Thus, whenever you have the option of doing that, you 
should prefer a physical relationship to a virtual relationship.

The many-to-many relationships are in an intermediate position between physical and virtual rela-
tionships. One can defi ne many-to-many relationships in the model by leveraging bidirectional relation-
ships or table expansion. In general, the presence of a relationship is better than an approach based on 
table expansion because the engine has more chances to optimize the query plan by removing unnec-
essary fi lter propagations. Even so, table expansion and bidirectional cross-fi lters have a similar cost 
when a fi lter is active, even though technically they execute two different query plans with a similar cost.

Performance-wise the priority in relationships choice should be the following:

 ■ Physical one-to-many relationships to get best performance and the best use of the VertiPaq 
engine. Calculated physical relationships have the same query performance as relationships on 
native columns.

 ■ Bidirectional cross-fi lter relationships, many-to-many with table expansion, and weak relation-
ships are a second option. They provide good performance and a good use of the engine, 
although not the best.

 ■ Virtual relationships are the last choice because of the risk of bad performance. Note that 
being at risk does not mean you will experience performance issues, but only that you need 
to care about different aspects of the query, which you will learn in the next chapters about 
optimization.

Managing granularities

As described in earlier sections, by using intermediate tables or MMR weak relationships, one can link 
two tables using a relationship at a granularity level lower than the primary key of a table. In a previous 
example, we linked the Budget table to both Product and Customer. The relationship with Product is at 
the Brand level, whereas the relationship with Customer is at the CountryRegion level.
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If a data model contains relationships at a lower granularity, special care needs to be taken when-
ever authoring measures that use that relationship. As an example, Figure 15-27 shows the starting 
model with two MMR weak relationships between Customer, Product, and Budget.

FIGURE 15-27 The relationships between Customer, Product, and Budget are weak relationships.

A weak relationship transfers the fi lter from one table to another following the granularity of the 
column. This statement is true for any relationship. Indeed, the relationship between Customer and 
Sales also transfers the fi lter at the granularity of the column involved in the relationship. Neverthe-
less, if the column used to create the relationship is the key of the table, the behavior is intuitive. When 
the relationship is set at a lower granularity—as in the case of weak relationships—it is all too easy to 
produce calculations that might be hard to understand.

For example, consider the Product table. The relationship with Budget is set at the Brand level. Thus, one 
can create a matrix that slices Budget Amt by Brand and obtain an accurate result, as shown in Figure 15-28.

FIGURE 15-28 Slicing budget by brand, all calculations provide an accurate result.
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Things suddenly become much more intricate if other columns from the Product table are involved 
in the analysis. In Figure 15-29 we added a slicer to fi lter a few colors, and we added the color on the 
columns of the matrix. The result is confusing.

FIGURE 15-29 Slicing budget by brand and color, the numbers reported are confusing.

Please note that given a Brand, its value—if present—is always the same, regardless of the fi lter on 
the color. The total of each color is different, but the grand total is clearly not the sum of individual 
colors.

To make sense of these numbers, we use a simplifi ed version of the matrix where the brand is not 
present. In Figure 15-30, Budget Amt is sliced only by Product[Color].

FIGURE 15-30 Slicing only by color makes it easier to focus on individual cells.

Look at the Blue budget amount in Figure 15-30. When the evaluation starts, the fi lter context 
fi lters the Product table only showing blue products. Not all the brands produce blue products. For 
instance, The Phone Company does not have any product that is blue, as shown in Figure 15-29. Thus, 
the Product[Brand] column is cross-fi ltered by Product[Color], and it shows all the brands except for 
The Phone Company. When the fi lter context is moved to the Budget table, the operation occurs at the 
Brand granularity. Consequently, the Budget table is fi ltered showing all brands but The Blue Company.
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The value shown is the sum of all brands except for The Blue Company. While traversing the rela-
tionship, the information about the color has been lost. The relationship between Color and Brand 
is used when cross-fi ltering Brand by Color, but then, the fi lter on Budget is based on Brand alone. In 
other words, every cell shows the sum of all brands that have at least one product of the given color. 
This behavior is seldom desirable. There are few scenarios where this is exactly the calculation required; 
most of the times the numbers are just wrong.

The problem appears whenever a user browses an aggregation of values at a granularity that is not 
supported by the relationship. A good practice consists of hiding the value if the browsing granularity 
is not supported. This raises the problem of detecting when the report is or is not analyzing data at the 
correct granularity. To solve the problem, we create more measures.

We start with a matrix containing the brand (correct granularity) and the color (wrong granularity). 
In the report, we also added a new measure, NumOfProducts that just counts the number of rows in the 
Product table:

NumOfProducts := 
COUNTROWS ( 'Product' )

You can see the resulting report in Figure 15-31.

FIGURE 15-31 The value of Budget Amt is correct for the Brand and wrong for the individual colors.

The key to solve the scenario is the NumOfProducts measure. When the A. Datum brand is selected, 
there are 132 products visible, which are all A. Datum products. If the user further fi lters with the color 
(or any other column), the number of visible products is reduced. The values from Budget make sense 
if all 132 products are visible. They lose meaning if fewer products are selected. Thus, we hide the value 
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of the Budget Amt measure when the number of visible products is not exactly the number of all the 
products within the selected brand.

A measure that computes the number of products at the brand granularity is the following:

NumOfProducts Budget Grain := 
CALCULATE ( 
    [NumOfProducts],
    ALL ( 'Product' ),
    VALUES ( 'Product'[Brand] )
)

In this case ALL / VALUES must be used instead of ALLEXCEPT; the reader can fi nd more details 
about their differences in Chapter 10. With this new measure, it is now enough to use a simple IF state-
ment to check if the two numbers are identical to show the Budget Amt measure; otherwise, a blank is 
returned and the row will be hidden in the report. The Corrected Budget measure implements this logic:

Corrected Budget := 
IF ( 
    [NumOfProducts] = [NumOfProducts Budget Grain],
    [Budget Amt]
)

Figure 15-32 shows the entire report with the newly introduced measures. The Corrected Budget 
value is hidden when the granularity of the report is not compatible with the granularity of the Budget 
table.

FIGURE 15-32 The value of Corrected Budget is hidden whenever the report is browsing an incompatible 
granularity.
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The same pattern must be applied to the Customer table too, where the granularity is set 
at the CountryRegion level. If needed, more information about this pattern is available at 
https://www.daxpatterns.com/budget-patterns/.

In general, whenever using relationships at a granularity different than the key of a table, one should 
always check the calculations and make sure any value is hidden if the granularity is not supported. 
Using MMR weak relationships always requires attention to these details.

Managing ambiguity in relationships

When we think about relationships, another important topic is ambiguity. Ambiguity might appear in 
a model if there are multiple paths linking two tables, and unfortunately, ambiguity could be hard to 
spot in a complex data model.

The simplest kind of ambiguity that one can introduce in a model is by creating two or more rela-
tionships between two tables. For example, the Sales table contains both the order date and the deliv-
ery date. When you try to create two relationships between Date and Sales based on the two columns, 
the second one is disabled. For example, Figure 15-33 shows that one of the two relationship between 
Date and Sales is represented by a dashed line because it is not active.

FIGURE 15-33 No more than one relationship can be active between any two tables.

If both relationships were active at the same time, then the model would be ambiguous. The engine 
would not know which path to follow to transfer a fi lter from Date to Sales.

Understanding ambiguity when working with two tables is easy. But as the number of tables 
increases, ambiguity is much harder to spot. The engine automatically detects ambiguity in a model 
and prevents developers from creating ambiguous models. However, the engine uses an algorithm that 
is complex, following rules that are not easy to grasp for humans. As a result, sometimes it does not 
consider as ambiguous a model that, in reality, contains ambiguity.

For example, consider the model in Figure 15-34. Before moving further, focus on the fi gure and 
answer this simple question: Is the model ambiguous?

https://www.daxpatterns.com/budget-patterns/
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FIGURE 15-34 Is this model ambiguous? Will a developer be able to create it, or will it generate an error?

The answer to the question itself is ambiguous: The model is ambiguous for a human, but it is not 
ambiguous for DAX. Still, it is a bad data model because it is extremely complex to analyze. First, we 
analyze where the ambiguity is.

There is a bidirectional cross-fi lter in the relationship between Product and Sales, meaning that the fi lter 
context from Sales fl ows to Product and then to Receipts. Now, focus on Date. Starting from Date, the fi lter 
can go to Sales, then to Product, and fi nally to Receipts, following a legitimate path. At the same time, the 
fi lter could fl ow from Date to Receipts, simply using the relationship between the two tables. Thus, the 
model is ambiguous because there are multiple paths to propagate the fi lter from Date to Receipts.

Nevertheless, it is possible to create and use such models because the DAX engine implements 
special rules to reduce the number of ambiguous models detected. In this case, the rule is that only the 
shortest path propagates the fi lter. Therefore, the model is allowed, even though it is ambiguous. This 
is not to say that working with such models is a good idea in any way. Instead, it is a bad idea, and we 
strongly suggest our readers avoid ambiguity at all in their models.

Moreover, things are more intricate than this. Ambiguity can appear in a model because of the way 
relationships are designed. Ambiguity might also appear during the execution of DAX code because 
a DAX developer can change the relationship architecture using CALCULATE modifi ers like USERELA-
TIONSHIP and CROSSFILTER. For example, you write a measure that works perfectly fi ne, then you call 
the measure from inside another measure that uses CROSSFILTER to enable a relationship, and your 
measure starts computing wrong values because of ambiguity introduced in the model by CROSSFIL-
TER. We do not want to scare our readers; we want them to be aware of the complexity that can arise in 
a model as soon as ambiguity comes into play.
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Understanding ambiguity in active relationships
The fi rst example is based on the model shown in Figure 15-34. The report projects Sales Amount and Receipts 
Amount (simple SUMX over the two tables) in a matrix that slices by year. The result is visible in Figure 15-35.

FIGURE 15-35 Calendar Year is fi ltering Receipts, but through which path?

The fi lter from Date can reach Receipts through two paths:

 ■ A direct path (Date to Receipts).

 ■ A path traversing Date to Sales, then Sales to Product, and fi nally Product to Receipts.

The model is not considered ambiguous because the DAX engine chooses the shortest path 
between the two tables. Having the ability to move the fi lter from Date to Receipts directly, it ignores 
any other path. If the shortest path is not available, then the engine uses the longer one. Look at what 
happens by creating a new measure that calls Receipts Amt after having disabled the relationship 
between Date and Receipts:

Rec Amt Longer Path := 
CALCULATE (
    [Receipts Amt], 
    CROSSFILTER ( 'Date'[Date], Receipts[Sale Date], NONE ) 
)

The Rec Amt Longer Path measure disables the relationship between Date and Receipts, so the 
engine must follow the longer path. The result is visible in Figure 15-36.

FIGURE 15-36 Rec Amt Longer Path uses the longer path to fi lter Receipts starting from Date.

At this point, one interesting exercise for the reader is to describe exactly what the numbers 
reported by Rec Amt Longer Path mean. We encourage this effort be made before reading further, as 
the answer follows in the next paragraphs.
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The fi lter starts from Date; then it reaches Sales. From Sales, it proceeds to Product. The products 
fi ltered are the ones that were sold in one of the selected dates. In other words, when the fi lter is 2007, 
Product only shows the products sold in 2007. Then, the fi lter moves one step forward and it reaches 
Receipts. In other words, the number is the total of Receipts for all the products sold in one given year. 
Not an intuitive value at all.

The most complex detail about the formula is that it uses CROSSFILTER NONE. Thus, a developer 
would tend to think that the code only deactivates a relationship. In reality, deactivating one path 
makes another path active. Thus, the measure does not really remove a relationship, it activates 
another one that is not cited anywhere in the code.

In this scenario, ambiguity is introduced by the bidirectional cross-fi lter between Product and Sales. 
A bidirectional cross-fi lter is a very dangerous feature because it might introduce ambiguities that are 
resolved by the engine but hard for a developer to fi nd. After many years using DAX, we concluded 
that the bidirectional cross-fi lter should be avoided if not strictly necessary. Moreover, in the few 
scenarios where it makes sense to use a bidirectional cross-fi lter, one should double-check the whole 
model and then double-check it again to make sure no ambiguity is present. Obviously, as soon as 
another table or relationship is added to the model, the full checking process should start again. Doing 
this exercise on a model with 50 tables is a tedious exercise that can be easily avoided by staying away 
from bidirectional cross-fi lters defi ned in the data model.

Solving ambiguity in non-active relationships
Though bidirectional cross-fi lters are likely the most offending feature that generates ambiguity, they 
are not the only reason behind the appearance of ambiguity. Indeed, a developer could create a per-
fectly legitimate model, with no ambiguity, and still face the problem of ambiguity at query time.

As an example, look at the model in Figure 15-37. It is not ambiguous.

FIGURE 15-37 The model is not ambiguous, because the potentially offending relationships are disabled.
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Focus on the Date table. Date fi lters Sales through the only active relationship (Date[Date] to 
Sales[Date]). There are two relationships between Date and Sales. One of them is inactive to avoid 
ambiguity. There is also a relationship between Date and Customer, based on Customer[FirstSale] that 
must be inactive. If this latter relationship were activated, then the fi lter from Date could reach Sales 
following two paths, making the model ambiguous. Thus, this model works just fi ne because it only 
uses the active relationships.

Now what happens if one activates one or more of the inactive relationships inside a CALCULATE? 
The model would suddenly become ambiguous. For example, the following measure activates the 
relationship between Date and Customer:

First Date Sales := 
CALCULATE ( 
    [Sales Amount], 
    USERELATIONSHIP ( Customer[FirstSale], 'Date'[Date] ) 
)

Because USERELATIONSHIP makes the relationship active, inside CALCULATE the model becomes 
ambiguous. The engine cannot work on an ambiguous model, so it needs to deactivate other relation-
ships. In this case, it does not use the shortest path. Indeed, the shortest path between Date and Sales 
is the direct relationship. A reasonable conclusion could be that—to disambiguate the model—the 
engine uses the direct relationship, as it did in the previous example. But because the developer explic-
itly asked to activate the relationship between Customer and Date by using USERELATIONSHIP, the 
engine decides to disable the relationship between Date and Sale instead.

As a result, because of USERELATIONSHIP, the fi lter will not propagate from Date to Sales using the 
direct relationship. Instead, it propagates the fi lter from Date to Customer and then from Customer to 
Sales. Therefore, given a customer and a date, the measure shows all the sales of that customer but only 
at the date of that customer’s fi rst purchase. You can see this behavior in Figure 15-38.

FIGURE 15-38 First Date Sales shows all the sales of a customer, but only on the day of their fi rst purchase.
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The First Date Sales measure always shows the total of the Sales of each customer, showing blank 
values on dates that do not correspond to the fi rst date of purchase. From a business point of view, this 
measure shows the future value of a customer projected on the date when that customer was acquired. 
While this description makes sense, the chances that it be a real requirement are very low.

As it happened earlier, the goal here is not to understand exactly how the engine resolved the 
ambiguity. The disambiguation rules have never been documented; thus, they might change at some 
point. The real problem of such models is that ambiguity might appear in a valid model because of an 
inactive relationship being activated. Understanding which of the multiple paths the engine will follow 
to solve ambiguities is more of a guess than science.

With ambiguity and relationships, the golden rule is to just keep it simple. DAX might have some 
disambiguation algorithm that is powerful and can disambiguate nearly every model. Indeed, to raise 
an ambiguity error at runtime, one needs to use a set of USERELATIONSHIP functions that forces the 
model to be ambiguous. Only in such cases does the engine raise an error. For example, the following 
measure requests a clearly ambiguous model:

First Date Sales ERROR := 
CALCULATE ( 
    [Sales Amount], 
    USERELATIONSHIP ( Customer[FirstSale], 'Date'[Date] ),
    USERELATIONSHIP ( 'Date'[Date], Sales[Date] )
)

At this point, DAX is not able to disambiguate a model with both relationships active, and it raises 
an error. Regardless, the measure can be defi ned in the data model without raising any exception; the 
error only appears when the measure is executed and fi ltered by date.

The goal of this section was not to describe the modeling options in Tabular. Instead, we wanted to 
bring your attention to issues that might happen when the data model is not correctly built. Building 
the correct model to perform an analysis is a complex task. Using bidirectional cross-fi lters and inac-
tive relationships without a deep understanding of their implications is perhaps the quickest way to 
produce an unpredictable model.

Conclusions

Relationships are an important part of any data model. The Tabular mode offers different types of rela-
tionships, like one-to-many (SMR), one-to-one (SSR), and MMR weak relationships. MMR relationships 
are also called many-to-many relationships in some user interfaces, which is a misleading name that 
can be confused with a different data modeling concept. Every relationship can propagate the fi lter 
either in a single direction or bidirectionally, with the only exception of one-to-one relationships that 
are always bidirectional.

The available tools can be extended in a logical data model by implementing calculated physi-
cal relationships, or virtual relationships by using TREATAS, SUMMARIZE, or table expansion. 
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The many-to-many relationships between business entities can be implemented with a bridge table 
and rely on bidirectional cross-fi lters applied to the relationships in the chain.

All these features are extremely powerful, and being powerful they can be dangerous. Relationships 
must be handled with care. A developer should always double-check the models for ambiguity, also 
verifying that ambiguity will not be introduced by using USERELATIONSHIP or CROSSFILTER.

The larger the model, the higher the chances of making mistakes. If a model contains any inactive 
relationship, check the reason why the relationship is inactive and what would happen if it were acti-
vated. Remember that investing the time to properly design your model is foundational to successful 
DAX calculations, whereas a poorly designed model will usually give developers many headaches down 
the road.
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C H A P T E R  1 6

Advanced calculations in DAX

In this last chapter about the features of the DAX language and before discussing optimization, we 
want to show several examples of calculations performed with DAX. The goal of this chapter is not to 
provide ready-to-use patterns that one can use out of the box; these patterns are available at 
https://www.daxpatterns.com. Instead, the goal is to show formulas of different levels of complexity 
to exercise your mind in the fascinating art of “thinking in DAX.”

DAX does indeed require your brain to think creatively. Now that you have learned all the secrets of 
the language, it is time to put everything into practice. From the next chapter onwards, we will start to 
cover optimization. Therefore, in this chapter we start bringing up measure performance, providing the 
fi rst clues as to how to measure the complexity of a formula.

Here, the goal is not to try to achieve the best performance because performance analysis requires 
knowledge that you will only learn in later chapters. Nevertheless, in this chapter we provide differ-
ent formulations of the same measure, analyzing the complexity of each version. Being able to author 
several different versions of the same measure is a skill that will be of paramount importance in perfor-
mance optimization.

Computing the working days between two dates

Given two dates, one can compute the difference in days by using a simple subtraction. In the Sales 
table there are two dates: the delivery date and the order date. The average number of days required 
for delivery can be obtained with the following measure:

Avg Delivery := 
AVERAGEX ( 
    Sales, 
    INT ( Sales[Delivery Date] - Sales[Order Date] + 1) 
)

Because of the internal format of a DateTime, this measure produces an accurate result. Yet it would 
be unfair to consider that an order received on Friday and shipped on Monday took three days to 
deliver, if Saturdays and Sundays are considered nonworking days. In fact, it only took one working day 
to ship the order—same as if the order had been received on Monday and shipped on Tuesday. There-
fore, a more accurate calculation should consider the difference between the two dates expressed in 

https://www.daxpatterns.com
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working days. We provide several versions of the same calculation, seeking for the best in terms of 
performance and fl exibility.

Excel provides a specifi c function to perform that calculation: NETWORKDAYS. However, DAX does 
not offer an equivalent feature. DAX offers the building blocks to author a complex expression that 
computes the equivalent of NETWORKDAYS, and much more. For example, a fi rst way to compute the 
number of working days between two dates is to count the number of days between the two dates that 
are working days:

Avg Delivery WD :=
AVERAGEX (
    Sales,
    VAR RangeOfDates =
        DATESBETWEEN (
            'Date'[Date],
            Sales[Order Date],
            Sales[Delivery Date]
        )
    VAR WorkingDates =
        FILTER (
            RangeOfDates,
            NOT ( WEEKDAY ( 'Date'[Date] ) IN { 1, 7 } )
        )
    VAR NumberOfWorkingDays =
        COUNTROWS ( WorkingDates )
    RETURN
        NumberOfWorkingDays
)

For each row in Sales, the measure creates a temporary table in RangeOfDates with all the dates 
in between the order and delivery dates. Then, it fi lters out Saturdays and Sundays in WorkingDates, 
and fi nally it counts the number of rows that survived the fi lter in NumberOfWorkingDays. Figure 16-1 
shows a line chart with the difference between the average delivery time in days and in working days.

FIGURE 16-1 The average delivery days and working days are different.
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The measure works well, with a few shortcomings. First, it does not consider holidays. For example, 
by removing Saturdays and Sundays, the fi rst of January is considered a regular working day, provided 
it does not fall on a weekend. The same happens for any other holidays in the year. Second, the perfor-
mance of the formula can be improved.

In order to handle holidays, one needs to store the information about whether a given day is a holi-
day or not in a table. The Date table is the perfect place for this, in a column named Is Holiday. Then, 
the formula should use other columns of the Date table instead of just using the Date[Date] column like 
the previous measure did:

Avg Delivery WD DT :=
AVERAGEX (
    Sales,
    VAR RangeOfDates =
        DATESBETWEEN (
            'Date'[Date],
            Sales[Order Date],
            Sales[Delivery Date]
        )
    VAR NumberOfWorkingDays =
        CALCULATE (
            COUNTROWS ( 'Date' ),
            RangeOfDates,
            NOT ( WEEKDAY ( 'Date'[Date] ) IN { 1, 7 } ),
            'Date'[Is Holiday] = 0
        )
    RETURN
        NumberOfWorkingDays
)

Now that the measure is more data-driven, one could also store the information about the weekend 
in the Date table, replacing the test with WEEKDAY with a new column containing Workday or Week-
end. This reduces the complexity of the measure and moves most of the logic into the data, gaining in 
fl exibility.

In terms of complexity, the measure performs two operations:

 ■ An iteration over the Sales table.

 ■ For each row in Sales, the creation of a temporary table with all the dates between the order 
and delivery dates.

If there are one million rows in Sales and the average for delivery days is seven, the complexity of 
the measure is around seven million. Indeed, the engine needs to build a temporary table with around 
seven rows, one million times.

It is possible to reduce the complexity of the formula by reducing either the number of iterations 
performed by AVERAGEX or the number of rows in the temporary table with the business days. An 
interesting point is that the calculation is not necessary at the individual sale level. Indeed, all the 
orders with the same Order Date and Delivery Date share the same duration. Thus, it is possible to fi rst 
group all the orders by Order Date and Delivery Date, then compute the duration of these pairs of 
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dates for a reduced number of rows. By doing so, we can reduce the number of iterations performed 
by AVERAGEX, but at the same time we lose information about how many orders each pair of dates was 
pertaining to. This can be resolved by transforming the simple average into a weighted average, using 
the number of orders as the weight for the average.

This idea is implemented in the following code:

Avg Delivery WD WA :=
VAR NumOfAllOrders =
    COUNTROWS ( Sales )
VAR CombinationsOrderDeliveryDates =
    SUMMARIZE (
        Sales,
        Sales[Order Date],
        Sales[Delivery Date]
    )
VAR DeliveryWeightedByNumOfOrders =
    SUMX (
        CombinationsOrderDeliveryDates,
        VAR RangeOfDates =
            DATESBETWEEN (
                'Date'[Date],
                Sales[Order Date],
                Sales[Delivery Date]
            )
        VAR NumOfOrders =
            CALCULATE (
                COUNTROWS ( Sales )
            )
        VAR WorkingDays =
            CALCULATE (
                COUNTROWS ( 'Date' ),
                RangeOfDates,
                NOT ( WEEKDAY ( 'Date'[Date] ) IN { 1, 7 } ),
                'Date'[Is Holiday] = 0
            )
        VAR NumberOfWorkingDays = NumOfOrders * WorkingDays
        RETURN
            NumberOfWorkingDays
    )
VAR AverageWorkingDays =
    DIVIDE (
        DeliveryWeightedByNumOfOrders,
        NumOfAllOrders
    )
RETURN
    AverageWorkingDays

The code is now much harder to read. An important question is: is it worth making the code 
more complex just to improve performance? As always, it depends. Before diving into this kind 
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of optimization, it is always useful to perform some tests to check if the number of iterations is 
indeed reduced. In this case, one could evaluate the benefits by running the following query, 
which returns the total number of rows and the number of unique combinations of Order Date and 
Delivery Date:

EVALUATE
{ (
    COUNTROWS ( Sales ),
    COUNTROWS (
        SUMMARIZE (
            Sales,
            Sales[Order Date],
            Sales[Delivery Date]
        )
    )
) }
 
-- The result is:
--
-- Value1  |  Value2
--------------------
-- 100231  |    6073

In the demo database there are 100,231 rows in Sales and only 6,073 distinct combinations of order 
and delivery dates. The more complex code in the Avg Delivery WD WA measure reduces the number 
of iterations by a bit more than an order of magnitude. Therefore, in this case authoring more complex 
code is worth the effort. You will learn how to evaluate the impact on execution time in later chapters. 
For now, we focus on code complexity.

The complexity of the Avg Delivery WD WA measure depends on the number of combinations of 
order and delivery dates, and on the average duration of an order. If the average duration of an order 
is just a few days, then the formula runs very fast. If the average duration of an order is of several years, 
then performance might start to be an issue because the result of DATESBETWEEN starts to be a large 
table with hundreds of rows.

Because the number of nonworking days is usually smaller than the number of working days, an 
idea could be to count nonworking days instead of counting working days. Therefore, another algo-
rithm might be the following:

 1.  Compute the difference between the two dates in days.

 2. Compute the number of nonworking days in between the two dates.

 3. Subtract the values computed in (1) and (2).

One can implement this with the following measure:

Avg Delivery WD NWD :=
VAR NonWorkingDays =
    CALCULATETABLE (
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        VALUES ( 'Date'[Date] ),
        WEEKDAY ( 'Date'[Date] ) IN { 1, 7 },
        ALL ( 'Date' )
    )
VAR NumOfAllOrders =
    COUNTROWS ( Sales )
VAR CombinationsOrderDeliveryDates =
    SUMMARIZE (
        Sales,
        Sales[Order Date],
        Sales[Delivery Date]
    )
VAR DeliveryWeightedByNumOfOrders =
    CALCULATE (
        SUMX (
            CombinationsOrderDeliveryDates,
            VAR NumOfOrders =
                CALCULATE (
                    COUNTROWS ( Sales )
                )
            VAR NonWorkingDaysInPeriod =
                FILTER (
                    NonWorkingDays,
                    AND (
                        'Date'[Date] >= Sales[Order Date],
                        'Date'[Date] <= Sales[Delivery Date]
                    )
                )
            VAR NumberOfNonWorkingDays =
                COUNTROWS ( NonWorkingDaysInPeriod )
            VAR DeliveryWorkingDays = 
                Sales[Delivery Date] - Sales[Order Date] - NumberOfNonWorkingDays + 1
            VAR NumberOfWorkingDays = 
                NumOfOrders * DeliveryWorkingDays
            RETURN
                NumberOfWorkingDays
        )
    )
VAR AverageWorkingDays =
    DIVIDE (
        DeliveryWeightedByNumOfOrders,
        NumOfAllOrders
    )
RETURN
    AverageWorkingDays

This code runs more slowly than the previous code in the database used for this book. Regardless, 
this version of the same calculation might perform better on a different database where orders have a 
much larger duration. Only testing will point you in the right direction.
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Why ALL is used in the NonWorkingDays variable

In the previous example, the NonWorkingDays variable calls an ALL on the Date table. 
This ALL function was not present in previous formulations of similar tables used as fi lters. 
The reason is that in previous versions of the measure, we used DATESBETWEEN, which is 
designed to ignore the fi lter context.

When used in a matrix, the Date table might be fi ltered to show a smaller time period. 
In that situation, orders having the order date outside of the selected time period would 
produce an incorrect result. Therefore, before building the table with nonworking days, 
one should get rid of the fi lter context on Date.

It is interesting to note that ALL might not be entirely necessary. Consider this expres-
sion of the variable:

VAR NonWorkingDays =
    CALCULATETABLE (
        VALUES ( 'Date'[Date] ),
        NOT ( WEEKDAY ( 'Date'[Date] ) IN { 1, 7 } )
    )

The fi ltering condition of CALCULATE does not seem to have an ALL anywhere. But 
ALL is indeed present, and it becomes evident by expanding the compact syntax of the 
fi lter predicate to the full syntax:

VAR NonWorkingDays =
    CALCULATETABLE (
        VALUES ( 'Date'[Date] ),
        FILTER ( 
            ALL ( 'Date'[Date] ),
            NOT ( WEEKDAY ( 'Date'[Date] ) IN { 1, 7 } )
        )
    )

Because ALL works on the Date column of the Date table, marked as a date table in the 
model, the engine automatically adds an ALL on the entire Date table.

Even though we could have authored the code that way, we do not want our measures to 
be cryptic and hard to read. Therefore, we preferred a more explicit formulation of the same 
code, making it easier to read.

 

Finally, be mindful that when seeking optimal performance, nothing beats precomputing the values. 
Indeed, no matter what, the difference in working days between two dates always leads to the same 
result. We already know that there are around 6,000 combinations of order and delivery dates in our 
demo data model. One could precompute the difference in working days between these 6,000 pairs 
of dates and store the result in a physical, hidden table. Therefore, at query time there is no need to 
compute the value. A simple lookup of the result provides the number needed.
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Therefore, an option is to create a physical hidden table with the following code:

WD Delta = 
ADDCOLUMNS (
    SUMMARIZE (
        Sales,
        Sales[Order Date],
        Sales[Delivery Date]
    ),
    "Duration", [Avg Delivery WD WA]
)

Once the table is in the model, we take advantage of the precomputed differences in working days 
by modifying the previous best formula with the following:

Avg Delivery WD WA Precomp :=
VAR NumOfAllOrders =
    COUNTROWS ( Sales )
VAR CombinationsOrderDeliveryDates =
    SUMMARIZE (
        Sales,
        Sales[Order Date],
        Sales[Delivery Date]
    )
VAR DeliveryWeightedByNumOfOrders =
    SUMX (
        CombinationsOrderDeliveryDates,
        VAR NumOfOrders =
            CALCULATE (
                COUNTROWS ( Sales )
            )
        VAR WorkingDays =
            LOOKUPVALUE (
                'WD Delta'[Duration],
                'WD Delta'[Order Date], Sales[Order Date],
                'WD Delta'[Delivery Date], Sales[Delivery Date]
            )
        VAR NumberOfWorkingDays = NumOfOrders * WorkingDays
        RETURN
            NumberOfWorkingDays
    )
VAR AverageWorkingDays =
    DIVIDE (
        DeliveryWeightedByNumOfOrders,
        NumOfAllOrders
    )
RETURN
    AverageWorkingDays

It is very unlikely that this level of optimization would be required for a simple calculation involving 
the number of working days between two dates. That said, we were not trying to demonstrate how to 
super-optimize a measure. Instead, we wanted to show several different ways of obtaining the same 
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result, from the most intuitive version down to a very technical and optimized version that is unlikely to 
be useful in most scenarios.

Showing budget and sales together

Consider a data model that contains budget information for the current year, along with actual sales. At 
the beginning of the year, the only available information is the budget fi gures. As time goes by, there 
are actual sales, and it becomes interesting both to compare sales and budget, and to adjust the fore-
cast until the end of the year by mixing budget and actual sales.

To simulate this scenario, we removed all the sales after August 15, 2009, and we created a Budget 
table containing the daily budget for the entire year 2009. The resulting data is visible in Figure 16-2.

FIGURE 16-2 Sales stop in August, whereas the budget goes until the end of the year.

The business question is: provided that on August 15, the Sales Amount is 24 million, what should 
be the adjusted forecast at the end of the year, using actuals for the past and budget for the future? Be 
mindful that because sales ended on the 15th, in August there should be a mix of sales and budget.

The fi rst step is determining the date where sales stop. Using a simple function like TODAY would 
be misleading because data in the model are not necessarily updated to the current day. A better 
approach is to search for the last date with any data in the Sales table. A simple MAX works well, but it 
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is important to note that user selection might have a negative effect on the result. For example, con-
sider the following measure:

LastDateWithSales := MAX ( 'Sales'[OrderDateKey] )

Different brands, or in general different selections, might return different dates. This is shown in 
Figure 16-3.

FIGURE 16-3 Not all brands have the same last date with sales.

An appropriate way to compute the last date with any sales is to remove all the fi lters before com-
puting the maximum date. This way, August 15, 2009, is used for all the products. If any brand does not 
have any sales on August 15, the value to use is zero, not the budget of the last day with sales for that 
brand. Therefore, the correct formulation for LastDateWithSales is the following:

LastDateWithSales := 
CALCULATE ( 
    MAX ( 'Sales'[OrderDateKey] ),
    ALL ( Sales )
)

By removing the fi lter from Sales (which is the expanded Sales table), the code is ignoring any fi lter 
coming from the query, always returning August 15, 2009. At this point, one needs to write code that 
uses the value of Sales Amount for all the dates before the last date with any sales, and the value of 
Budget Amt for the dates after. One simple implementation is the following:

Adjusted Budget :=
VAR LastDateWithSales =
    CALCULATE (
        MAX ( Sales[OrderDateKey] ),
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        ALL ( Sales )
    )
VAR AdjustedBudget =
    SUMX (
        'Date',
        IF (
            'Date'[DateKey] <= LastDateWithSales,
            [Sales Amount],
            [Budget Amt]
        )
    )
RETURN AdjustedBudget

Figure 16-4 shows the result of the new Adjusted Budget measure.

FIGURE 16-4 Adjusted Budget uses actuals or budget, depending on the date.

At this point, we can investigate the measure’s complexity. The outer iteration performed by SUMX 
iterates over the Date table. In a year, it iterates 365 times. At every iteration, depending on the value of 
the date, it scans either the Sales or the Budget table, performing a context transition. It would be good 
to reduce the number of iterations, thus reducing the number of context transitions and/or aggrega-
tions of the larger Sales and Budget tables.

Indeed, a good solution does not need to iterate over the dates. The only reason to perform the 
iteration is that the code is more intuitive to read. A slightly different algorithm is the following:

 1. Split the current selection on Date in two sets: before and after the last date with sales.

 2. Compute the sales for the previous period.

 3. Compute the budget for the future.

 4. Sum sales and budget computed earlier during (2) and (3).
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Moreover, there is no need to compute sales just for the period before the last date. Indeed, there 
will be no sales in the future, so there is no need to fi lter dates when computing the amount of sales. 
The only measure that needs to be restricted is the budget. In other words, the formula can sum the 
entire amount of sales plus the budget of the dates after the last date with sales. This leads to a differ-
ent formulation of the Adjusted Budget measure:

Adjusted Budget Optimized :=
VAR LastDateWithSales =
    CALCULATE (
        MAX ( Sales[OrderDateKey] ),
        ALL ( Sales )
    )
VAR SalesAmount = [Sales Amount]
VAR BudgetAmount =
    CALCULATE (
        [Budget Amt],
        KEEPFILTERS ( 'Date'[DateKey] > LastDateWithSales )
    )
VAR AdjustedBudget = SalesAmount + BudgetAmount
RETURN
    AdjustedBudget

The results from Adjusted Budget Optimized are identical to those of the Adjusted Budget measure, 
but the code complexity is much lower. Indeed, the code of Adjusted Budget Optimized only requires 
one scan of the Sales table and one scan of the Budget table, the latter with an additional fi lter on the 
Date table. Please note that KEEPFILTERS is required. Otherwise, the condition on the Date table would 
override the current context, providing incorrect fi gures. This fi nal version of the code is slightly harder 
to read and to understand, but it is much better performance-wise.

As with previous examples, there are different ways of expressing the same algorithm. Finding the 
best way requires experience and a solid understanding of the internals of the engine. With that said, 
simple considerations about the cardinality required in a DAX expression already help a lot in optimiz-
ing the code.

Computing same-store sales

This scenario is one specifi c case of a much broader family of calculations. Contoso has several 
stores all around the world, and each store has different departments, each one selling specifi c 
product categories. Departments are continuously updated: Some are opened, others are closed or 
renewed. When analyzing sales performance, it is important to compare like-for-like—that is, ana-
lyze the sales behavior of comparable departments. Otherwise, one might erroneously conclude that 
a department performed very poorly, just because for some time in the selected period it had been 
closed down.



 CHAPTER 16 Advanced calculations in DAX 531

The like-for-like concept can be tailored to every business. In this example, the requirement is to 
exclusively compare stores and product categories that have sales in the years considered for the 
analysis. For each product category, a report should solely include stores that have sales in the same 
years. Variations to this requirement might use the month or the week as granularity in the like-for-like 
comparison, without changing the approach described as follows.

For example, consider the report in Figure 16-5, which analyzes the sales of one product category 
(Audio) in German stores over three calendar years.

FIGURE 16-5 Several stores were opened and closed over the years, polluting the analysis.

The Berlin store was closed in 2007. Out of the two stores in Koln, one was under maintenance in 
2008; it was thus only open two out of the three years considered. In order to achieve a fair comparison 
of the values calculated, any analysis of sales trends needs to be restricted to stores within the selection 
that were always open.

Because the rules of a like-for-like comparison can be complex and require different types of 
adjustments, it is a good idea to store the status of the comparable elements in a separate table. This 
way, any complexity in the business logic will not affect the query performance but only the time 
required to refresh the status table. In this example, the StoresStatus table contains one row for each 
combination of year, category, and store, alongside with status, which can be Open or Closed. Figure 
16-6 shows the status of the German stores, only showing the Open status and hiding the Closed 
status to improve readability.
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FIGURE 16-6 The StoresStatus table indicates whether a store is open in a given year and for a given product category.

The most interesting column is the last one: Just four stores have been open for all three years. A 
relevant trend analysis should consider these four stores exclusively, for Audio sales. Moreover, if one 
changes the selection on the years, the status changes too. Indeed, if one only selects two years (2007 
and 2008), the status of the stores is different, as shown in Figure 16-7.

FIGURE 16-7 The Total column considers the status of the years included in the report.

The like-for-like measure must perform the following steps:

 ■ Determine the stores open in all the years of the report for each product category.

 ■ Use the result of the fi rst step to fi lter the Amount measure, restricting the values to stores and 
product categories that have sales in all the years included in the report.
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Before moving further with the example, a deeper analysis of the data model is required. The 
diagram view is represented in Figure 16-8.

FIGURE 16-8 The StoreStatus table has the status of each store for any combination of year and product category.

Let us point out a few things about the model:

 ■ The relationship between Date and StoreStatus is an MMR weak relationship based on Year, with 
the cross-fi lter direction going towards StoreStatus. Date fi lters StoreStatus, not the other way 
around.

 ■ The relationship between Product Category and StoreStatus is a regular one-to-many 
relationship.

 ■ All other relationships are regular one-to-many relationships, with a single cross-fi lter used in 
many other demos of this book.

 ■ StoreStatus contains one row for each store, product category, and year combination. The status 
of each row is either Open or Closed. In other words, there are no gaps in the table. This is rel-
evant to reduce the complexity of the formula.

The fi rst step is determining which departments are open over all the years selected. To obtain this, 
the code must fi lter the StoresStatus table with a given product category and all the selected years. If 
after having performed this fi lter, all the fi ltered rows contain Open in the status, then the department 
has been open over the whole time period. Otherwise, if there are multiple values (some Open, some 
Closed), this means that the department was closed at some point. The following query performs this 
calculation:
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EVALUATE
VAR StatusGranularity =
    SUMMARIZE (
        Receipts,
        Store[Store Name],
        'Product Category'[Category]
    )
VAR Result =
    FILTER (
        StatusGranularity,
        CALCULATE (
            SELECTEDVALUE ( StoresStatus[Status] ),
            ALLSELECTED ( 'Date'[Calendar Year] )
        ) = "Open"
    )
RETURN
    Result

The query iterates at the store/category cardinality, and for each of these pairs it checks if the value 
of the Status is Open for all selected years. In case there are multiple values for StoreStatus[Status], the 
result of SELECTEDVALUE is blank preventing the pair from surviving the fi lter.

Once we can determine the set of departments open all of the years, the set obtained can be used 
as a fi lter to CALCULATE to obtain the result:

OpenStoresAmt :=
VAR StatusGranularity =
    SUMMARIZE (
        Receipts,
        Store[Store Name],
        'Product Category'[Category]
    )
VAR OpenStores =
    FILTER (
        StatusGranularity,
        CALCULATE (
            SELECTEDVALUE ( StoresStatus[Status] ),
            ALLSELECTED ( 'Date'[Calendar Year] )
        ) = "Open"
    )
VAR AmountLikeForLike =
    CALCULATE (
        [Amount],
        OpenStores
    )
RETURN
    AmountLikeForLike

Once projected in a matrix, the measure produces the report in Figure 16-9.
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FIGURE 16-9 OpenStoreAmt only returns a value if the store has been open in all selected years.

Stores that are not open all the time have disappeared from the report. It is important to learn this 
technique well because it is one of the most powerful and useful techniques in DAX. The ability to 
compute a table containing a fi lter and then use it to restrict the calculation is the foundation of several 
advanced calculations in DAX.

In this example, we used an additional table to store the information about whether a store is open 
or closed. We could have achieved a similar goal by inspecting the Receipts table alone, inferring 
whether a store was open or closed based on their sales. If there are sales, then the assumption is that 
the store was open. Unfortunately, the opposite is not quite true. The absence of sales does not imply 
that the store department selling that category was closed. In an unfortunate and borderline scenario, 
the absence of sales might simply mean that although the department was open, no sale took place.

This last consideration is more about data modeling than DAX, yet we felt it was important to men-
tion it. In case one needs to retrieve the information about the store being open from the Receipts 
table, the formula requires more attention.

The following measure implements the OpenStoresAmt measure without using the StoresStatus 
table. For each pair of store and product category, the measure must check whether the number of 
years in which there are sales is the same as the number of years selected. If a store has sales for just 
two out of three years, this means that the considered department was closed for one year. The follow-
ing code is a possible implementation:

OpenStoresAmt Dynamic :=
VAR SelectedYears =
    CALCULATE (
        DISTINCTCOUNT ( 'Date'[Calendar Year] ),
        CROSSFILTER ( Receipts[SaleDateKey], 'Date'[DateKey], BOTH ),
        ALLSELECTED ()
    )
VAR StatusGranularity =
    SUMMARIZE (
        Receipts,
        Store[Store Name],
        'Product Category'[Category]
    )
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VAR OpenStores =
    FILTER (
        StatusGranularity,
        VAR YearsWithSales =
            CALCULATE (
                DISTINCTCOUNT ( 'Date'[Calendar Year] ),
                CROSSFILTER ( Receipts[SaleDateKey], 'Date'[DateKey], BOTH ),
                ALLSELECTED ( 'Date'[Calendar Year] )
            )
        RETURN
            YearsWithSales = SelectedYears
    )
VAR AmountLikeForLike =
    CALCULATE (
        [Amount],
        OpenStores
    )
RETURN
    AmountLikeForLike

The complexity of this latter version is much higher. Indeed, it requires moving the fi lter from the 
Receipts table to the Date table for every product category to compute the number of years with sales. 
Because—typically—the Receipts table is much larger than a table with only the status for the store, this 
code is slower than the previous solution based on the StoresStatus table. Nevertheless, it is useful to note 
that the only difference between the previous version and this one is in the condition inside FILTER. Instead 
of inspecting a dedicated table, the formula needs to scan the Receipts table. The pattern is still the same.

Another important detail of this code is the way it computes the SelectedYears variable. Here, a 
simple DISTINCTCOUNT of all the selected years would not fi t. Indeed, the value to compute is not the 
number of all the selected years, but solely the selected years with sales. If there are 10 years in the Date 
table and just three of them have sales, using a simpler DISTINCTCOUNT would also consider the years 
with no sales, returning blank on every cell.

Numbering sequences of events

This section analyzes a surprisingly common pattern: the requirement to number sequences of events, 
to easily fi nd the fi rst, the last, and the previous event. In this example, the requirement is to number 
each order by customer in the Contoso database. The goal is to obtain a new calculated column that 
contains 1 for the fi rst order of a customer, 2 for the second, and so on. Different customers will have 
the same number 1 for their fi rst order.

 

Warning We should start with a big warning: Some of these formulas are slow. We show 
samples of code to discuss their complexity while searching for a better solution. If you plan 
to try them on your model, be prepared for a very long calculation time. By “long,” we mean 
hours of computation and tens of gigabytes of RAM used by the demo model provided. Oth-
erwise, simply follow the description; we show a much better code at the end of the section.
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The result to obtain is depicted in Figure 16-10.

FIGURE 16-10 Within all the orders of a same customer, Order Position contains the relative position of each order.

A fi rst way to compute the order position is the following: for one same customer, the code could 
count the number of orders that date prior to the current order. Unfortunately, using the date does not 
work because there are customers who placed multiple orders on the same day; this would generate 
an incorrect numbering sequence. Luckily, the order number is unique and its value increases for every 
order. Thus, the formula computes the correct value by counting for one same customer, the number of 
orders with an order number less than or equal to the current order number.

The following code implements this logic:

Sales[Order Position] =
VAR CurrentOrderNumber = Sales[Order Number]
VAR Position =
    CALCULATE (
        DISTINCTCOUNT ( Sales[Order Number] ),
        Sales[Order Number] <= CurrentOrderNumber,
        ALLEXCEPT (
            Sales,
            Sales[CustomerKey]
        )
    )
RETURN
    Position

Although it looks rather straightforward, this code is extremely complex. Indeed, in CALCULATE 
it uses a fi lter on the order number and the context transition generated by the calculated column. 
For each row in Sales, the engine must fi lter the Sales table itself. Therefore, its complexity is the size 
of Sales squared. Because Sales contains 100,000 rows, the total complexity is 100,000 multiplied by 
100,000; that results in 10 billion. The net result is that this calculated column takes hours to compute. 
On a larger dataset, it would put any server on its knees.
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We discussed the topic of using CALCULATE and context transition on large tables in Chapter 5, 
“Understanding CALCULATE and CALCULATETABLE.” A good developer should try to avoid using con-
text transition on large tables; otherwise, they run the risk of incurring poor performance.

A better implementation of the same idea is the following: Instead of using CALCULATE to apply a 
fi lter with the expensive context transition, the code could create a table containing all the combina-
tions of CustomerKey and Order Number. Then, it could apply a similar logic to that table by counting 
the number of order numbers lower than the current one for that same customer. Here is the code:

Sales[Order Position] =
VAR CurrentCustomerKey = Sales[CustomerKey]
VAR CurrentOrderNumber = Sales[Order Number]
VAR CustomersOrders =
    ALL (
        Sales[CustomerKey],
        Sales[Order Number]
    )
VAR PreviousOrdersCurrentCustomer =
    FILTER (
        CustomersOrders,
        AND (
            Sales[CustomerKey] = CurrentCustomerKey,
            Sales[Order Number] <= CurrentOrderNumber
        )
    )
VAR Position =
    COUNTROWS ( PreviousOrdersCurrentCustomer )
RETURN
    Position

This new formulation is much quicker. First, the number of distinct combinations of CustomerKey 
and Order Number is 26,000 instead of 100,000. Moreover, by avoiding context transition the optimizer 
can generate a much better execution plan.

The complexity of this formula is still high, and the code is somewhat hard to follow. A much better 
implementation of the same logic uses the RANKX function. RANKX is useful to rank a value against a 
table, and doing that it can easily compute a sequence number. Indeed, the sequence number of an order 
is the same value as the ascending ranking of the order in the list of all the orders of the same customer.

The following is an implementation of the same calculation as the previous formula, this time using 
RANKX:

Sales[Order Position] =
VAR CurrentCustomerKey = Sales[CustomerKey]
VAR CustomersOrders =
    ALL (
        Sales[CustomerKey],
        Sales[Order Number]
    )
VAR OrdersCurrentCustomer =
    FILTER (
        CustomersOrders,
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        Sales[CustomerKey] = CurrentCustomerKey
    )
VAR Position =
    RANKX (
        OrdersCurrentCustomer,
        Sales[Order Number],
        Sales[Order Number],
        ASC,
        DENSE
    )
RETURN
    Position

RANKX is very well optimized. It has an effi cient internal sorting algorithm that lets it execute 
quickly even on large datasets. On the demo database the difference between the last two formulas is 
not very high, yet a deeper analysis of the query plan reveals that the version with RANKX is the most 
effi cient. The analysis of query plans is a topic discussed in the next chapters of the book.

Also, in this example there are multiple ways of expressing the same code. Using RANKX to com-
pute a sequence number might not be obvious to a DAX novice, which is the reason we included this 
example in the book. Showing different versions of the same code provides food for thought.

Computing previous year sales up to last date of sales

The following example extends time intelligence calculations with more business logic. The goal is to 
compute a year-over-year comparison accurately, ignoring in the previous year any sales that took 
place after a set date. To demonstrate the scenario, we removed from the demo database all sales after 
August 15, 2009. Therefore, the last year (2009) is incomplete, and so is the month of August 2009.

Figure 16-11 shows that sales after August 2009 report empty values.

FIGURE 16-11 There are no sales after August 2009.
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When the month is present on the report as in the report shown, the numbers are clear. A user 
would quickly understand that the last year is incomplete; therefore, they would not make a compari-
son between the total of 2009 against the total of previous years. Nevertheless, a developer could 
author some code that—despite being useful—makes the wrong decisions. Consider the following 
two measures:

PY Sales := 
CALCULATE (
    [Sales Amount],
    SAMEPERIODLASTYEAR ( 'Date'[Date] )
)
 
Growth := 
DIVIDE ( 
    [Sales Amount] - [PY Sales], 
    [PY Sales] 
)

A user might easily build a report like the one in Figure 16-12 and erroneously deduce that sales are 
decreasing dramatically for all the brands.

FIGURE 16-12 The report seems to indicate a dramatic drop in sales for all the brands.

The report does not perform a fair comparison between 2008 and 2009. For the selected year 
(2009), it reports the sales up to August 15, 2009, whereas for the previous year it considers the sales of 
the entire year, including September and later dates.

An appropriate comparison should exclusively consider sales that occurred before August 15 in all 
previous years, so to produce meaningful growth percentages. In other words, the data from previous 
years should be restricted to the dates up to the last day and month of sales in 2009. The cutoff date is 
the last date for which there are sales reported in the database.

As usual, there are several ways to solve the problem, and this section presents some of them. The 
fi rst approach is to modify the PY Sales measure, so that it only considers the dates that happen to 
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be before the last date of sales projected in the previous year. One option to author the code is the 
following:

PY Sales :=
VAR LastDateInSales =
    CALCULATETABLE (
        LASTDATE ( Sales[Order Date] ),
        ALL ( Sales )
    )
VAR LastDateInDate =
    TREATAS (
        LastDateInSales,
        'Date'[Date]
    )
VAR PreviousYearLastDate =
    SAMEPERIODLASTYEAR ( LastDateInDate )
VAR PreviousYearSales =
    CALCULATE (
        [Sales Amount],
        SAMEPERIODLASTYEAR ( 'Date'[Date] ),
        'Date'[Date] <= PreviousYearLastDate
    )
RETURN
    PreviousYearSales

The fi rst variable computes the last Order Date in all sales. In the sample data model, it retrieves 
August 15, 2009. The second variable (LastDateInDate) changes the data lineage of the previous result 
to Date[Date]. This step is needed because time intelligence functions are expected to work on the date 
table. Using them on different tables might lead to wrong behaviors, as we will demonstrate later. Once 
LastDateInDate contains August 15, 2009, with the right data lineage, SAMEPERIODLASTYEAR moves 
this date one year back. Finally, CALCULATE uses this value to compute the sales in the previous year 
combining two fi lters: the current selection moved one year back and every day before August 15, 2008.

The result of this new formula is visible in Figure 16-13.

FIGURE 16-13 Considering the right fraction of the year, the results are now comparable.
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It is important to understand the reason why the previous formula requires TREATAS. An inexperi-
enced DAX developer might write the same measure with this simpler code:

PY Sales Wrong :=
VAR LastDateInSales =
    CALCULATETABLE (
        LASTDATE ( Sales[Order Date] ),
        ALL ( Sales )
    )
VAR PreviousYearLastDate =
    SAMEPERIODLASTYEAR ( LastDateInSales )
VAR PreviousYearSales =
    CALCULATE (
        [Sales Amount],
        SAMEPERIODLASTYEAR ( 'Date'[Date] ),
        'Date'[Date] <= PreviousYearLastDate
    )
RETURN
    PreviousYearSales

To make matters worse, on the demo model we provide as an example, this latter measure and 
the previous measure return the same fi gures. Therefore, there is a bug that is not evident at fi rst 
sight. Here is the problem: The result from SAMEPERIODLASTYEAR is a table of one column with the 
same data lineage as its input column. If one passes a column with the lineage of Sales[Order Date] to 
SAMEPERIODLASTYEAR, then the function must return a value that exists among the possible values of 
Sales[Order Date]. Being a column in Sales, Order Date is not expected to contain all the possible values. 
For example, if there are no sales during a weekend, then that weekend date is not present among the 
possible values of Sales[Order Date]. In that scenario, SAMEPERIODLASTYEAR returns blank.

Figure 16-14 shows what happens to the report by removing any transaction from August 15, 2008, 
from the Sales table, for demo purposes.

FIGURE 16-14 The boxed area contains the value of PY Sales Wrong, which is always blank.
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Because the last date is August 15, 2009, moving this date one year back leads to August 15, 2008, 
which, on purpose, does not exist in Sales[Order Date]. Therefore, SAMEPERIODLASTYEAR returned 
a blank. Since SAMEPERIODLASTYEAR returned a blank, the second condition inside CALCULATE 
imposes that the date be less than or equal to blank. There is no date satisfying the condition; there-
fore, the PY Sales Wrong measure always returns blank.

In the example, we removed one date from Sales to show the issue. In the real world, the prob-
lem might happen on any date, if on the corresponding day in the previous year there were no sales. 
Remember: Time intelligence functions are expected to work on a well-designed date table. Using 
them on columns from different tables might lead to unexpected results.

Of course, once the overall logic becomes clearer, there can be many ways of expressing the same 
code. We proposed one version, but you should feel free to experiment.

Finally, scenarios like this one have a much better solution if one can update the data model. Indeed, 
computing the last date with sales every time a calculation is required and moving it back one year 
(or by whatever offset is needed) proves to be a tedious, error-prone task. A much better solution is 
to pre-calculate whether each date should be included in the comparison or not, and consolidate this 
value directly in the Date table.

One could create a new calculated column in the Date table, which indicates whether a given date 
should be included in the comparison with the last year or not. In other words, all dates before 
August 15 have a value of TRUE, whereas all the rows after August 15 have a value of FALSE.

The new calculated column can be authored this way:

'Date'[IsComparable] =
VAR LastDateInSales =
    MAX ( Sales[Order Date] )
VAR LastMonthInSales =
    MONTH ( LastDateInSales )
VAR LastDayInSales =
    DAY ( LastDateInSales )
VAR LastDateCurrentYear =
    DATE ( YEAR ( 'Date'[Date] ), LastMonthInSales, LastDayInSales )
VAR DateIncludedInCompare =
    'Date'[Date] <= LastDateCurrentYear
RETURN 
    DateIncludedInCompare

Once the column is in place, the PY Sales measure can be authored much more simply:

PY Sales := 
CALCULATE (
    [Sales Amount],
    SAMEPERIODLASTYEAR ( 'Date'[Date] ),
    'Date'[IsComparable] = TRUE
)

Not only is this code easier to read and debug, it is also way faster than the previous implementa-
tion. The reason is that it is no longer necessary to use the complex code required to compute the last 
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date in Sales, move it as a fi lter on Date, and then apply it to the model. The code is now executed with 
a simple fi lter argument of CALCULATE that checks for a Boolean value. The takeaway of this example is 
that it is possible to move a complex logic for a fi lter in a calculated column, which is computed during 
data refresh and not when a user is waiting for the report to come up.

Conclusions

As you have seen, this chapter does not include any new function of the language. Instead, we wanted 
to show that the same problem can be approached in several different ways. We have not covered the 
internals of the engine, which is an important topic to introduce optimizations. However, by perform-
ing a simple analysis of the code and simulating its behavior, it is oftentimes possible to consider a 
better formula for the same scenario.

Please remember that this chapter is not about patterns. You can freely use this code in your mod-
els, but do not assume that it is the best implementation of the pattern. Our goal was to lead you in 
thinking about the same scenario in different ways.

As you learn in the next chapters, providing unique patterns in DAX is nearly impossible. The code 
that runs faster in one data model might not be the top performer in a different data model, or even in 
the same model with a different data distribution.

If you are serious about optimizing DAX code, then be prepared for a deep dive in the internals of 
the engine, discovering all the most intricate details of the DAX query engines. This fascinating and 
complex trip is about to begin, as soon as you turn to the next page.
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The DAX engines

The goal of the book up to this point has been to provide a solid understanding of the DAX language. 
On top of gaining further experience through practice, the next goal for you is to write effi cient 
DAX and not just DAX that works. Writing effi cient DAX requires understanding the internals of the 
engine. The next chapters aim to provide the essential knowledge to measure and improve DAX code 
performance.

More specifi cally, this chapter is dedicated to the internal architecture of the engines running DAX 
queries. Indeed, a DAX query can run on a model that is stored entirely in memory, or entirely on the 
original data source, or on a mix of these two options.

Starting from this chapter, we somewhat deviate from DAX and begin to discuss low-level technical 
details about the implementation of products that use DAX. This is an important topic, but you need 
to be aware that implementation details change often. We did our best to show information at a level 
that is not likely to change soon, carefully balancing detail level and usefulness with consistency over 
time. Nevertheless, given the pace at which technology runs these days, the information might be 
outdated within a few years. The most up-to-date information is always available online, in blog posts 
and articles.

New versions of the engines come out every month, and the query optimizer can change and 
improve the query execution. Therefore, we aim to teach how the engines work, rather than just pro-
vide a few rules about writing DAX code that would quickly become obsolete. We sometimes provide 
best practices, but remember to always double-check how our suggestions apply to your specifi c 
scenario.

Understanding the architecture of the DAX engines

The DAX language is used in several Microsoft products based on the Tabular technology. Yet, specifi c 
features might only be available in a few editions or license conditions. A Tabular model uses both 
DAX and MDX as query languages. This section describes the broader architecture of a Tabular model, 
regardless of the query language and of the limitations of specifi c products.
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Every report sends queries to Tabular using either DAX or MDX. Despite the query language used, 
the Tabular model uses two engines to process a query:

 ■ The formula engine (FE), which processes the request, generating and executing a query plan.

 ■ The storage engine (SE), which retrieves data out of the Tabular model to answer the requests 
made by the Formula Engine. The Storage Engine has two implementations:

• VertiPaq hosts a copy of the data in-memory that is refreshed periodically from the data 
source.

• DirectQuery forwards queries directly to the original data source for every request. 
DirectQuery does not create an additional copy of data.

Figure 17-1 represents the architecture that executes a DAX or MDX query.

Formula Engine

Tabular Model

Storage Engine

Cached Data

Data Source

DAX
CALCULATION

ENGINE

VERTIPAQ
(xmSQL)

QUERY
(DAX/MDX)

PERIODIC

REFRESH

DIRECTQUERY
(SQL, ...)

FIGURE 17-1 A query is processed by an architecture using a formula engine and a storage engine.

The formula engine is the higher-level execution unit of the query engine in a Tabular model. It 
can handle all the operations requested by DAX and MDX functions and can solve complex DAX and 
MDX expressions. However, when the formula engine must retrieve data from the underlying tables, it 
forwards part of the requests to the storage engine.

The queries sent to the storage engine might vary from a simple retrieval of the raw table data to 
more complex queries aggregating data and joining tables. The storage engine only communicates 
with the formula engine. The storage engine returns data in an uncompressed format, regardless of the 
original format of the data.

A Tabular model usually stores data using either the VertiPaq or the DirectQuery storage engine. 
However, composite models can use both technologies within the same data model and for the same 
tables. The choice of which engine to use is made by the engine on a by-query basis.

This book is exclusively focused on DAX. Be mindful that MDX uses the same architecture when it 
queries a Tabular model. This chapter describes the different types of storage engines available in a 
Tabular model, focusing more on the details of the VertiPaq engine because it is the native and faster 
engine for DAX.
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Introducing the formula engine
The formula engine is the absolute core of the DAX execution. Indeed, the formula engine alone is able 
to understand the DAX language, though it understands MDX as well. The formula engine converts a 
DAX or MDX query into a query plan describing a list of physical steps to execute. The storage engine 
part of Tabular is not aware that its queries originated from a model supporting DAX.

Each step in the query plan corresponds to a specifi c operation executed by the formula engine. 
Typical operators of the formula engine include joins between tables, fi ltering with complex conditions, 
aggregations, and lookups. These operators typically require data from columns in the data model. 
In these cases, the formula engine sends a request to the storage engine, which answers by returning 
a datacache. A datacache is a temporary storage area created by the storage engine and read by the 
formula engine.

 

Note Datacaches are not compressed; datacaches are plain in-memory tables stored in an 
uncompressed format, regardless of the storage engine they come from.

 

The formula engine always works with datacaches returned by the storage engine or with data 
structures computed by other formula engine operators. The result of a formula engine operation is 
not persisted in memory across different executions, even within the same session. On the other hand, 
datacaches are kept in memory and can be reused in following queries. The formula engine does not 
have a cache system to reuse results between different queries. DAX relies entirely on the cache 
features of the storage engine.

Finally, the formula engine is single-threaded. This means that any operation executed in the for-
mula engine uses just one thread and one core, no matter how many cores are available. The formula 
engine sends requests to the storage engine sequentially, one query at a time. A certain degree of par-
allelism is available only within each request to the storage engine, which has a different architecture 
and can take advantage of multiple cores available. This is described in the next sections.

Introducing the storage engine
The goal of the storage engine is to scan the Tabular database and produce the datacaches needed by 
the formula engine. The storage engine is independent from DAX. For example, DirectQuery on top 
of SQL Server uses SQL as the storage engine. SQL was born much earlier than DAX. Although it might 
seem strange, the internal storage engine of Tabular (known as VertiPaq) is independent from DAX 
too. The overall architecture is very clean and sound. The storage engine executes exclusively queries 
allowed by its own set of operators. Depending on the kind of storage engine used, the set of operators 
might range from very limited (VertiPaq) to very rich (SQL). This affects the performance and the kind 
of optimizations that a developer should consider when analyzing query plans.
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A developer can defi ne the storage engine used for each table, using one of these three options:

 ■ Import: Also called in-memory, or VertiPaq. The content of the table is stored by the VertiPaq 
engine, copying and restructuring the data from the data source during data refresh.

 ■ DirectQuery: The content of the table is read from the data source at query time, and it is not 
stored in memory during data refresh.

 ■ Dual: The table can be queried in both VertiPaq and DirectQuery. During data refresh the table 
is loaded in memory, but at query time the table may also be read in DirectQuery mode, with 
the most up-to-date information.

Moreover, a table in a Tabular model could be used as an aggregation for another table. Aggrega-
tions are useful to optimize storage engine requests, but not to optimize a bottleneck in the formula 
engine. Aggregations can be defi ned in both VertiPaq and DirectQuery, though they are commonly 
defi ned in VertiPaq to achieve the best query performance.

The storage engine features a parallel implementation. However, it receives requests from the for-
mula engine, which sends them synchronously. Thus, the formula engine waits for one storage engine 
query to fi nish before sending the next one. Therefore, parallelism in the storage engine might be 
reduced by the lack of parallelism of the formula engine.

Introducing the VertiPaq (in-memory) storage engine
The VertiPaq storage engine is the native lower-level execution unit of the DAX query engine. In certain 
products it was offi cially named xVelocity In-Memory Analytical Engine. Nevertheless, it is widely 
known as VertiPaq, which is the original code name used during development. VertiPaq stores a copy 
of the data read from the data source in a compressed in-memory format based on a columnar 
database structure.

VertiPaq queries are expressed using an internal pseudo-SQL language called xmSQL. xmSQL is 
not a real query language, but rather a textual representation of a storage engine query. The intent of 
xmSQL is to give visibility to humans as to how the formula engine is querying VertiPaq. VertiPaq offers 
a very limited set of operators: In case the calculation requires a more complex evaluation within an 
internal data scan, VertiPaq can perform a callback to the formula engine.

The VertiPaq storage engine is multithreaded. The operations performed by the VertiPaq storage 
engine are very effi cient and can scale up on multiple cores. A single storage engine query can increase 
its parallelism up to one thread for each segment of a table. We will describe segments later in this 
chapter. Considering that the storage engine can use up to one thread per column segment, one can 
benefi t from the parallelism of the storage engine only when there are many segments involved in the 
query. In other words, if there are eight storage engine queries, running on a small table (one segment), 
they will run sequentially one after the other, instead of all in parallel, because of the synchronous 
nature of communication between the formula engine and the storage engine.
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A cache system stores the results produced by the VertiPaq storage engine, holding a limited num-
ber of results—typically the last 512 internal queries per database, but different versions of the engine 
might use a different number. When the storage engine receives an xmSQL query identical to one 
already in cache, it returns the corresponding datacache without doing any scan of data in memory. 
The cache is not involved in security considerations because the row-level security system only infl u-
ences the formula engine behavior, producing different xmSQL queries in case the user is restricted to 
seeing specifi c rows in a table.

A scan operation made by the storage engine is usually faster than the equivalent scan performed 
by the formula engine, even with a single thread available. This is because the storage engine is better 
optimized for these operations and because it iterates over compressed data; the formula engine, on 
the other hand, can only iterate over datacaches, which are uncompressed.

Introducing the DirectQuery storage engine
The DirectQuery storage engine is a generic defi nition, describing the scenario where the data is kept 
in the original data source instead of being copied in the VertiPaq storage. When the formula engine 
sends a request to the storage engine in DirectQuery mode, it sends a query to the data source in its 
specifi c query language. This is SQL most of the time, but it could be different.

The formula engine is aware of the presence of DirectQuery. Therefore, the formula engine gener-
ates a different query plan compared to VertiPaq because it can take advantage of more advanced 
functions available in the query language used by the data source. For example, SQL can manage string 
transformations such as UPPER and LOWER, whereas the VertiPaq engine does not have any string 
manipulation functions available.

Any optimization of the storage engine using DirectQuery requires an optimization of the data 
source—for example, using indexes in a relational database. More details about DirectQuery and the 
possible optimizations are available in the following white paper: https://www.sqlbi.com/whitepapers/
directquery-in-analysis-services-2016/. The considerations are valid for both Power BI and Analysis 
Services because they share the same underlying engine.

Understanding data refresh
DAX runs on SQL Server Analysis Services (SSAS) Tabular, Azure Analysis Services (same as SSAS in this 
book), Power BI service (both on server and on the local Power BI Desktop), and in the Power Pivot for 
Microsoft Excel add-in. Technically, both Power Pivot for Excel and Power BI use a customized version 
of SSAS Tabular. Speaking about different engines is thus somewhat artifi cial: Power Pivot and Power BI 
are like SSAS although SSAS runs in a hidden mode. In this book, we do not discriminate between these 
engines; when we mention SSAS, the reader should always mentally replace SSAS with Power Pivot or 
Power BI. If there are differences worth highlighting, then we will note them in that specifi c section.

https://www.sqlbi.com/whitepapers/directquery-in-analysis-services-2016/
https://www.sqlbi.com/whitepapers/directquery-in-analysis-services-2016/


550 CHAPTER 17 The DAX engines

When SSAS loads the content of a source table in memory, we say that it processes the table. This 
takes place during the process operation of SSAS or during the data refresh in Power Pivot for Excel 
and Power BI. The table process for DirectQuery simply clears the internal cache without executing any 
access to the data source. On the other hand, when processing occurs in VertiPaq mode, the engine 
reads the content of the data sources and transforms it into the internal VertiPaq data structure.

VertiPaq processes a table following these few steps:

 1. Reading of the source dataset, transformation into the columnar data structure of VertiPaq, 
encoding and compressing of each column.

 2. Creating of dictionaries and indexes for each column.

 3. Creating of the data structures for relationships.

 4. Computing and compressing all the calculated columns and calculated tables.

The last two steps are not necessarily sequential. Indeed, a relationship can be based on a calculated 
column, or calculated columns can depend on a relationship because they use RELATED or CALCULATE. 
Therefore, SSAS creates a complex graph of dependencies to execute the steps in the correct order.

In the next sections, we describe these steps in more detail. We also cover the format of the internal 
structures created by SSAS during the transformation of the data source into the VertiPaq model.

Understanding the VertiPaq storage engine

The VertiPaq engine is the most common storage engine used in Tabular models. VertiPaq is used 
whenever a table is in Import storage mode. This is the common choice in many data models, and it is 
the only choice in Power Pivot for Excel. In composite models, the presence of tables or aggregations in 
dual storage mode also implies the use of the VertiPaq storage engine combined with DirectQuery.

For these reasons, a solid knowledge of the VertiPaq storage engine is a basic skill required to 
understand how to optimize both the memory consumption of the model and the execution time of 
the queries. In this section, we describe how the VertiPaq storage works.

Introducing columnar databases
VertiPaq is an in-memory columnar database. Being in-memory means that all the data handled by a 
model reside in RAM. But VertiPaq is not only in-memory; it is also a columnar database. Therefore, it is 
relevant to have a good understanding of what a columnar database is in order to correctly understand 
VertiPaq.

We think of a table as a list of rows, where each row is divided into columns. For example, consider 
the Product table in Figure 17-2.
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ID Name Color Unit Price

1 Camcorder Red 112.25

2 Camera Red 97.50

3 Smartphone White 100.00

4 Console Black 112.25

5 TV Blue 1,240.85

6 CD Red 39.99

7 Touch screen Blue 45.12

8 PDA Black 120.25

9 Keyboard Black 120.50

Product

FIGURE 17-2 The fi gure shows the Product table, with four columns and nine rows.

Thinking of a table as a set of rows, we are using the most natural visualization of a table structure. 
Technically, this is known as a row store. In a row store, data is organized in rows. When the table is 
stored in memory, we might think that the value of the Name column in the fi rst row is adjacent to the 
values of the ID and Color columns in the same row. On the other hand, the value in the second row of 
the Name column is slightly farther from the Name value in the fi rst row because in between we fi nd 
Color and Unit Price in the fi rst row, and the value of the ID column in the second row. As an example, 
the following code is a schematic representation of the physical memory layout of a row store:

ID,Name,Color,Unit Price|1,Camcorder,Red,112.25|2,Camera,Red,97.50|3,Smartphone,
White,100.00|4,Console,Black,112.25|5,TV,Blue,1,240.85|6,CD,Red,39.99|7,
Touch screen,Blue,45.12|8,PDA,Black,120.25,9,Keyboard,Black,120.50

Imagine a developer needs to compute the sum of Unit Price: The engine must scan the entire 
memory area, reading many irrelevant values in the process. Imagine scanning the memory of the 
database sequentially: To read the fi rst value of Unit Price, the engine needs to read (and skip) the fi rst 
row of ID, Name, and Color. Only then does it fi nd an interesting value. The same process is repeated 
for all the rows. Following this technique, the engine needs to read and ignore many columns to fi nd 
the relevant values to sum.

Reading and ignoring values take time. In fact, if we asked someone to compute the sum of Unit 
Price, they would not follow that algorithm. Instead, as human beings, they would probably scan the 
fi rst row in Figure 17-2 searching for the position of Unit Price, and then move their eyes down, reading 
the values one at a time and mentally accumulating them to produce the sum. The reason for this very 
natural behavior is that we save time by reading vertically instead of row-by-row.

A columnar database organizes data to optimize vertical scanning. To obtain this result, it needs a 
way to make the different values of a column adjacent to one another. In Figure 17-3 you can see the 
same Product table as organized by a columnar database.
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Color

Red

Red

White

Black

Blue

Red

Blue

Black

Black

ID

1

2

3

4

5

6

7

8

9

Name

Camcorder

Camera

Smartphone

Console

TV

CD

Touch screen

PDA

Keyboard

Unit Price

112.25

97.50

100.00

112.25

1,240.85

39.99

45.12

120.25

120.50

Product Columns

FIGURE 17-3 The Product table organized column-by-column.

When stored in a columnar database, each column has its own data structure; it is physically sepa-
rated from the others. Thus, the different values of Unit Price are adjacent to one another and distant 
from Color, Name, and ID. The following code is a schematic representation of the physical memory 
layout of a column store:

ID,1,2,3,4,5,6,7,8,9
Name,Camcorder,Camera,Smartphone,Console,TV,CD,Touch screen,PDA,Keyboard
Color,Red,Red,White,Black,Blue,Red,Blue,Black,Black
Unit Price,112.25,97.50,100.00,112.25,1240.85,39.99,45.12,120.25,120.50

With this data structure, computing the sum of Unit Price is much easier because the engine imme-
diately goes to the structure containing Unit Price. There, it fi nds all the values needed to perform the 
computation next to each other. In other words, it does not have to read and ignore other column 
values: In a single scan, it obtains exclusively the useful numbers, and it can quickly aggregate them.

In our next scenario, instead of summing Unit Price, we compute the sum of Unit Price just for the 
Red products. You are encouraged to give this a try before reading on, in order to better understand 
the algorithm.

This is not so easy anymore; indeed, it is no longer possible to obtain the desired number by simply 
scanning the Unit Price column. What developers would typically do is scan the Color column, and 
whenever it is Red, retrieve the corresponding value in Unit Price. At the end, all the values would be 
summed up to compute the result.

Though very intuitive, this algorithm requires a constant move of the eyes from one column to the 
other in Figure 17-3, possibly using a fi nger as a guide to save the last scanned position of Color. It is not 
an optimized way of computing the value. The reason is that the engine needs to constantly jump from 
one memory area to another, resulting in poor performance. A better way—which only computers 
use—is to fi rst scan the Color column, fi nd the positions where the color is Red, and then scan the 
Unit Price column, summing only the values in the positions identifi ed in the previous step.
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This last algorithm is much better because it performs one scan of the fi rst column and one scan of 
the second column, always accessing memory locations that are adjacent to one another—other than 
the jump between the scan of the fi rst and second column. Sequential reading of memory is much 
faster than random access.

For a more complex expression, such as the sum of all products that are either Blue or Black with a 
price higher than US$50, things are even worse. This time, there is no possibility of scanning the column 
one at a time because the condition depends on way too many columns. As usual, trying on paper 
helps better understand the problem.

The simplest algorithm producing the desired result is to scan the table not on a column basis, but 
on a row basis instead. We naturally tend to scan the table row-by-row, though the storage organiza-
tion is column-by-column. Although it is a very simple operation when executed on paper by a human, 
the same operation is extremely expensive if executed by a computer in RAM; indeed, it requires a lot 
of random reads of memory, leading to poorer performance than if computed doing a sequential scan.

As discussed, a columnar storage presents both pros and cons. Columnar databases provide very 
quick access to a single column; but as soon as one needs a calculation involving many columns, they 
need to spend some time—after having read the column content—to reorganize the information so 
that the fi nal expression can be computed. Even though this example was very simple, it helps highlight 
the most important characteristics of column stores:

 ■ Single-column access is very fast: It sequentially reads a single block of memory and then 
computes whatever aggregation is needed on that memory block.

 ■ If an expression uses many columns, the algorithm is more complex because it requires the 
engine to access different memory areas at different times, keeping track of the progress in a 
temporary area.

 ■ The more columns are needed to compute an expression, the harder it becomes to produce a 
result. At a certain point it becomes easier to rebuild the row storage out of the column store to 
compute the expression.

Column stores aim to reduce the read time. However, they spend more CPU cycles to rearrange the 
data when many columns from the same table are used. Row stores, on the other hand, have a more 
linear algorithm to scan data, but they result in many useless reads. As a rule, reducing reads at the 
cost of increasing CPU usage is a good deal, because with modern computers, it is always easier (and 
cheaper) to increase the CPU speed versus reducing I/O (or memory access) time.

Moreover, as we will see in the next sections, columnar databases have more options to reduce the 
amount of time spent scanning data. The most relevant technique used by VertiPaq is compression.

Understanding VertiPaq compression
In the previous section, you learned that VertiPaq stores each column in a separate data structure. This 
simple fact allows the engine to implement some extremely important compressions and encoding 
described in this section.
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Note The actual details of the compression algorithm of VertiPaq are proprietary. Thus, we 
cannot publish them in a book. Yet what we explain in this chapter is already a good approx-
imation of what takes place in the engine, and we can use it, for all intents and purposes, to 
describe how the VertiPaq engine stores data.

 

VertiPaq compression algorithms aim to reduce the memory footprint of a data model. Reducing 
the memory usage is a very important task for two very good reasons:

 ■ A smaller model makes better use of the hardware. Why spend money on 1 TB of RAM when the 
same model, once compressed, can be hosted in 256 GB? Saving RAM is always a good option, 
if feasible.

 ■ A smaller model is faster to scan. As simple as this rule is, it is very important when speaking 
about performance. If a column is compressed, the engine will scan less RAM to read its con-
tent, resulting in better performance.

Understanding value encoding
Value encoding is the fi rst kind of encoding that VertiPaq might use to reduce the memory cost of a 
column. Consider a column containing the price of products, stored as integer values. The column 
contains many different values and a defi ned number of bits is required to represent all of them.

In the Figure 17-4 example, the maximum value of Unit Price is 216. At least 8 bits are required to 
store each integer value up to that number. Nevertheless, by using a simple mathematical operation, 
we can reduce the storage to 5 bits.

Reducing the number of bits needed

Unit Price

212

197

214

197

214

197

194

197

216

Unit Price - 194

18

3

20

3

20

3

0

3

22

Max: 216

8 bits needed
Max: 22

5 bits needed

Value Encoding

FIGURE 17-4 By using simple mathematical operations, VertiPaq reduces the number of bits needed for a column.
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In the example, VertiPaq found out that by subtracting the minimum value (194) from all the values 
of the column, it could modify the range of the values in the column, reducing it to a range from 0 to 
22. Storing numbers up to 22 requires fewer bits than storing numbers up to 216. While 3 bits might 
seem like an insignifi cant savings, when we multiply this by a few billion rows, it is easy to see that the 
difference can be important.

The VertiPaq engine is much more sophisticated than this. It can discover mathematical relation-
ships between the values of a column, and when it fi nds them, it can use them to modify the storage. 
This reduces its memory footprint. Obviously, when using the column, it must reapply the transforma-
tion in the opposite direction to obtain the original value. Depending on the transformation, this can 
happen before or after aggregating the values. Again, this increases the CPU usage and reduces the 
number of reads, which is a very good option.

Value encoding only takes place for integer columns because it cannot be applied on strings or 
fl oating-point values. Be mindful that VertiPaq stores the Currency data type of DAX (also called Fixed 
Decimal Number) as an integer value. Therefore, currencies can be value-encoded too, whereas fl oat-
ing point numbers cannot.

Understanding hash encoding
Hash encoding (also known as dictionary encoding) is another technique used by VertiPaq to reduce 
the number of bits required to store a column. Hash encoding builds a dictionary of the distinct values 
of a column and then replaces the column values with indexes to the dictionary. In Figure 17-5 you can 
see the storage of the Color column, which uses strings and cannot be value-encoded.

Replacing data types with dictionary and indexes

Hash Encoding

Color

Red

Red

White

Black

Blue

Red

Blue

Black

Black

ID Color

0 Red

1 White

2 Black

3 Blue

Color ID

0

0

1

2

3

0

3

2

2

FIGURE 17-5 Hash encoding consists of building a dictionary and replacing values with indexes.

When VertiPaq encodes a column with hash encoding, it

 ■ Builds a dictionary, containing the distinct values of the column.

 ■ Replaces the values with integer numbers, where each number is the dictionary index of the 
original value.
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There are some advantages in using hash encoding:

 ■ All columns only contain integer values; this makes it simpler to optimize the internal code of 
the engine. Moreover, it also means that VertiPaq is data type independent.

 ■ The number of bits used to store a single value is the minimum number of bits necessary to 
store an index entry. In the example provided, 2 bits are enough because there are only four 
different values.

These two aspects are of paramount importance for VertiPaq. It does not matter whether a column 
uses a string, a 64-bit integer, or a fl oating point to represent a value. All these data types can be hash 
encoded, providing the same performance in terms of speed of scanning and of storage space. The 
only difference might be in the size of the dictionary, which is typically very small when compared with 
the size of the original column itself.

The primary factor to determine the column size is not the data type. Instead, it is the number of 
distinct values of the column. We refer to the number of distinct values of a column as its cardinality. 
Repeating a concept this important is always a good thing: Of all the various aspects of an individual 
column, the most important one when designing a data model is its cardinality.

The lower the cardinality, the smaller the number of bits required to store a single value. Conse-
quently, the smaller the memory footprint of the column. If a column is smaller, not only will it be pos-
sible to store more data in the same amount of RAM, but it will also be much faster to scan it whenever 
the engine needs to aggregate its values in a DAX expression.

Understanding Run Length Encoding (RLE)
Hash encoding and value encoding are two very good compression techniques. However, there is 
another complementary compression technique used by VertiPaq: Run Length Encoding (RLE). This 
technique aims to reduce the size of a dataset by avoiding repeated values. For example, consider 
a column storing in which quarter the sales took place, stored in the Sales table. This column might 
contain the string “Q1” repeated many times in contiguous rows, for all the sales in the same quarter. 
In such a case, VertiPaq avoids storing values that are repeated. It replaces them with a slightly more 
complex structure that contains the value only once, with the number of contiguous rows having the 
same value. This is shown in Figure 17-6.

RLE’s effi ciency strongly depends on the repetition pattern of the column. Some columns have the 
same value repeated for many rows, resulting in a great compression ratio. Other columns with quickly 
changing values produce a lower compression ratio. Data sorting is extremely important to improve 
the compression ratio of RLE. Therefore, fi nding an optimal sort order is an important step of the data 
refresh performed by VertiPaq.
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Quarter

Q1

Q1

Q1

Q1

Q1

Q1

…

Q2

Q2

Q2

Q2

Q2

Q2

Q2

Q2

Q2

…

Quarter Count

Q1 310

Q2 290

… …

RLE

310 times

290 times

Reducing rows using Run Length Encoding (RLE)

FIGURE 17-6 RLE replaces values that are repeated with the number of contiguous rows with the same value.

Finally, there could be columns in which the content changes so often that if VertiPaq tried to 
compress them using RLE, the compressed columns would end up using more space than the original 
columns. A great example of this is the primary key of a table. It has a different value for each row, 
resulting in an RLE version larger than the column itself. In cases like this, VertiPaq skips the RLE com-
pression and stores the column as-is. Thus, the VertiPaq storage of a column never exceeds the original 
column size. Worst-case scenario, both would be the same size.

In the example, we have shown RLE working on a Quarter column containing strings. RLE can also 
process the already hash-encoded version of a column. Each column can have both RLE and either 
hash or value encoding. Therefore, the VertiPaq storage for a column compressed with hash encoding 
consists of two distinct entities: the dictionary and the data rows. The latter is the RLE-encoded result of 
the hash-encoded version of the original column, as shown in Figure 17-7.
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0

0

0

0

1

1
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RLE

VertiPaq Store

Q.ID Count

0 310

1 290

2 425

3 350

Q.ID Quarter

0 Q1

1 Q2

2 Q3

3 Q4

Dictionary

Data Rows

FIGURE 17-7 RLE is applied to the dictionary-encoded version of a column.

VertiPaq also applies RLE to value-encoded columns. In this case the dictionary is missing because 
the column already contains value-encoded integers.

The factors infl uencing the compression ratio of a Tabular model are, in order of importance:

 1. The cardinality of the column, which defi nes the number of bits used to store a value.

 2. The number of repetitions, that is, the distribution of data in a column. A column with many 
repeated values is compressed more than a column with very frequently changing values.

 3. The number of rows in the table.

 4. The data type of the column, which only affects the dictionary size.

Given all these considerations, it is nearly impossible to predict the compression ratio of a table. 
Moreover, while a developer has full control over certain aspects of a table—they can limit the number 
of rows and change the data types—these are the least important aspects. Yet as you learn in the next 
chapter, one can work on cardinality and repetitions too. This improves the compression and perfor-
mance of a model.

Finally, it is worth noting that reducing the cardinality of a column also increases the chances of rep-
etitions. For example, if a time column is stored at the second granularity, then the column contains up 
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to 86,400 distinct values. If, on the other hand, the developer stores the same time column at the hour 
granularity, then not only have they reduced the cardinality, but they also introduced repeating values. 
Indeed, 3,600 seconds convert to one same hour. All this results in a much better compression ratio. 
On the other hand, changing the data type from DateTime to Integer or even String offers a negligible 
impact on column size.

Understanding re-encoding
SSAS must decide which algorithm to use to encode each column. More specifi cally, it needs to decide 
whether to use value or dictionary encoding. In order to make an educated decision, it reads a row 
sample during the fi rst scan of the source, and it chooses a compression algorithm depending on the 
values found.

If the data type of the column is not Integer, then the choice is straightforward: SSAS goes for 
dictionary encoding. For integer values, it uses some heuristics, for example:

 ■ If the numbers in the column increase linearly, it is probably a primary key and value encoding is 
the best option.

 ■ If all numbers fall within a defi ned range of values, then value encoding is the way to go.

 ■ If the numbers fall within a very wide range of values, with values very different from another, 
then dictionary encoding is the best choice.

Once the decision is made, SSAS starts to compress the column using the chosen algorithm. Unfor-
tunately, it sometimes makes the wrong decision and fi nds this out only very late during processing. 
For example, SSAS might read a few million rows where the values are in the 100–201 range, so value 
encoding is the best choice. After those millions of rows, suddenly an outlier appears, such as a large 
number like 60,000,000. Obviously, the initial choice was wrong because the number of bits needed to 
store such a large number is huge. What should SSAS do then? Instead of continuing with the wrong 
choice, SSAS can decide to re-encode the column. This means that the entire column is re-encoded 
using dictionary encoding. This process might take a long time because SSAS needs to reprocess the 
whole column.

For very large datasets where processing time is important, a best practice is the following: the data 
distribution in the fi rst set of rows read by SSAS should be of such quality that all types of values are 
represented. This in turn reduces re-encoding to a minimum. Developers do so by providing a quality 
sample in the fi rst partition processed or by providing an encoding hint parameter to the column.

 

Note The Encoding Hint property was introduced in Analysis Services 2017, and it is not 
available in all products.
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Finding the best sort order
As we said earlier, RLE’s effi ciency strongly depends on the sort order of the table. All the columns of 
the same table are sorted the same way to keep integrity of the data at the table level. In large tables 
it is important to determine the best sorting of data to improve the effi ciency of RLE and to reduce the 
memory footprint of the model.

When SSAS reads a table, it tries different sort orders to improve the compression. In a table with 
many columns, this is a very expensive operation. SSAS then sets an upper limit to the time it can spend 
fi nding the best sort order. The default can change with different versions of the engine. At printing 
time, the default is currently 10 seconds per million rows. One can modify its value in the Processing-
TimeboxSecPerMRow entry in the confi guration fi le of the SSAS service. Power BI and Power Pivot do 
not provide access to this value.

 

Note SSAS searches for the best sort order in the data, using a heuristic algorithm that cer-
tainly also considers the physical order of the rows it receives. For this reason, although one 
cannot force the sort order used by VertiPaq for RLE, it is possible to provide the engine with 
data sorted arbitrarily. The VertiPaq engine includes this sort order in the options to consider.

 

To attain maximum compression, one can set the value of ProcessingTimeboxSecPerMRow to 0, 
which means SSAS stops searching only when it fi nds the best compression factor. The benefi t in terms 
of space usage and query speed can vary. On the other hand, processing will take much longer because 
the engine is being instructed to try all the possible sort orders before making a choice.

Generally, developers should put the columns with the least number of unique values fi rst in the sort 
order because these columns are likely to generate many repeating values. Still, keep in mind that fi nd-
ing the best sort order is a very complex task. It only makes sense to spend time on this when the data 
model is really large (in the order of a few billion rows). Otherwise, the benefi t obtained from these 
extreme optimizations is limited.

Once all the columns are compressed, SSAS completes the processing by building calculated col-
umns, tables, hierarchies, and relationships. Hierarchies and relationships are additional data structures 
needed by VertiPaq to execute queries, whereas calculated columns and tables are added to the model 
by using DAX expressions.

Calculated columns, like all other columns, are compressed after they are computed. However, cal-
culated columns are not the same as standard columns. Calculated columns are compressed during the 
fi nal stage of processing, when all the other columns have already fi nished their compression. Conse-
quently, VertiPaq does not consider calculated columns when choosing the best sort order for a table.

Consider creating a calculated column that results in a Boolean value. There being only two values, 
the calculated column can be compressed very well (1 bit is enough to store a Boolean value), and it is 
a very good candidate to be fi rst in the sort order list. Indeed, doing this, the table shows all the True 
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values fi rst and only later the False values. Being a calculated column, the sort order is already defi ned 
by other columns; it might be the case that with the defi ned sort order, the calculated column fre-
quently changes its value. In that case, the column ends up with less-than-optimal compression.

Whenever there is a chance to compute a column in DAX or in the data source (including Power 
Query), keep in mind that computing it in the data source results in slightly better compression. Many 
other factors may drive the choice of DAX instead of Power Query or SQL to calculate the column. For 
example, the engine automatically computes a calculated column in a large table depending on a col-
umn in a small table, whenever said small table has a partial or full refresh. This happens without having 
to reprocess the entire large table, which would be necessary if the computation were in Power Query 
or SQL. This is something to consider when looking for the optimal compression.

  

Note A calculated table has the same compression as a regular table, without the side 
effects described for calculated columns. However, creating a calculated table can be quite 
expensive. Indeed, a calculated table requires enough memory to keep a copy of the entire 
uncompressed table in memory before it is compressed. Carefully think before creating a 
large calculated table because of the memory pressure generated at refresh time.

Understanding hierarchies and relationships
As we said in the previous sections, at the end of table processing, SSAS builds two additional data 
structures: hierarchies and relationships.

There are two types of hierarchies: attribute hierarchies and user hierarchies. Hierarchies are data 
structures used primarily to improve performance of MDX queries and also to improve certain search 
operations in DAX. Because the concept of hierarchy is not present in the DAX language, hierarchies 
are not relevant to the topics of this book.

Relationships, on the other hand, play an important role in the VertiPaq engine; it is important to 
understand how they work for extreme optimizations. We will describe the role of relationships in a 
query in following chapters. Here, we are only interested in defi ning what relationships are, in terms of 
VertiPaq storage and behavior.

A relationship is a data structure that maps IDs from one table to row numbers in another table. For 
example, consider the columns ProductKey in Sales and ProductKey in Product. These two columns are 
used to build the relationship between the two tables. Product[ProductKey] is a primary key. Because 
it is a primary key, the engine used value encoding and no compression at all. Indeed, RLE could not 
reduce the size of a column in the absence of duplicated values. On the other hand, Sales[ProductKey] 
is likely to have been dictionary-encoded and compressed. This is because it probably contains many 
repetitions. Therefore, despite the columns having the same name and data type, their internal data 
structures are completely different.
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Moreover, because they are part of a relationship, VertiPaq knows that queries are likely to use the 
columns very often placing a fi lter on Product and also expecting to fi lter Sales. VertiPaq would be very 
slow if—every time it needs to move a fi lter from Product to Sales—it had to perform the following: 
retrieve values from Product[ProductKey], search them in the dictionary of Sales[ProductKey], and fi nally 
retrieve the IDs of Sales[ProductKey] to place the fi lter.

Therefore, to improve query performance, VertiPaq stores relationships as pairs of IDs and row 
numbers. Given the ID of a Sales[ProductKey], it can immediately fi nd the corresponding rows of 
Product that match the relationship. Relationships are stored in memory, as any other data structure of 
VertiPaq. Figure 17-8 shows how the relationship between Sales and Product is stored in VertiPaq.

Amount ProductKey

25.00 1

12.50 2

2.25 3

2.50 3

14.00 4

25.00 5

Relationship

ProductKey Product

1 Coffee

2 Pasta

3 Tomato

BLANK BLANK

Row Num

1

2

3

4

Sales[ProductKey] Product[Row Num]

1 1

2 2

3 3

4 4

5 4

ProductSales

FIGURE 17-8 The fi gure shows the relationship between Sales and Product.

Even though the structure does not seem to be very intuitive, later in this chapter we describe how 
VertiPaq uses relationships and why relationships have this very specifi c structure. It would come 
naturally that it is a complex structure optimized for performance.

Understanding segmentation and partitioning
Compressing a table of several billion rows in one single step would be extremely memory-intensive 
and time-consuming. Therefore, the table is not processed as a single unit. Instead, during process-
ing, SSAS splits the table into segments that contain 8 million rows each by default. When a segment 
is completely read, the engine starts to compress the segment while reading the next segment in the 
meantime.

It is possible to confi gure the segment size in SSAS using the DefaultSegmentRowCount entry in the 
confi guration fi le of the service (or in the server properties in Management Studio). In Power BI Desk-
top and Power Pivot, the segment size has a set value of 1 million rows, and it cannot be changed.
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Segmentation is important for several reasons, including query parallelisms and compression effi -
ciency. When querying a table, VertiPaq uses the segments as the basis for parallelism: It uses one core 
per segment when scanning a column. By default, SSAS always uses one single thread to scan a table 
with 8 million rows or less. We start observing parallelism in action only on much larger tables.

The larger the segment, the better the compression. Having the option of analyzing more rows in 
a single compression step, VertiPaq can achieve better compression levels. On very large tables, it is 
important to test different segment sizes and measure the memory usage to achieve optimal compres-
sion. Keep in mind that increasing the segment size can negatively affect processing time: The larger 
the segment, the slower the processing.

Although the dictionary is global to the table, bit-sizing takes place at the segment level. Thus, if a 
column has 1,000 distinct values but only two distinct values are used in a specifi c segment, then that 
column will be compressed to a single bit for that segment.

If segments are small, then the parallelism at query time is increased. This is not always a good thing. 
While it is true that scanning the column is faster because more cores can do that in parallel, VertiPaq 
needs more time at the end of the scan to aggregate partial results computed by the different threads. 
If a partition is too small, then the time required for managing task switching and fi nal aggregation is 
more than the time needed to scan the data, with a negative impact on the overall query performance.

During processing, the treatment of the fi rst segment is particular if the table has only one partition. 
Indeed, the fi rst segment can be larger than DefaultSegmentRowCount. VertiPaq reads twice the size 
of DefaultSegmentRowCount and starts to segment a table only if the table contains more rows. This 
does not apply to a partitioned table. If a table is partitioned, then all the segments are smaller than the 
default segment row count. Consequently, in SSAS a nonpartitioned table with 10 million rows is stored 
as a single segment. On the other hand, a table with 20 million rows uses three segments: two contain-
ing 8 million rows and one containing 4 million rows. In Power BI Desktop and Power Pivot, VertiPaq 
uses multiple segments for tables with more than 2 million rows.

Segments cannot exceed the partition size. If the partitioning schema of a model creates partitions 
of only 1 million rows, then all the segments will be smaller than 8 million rows; namely, they will be 
same as the partition size. Overpartitioning a table is a common mistake made by novices to optimize 
performance. What they obtain is the opposite effect: Creating too many small partitions typically 
lowers performance.

Using Dynamic Management Views
SSAS enables the discovery of all the information about the data model using Dynamic Management 
Views (DMV). DMVs are extremely useful to explore how a model is compressed, the space used by 
different columns and tables, the number of segments in a table, or the number of bits used by col-
umns in different segments.

DMVs can run from inside SQL Server Management Studio. Regardless, we suggest you use DAX 
Studio; it offers a list of all DMVs in a simpler way without the need to remember them or to reopen this 
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book looking for the DMV name. However, a more effi cient way to use DMVs is with the free VertiPaq 
Analyzer tool (http://www.sqlbi.com/tools/vertipaq-analyzer/), which displays data from DMVs and 
organizes them in useful reports, as shown in Figure 17-9.

FIGURE 17-9 VertiPaq Analyzer shows statistics about a data model in an effi cient manner.

Although DMVs use an SQL-like syntax, the full SQL syntax is not available. DMVs do not run inside 
SQL Server. They are only a convenient way to discover the status of SSAS and to gather information 
about data models.

There are different DMVs, divided into two main categories:

 ■ SCHEMA views: These return information about SSAS metadata, such as database names, 
tables, and individual columns. They are used to gather information about data types, names, 
and similar data, including statistical information about numbers of rows and unique values 
stored in columns.

 ■ DISCOVER views: They are intended to gather information about the SSAS engine and/or dis-
cover statistics information about objects in a database. For example, one can use views in the 
discover area to enumerate the DAX keywords, the number of connections and sessions that are 
currently open, or the traces running.

In this book, we do not describe the details of all the views because doing so would be going off 
topic. More information is available in Microsoft documentation on the web. Instead, we want to 
provide a few hints and point out the most useful DMVs related to databases used by DAX. Moreover, 
while many DMVs report useful information in many columns, in this book we describe the most 
interesting ones related to the internal structure.

A fi rst useful DMV to discover the memory usage of all the objects in the SSAS instance is DIS-
COVER_OBJECT_MEMORY_USAGE. This DMV returns information about all the objects in all the data-
bases in the SSAS instance. DISCOVER_OBJECT_MEMORY_USAGE is not limited to the current database. 
For example, the following query can be run in DAX Studio or SQL Server Management Studio:

SELECT * FROM $SYSTEM.DISCOVER_OBJECT_MEMORY_USAGE

Figure 17-10 shows a small excerpt of the result of the previous query. There are many more columns 
and rows, so analyzing this detailed information can be very time-consuming.

http://www.sqlbi.com/tools/vertipaq-analyzer/
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FIGURE 17-10 Partial result of the DISCOVER_OBJECT_MEMORY_USAGE DMV.

The output of the DMV is a table containing many rows that are very hard to read. The out-
put structure is a parent/child hierarchy that starts with the instance name and ends with indi-
vidual column information. Although the raw dataset is nearly impossible to read, one can 
build a Power Pivot data model on top of this query, implementing the parent/child hierar-
chy structure and browsing the full memory map of the instance. Kasper De Jonge published 
a workbook on his blog that does exactly this. It is available at http://www.powerpivotblog.nl/
what-is-using-all-that-memory-on-my-analysis-server-instance/.

Other useful DMVs to check the current state of the Tabular engine are DISCOVER_SESSIONS, DIS-
COVER_CONNECTIONS, and DISCOVER_COMMANDS. These DMVs provide information about active 
sessions, connections, and executed commands. These views are used by an open source tool called 
SSAS Activity Monitor, available at https://github.com/RichieBzzzt/SSASActivityMonitor/tree/master/
Download, that provides the same information (plus much more) in a more convenient way.

There are also DMVs that analyze the distribution of data in columns and tables, and the memory 
required for compressed data. These are TMSCHEMA_COLUMN_STORAGES and DISCOVER_STOR-
AGE_TABLE_COLUMNS. The former is the more recent one; the latter is there for compatibility with 
older versions of the engine (compatibility level 1103 or lower).

Finally, a very useful DMV to analyze calculation dependency is DISCOVER_CALC_DEPENDENCY. 
This DMV can be used to create a graph of dependencies between calculations in the data model, 
including calculated columns, calculated tables, and measures. Figure 17-11 shows an excerpt of the 
result of this DMV.

FIGURE 17-11 Partial result of the DISCOVER_CALC_DEPENDENCY DMV.

Understanding the use of relationships in VertiPaq

When a DAX query generates requests to the VertiPaq storage engine, the presence of relationships 
in the data model allows a quicker transfer of the fi lter context from one table to another. The internal 
implementation of a relationship in VertiPaq is worth knowing because relationships might affect the 
performance of a query even though most of the calculation happens in the storage engine.

http://www.powerpivotblog.nl/what-is-using-all-that-memory-on-my-analysis-server-instance/
http://www.powerpivotblog.nl/what-is-using-all-that-memory-on-my-analysis-server-instance/
https://github.com/RichieBzzzt/SSASActivityMonitor/tree/master/Download
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To understand how relationships work, we start from the analysis of a query that only involves one 
table, Sales:

EVALUATE
ROW (
    "Result", CALCULATE (
        COUNTROWS ( Sales ),
        Sales[Quantity] > 1
    )
)
 
-- Result
-- 20016

A developer used to working with tables in relational databases might suppose that the engine 
iterates the Sales table, tests the value of the Quantity column for each row of Sales, and increments 
the returned value if the Quantity value is greater than 1. In fact, VertiPaq does it better: VertiPaq only 
scans the Quantity column because it already provides the number of rows for the entire table. There-
fore, a single column scan is enough to solve the entire query.

If we write a similar query using the column of another table as a fi lter, then scanning a single col-
umn is no longer enough to produce the result. For example, consider the following query that counts 
the number of rows in Sales related to products of the Contoso brand:

EVALUATE
ROW (
    "Result", CALCULATE (
        COUNTROWS ( Sales ),
        'Product'[Brand] = "Contoso"
    )
)
 
-- Result
-- 37984

This time, we are using two different tables: Sales and Product. Solving this query requires a bit more 
effort. Indeed, because the fi lter is on Product and the table to aggregate is Sales, it is not possible to 
scan a single column.

If you are not used to columnar databases, you probably think that, to solve the query, the engine 
should iterate the Sales table, follow the relationship with Product, and sum 1 if the product brand is 
Contoso, 0 otherwise. This would be an algorithm like the following DAX code:

EVALUATE
ROW (
    "Result", SUMX (
        Sales,
        IF ( RELATED ( 'Product'[Brand] ) = "Contoso", 1, 0 )
    )



 CHAPTER 17 The DAX engines 567

)
 
-- Result
-- 37984

Although this is a simple algorithm, it contains much more complexity than expected. Indeed, if we 
carefully think about the columnar nature of VertiPaq, we realize that this query involves three different 
columns:

 ■ Product[Brand] used to fi lter the Product table.

 ■ Product[ProductKey] used by the relationship between Product and Sales.

 ■ Sales[ProductKey] used on the Sales side of the relationship.

Iterating over Sales[ProductKey], searching the row number in Product scanning Product[ProductKey], 
and fi nally gathering the brand in Product[Brand] would be extremely expensive. The process requires a 
lot of random reads to memory, with negative consequences on performance. Therefore, VertiPaq uses 
a completely different algorithm, optimized for columnar databases.

First, VertiPaq scans the Product[Brand] column and retrieves the row numbers of the Product table 
where Product[Brand] is Contoso. As shown in Figure 17-12, VertiPaq scans the Brand dictionary (1), 
retrieves the encoding of Contoso, and fi nally scans the segments (2) searching for the row numbers in 
the product table where the dictionary ID equals 0 (corresponding to Contoso), returning the indexes 
to the rows found (3).

Search «Contoso»

Output row numbers

Row

2

3

…

12

3

Product[Brand]

Row ID

1 2

2 0

3 0

4 1

… …

ID Brand

0 Contoso

1 Fabrikam

2 Proseware

3 Tailspin Toys

Dictionary

Data Rows

FIGURE 17-12 The output of a brand scan is the list of rows where Brand equals Contoso.
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At this point, VertiPaq knows which rows in the Product table contain the given brand. The relation-
ship between Product and Sales enables VertiPaq to translate the row numbers of Product in internal 
data IDs for Sales[ProductKey]. VertiPaq performs a lookup of the selected row numbers to determine 
the values of Sales[ProductKey] valid for those rows, as shown in Figure 17-13.

Look up row number Output IDs

2

ID

5

Row Num

2

3

…

Product[RowNumber]

Sales[ProductKey]

Relationship

Product
Row Num

Sales
[ProductKey]

1 1

2 5

3 8

4 7

5 6

6 100

7 111

8 87

9 54

… …

1

FIGURE 17-13 VertiPaq scans the product keys in the relationship to retrieve the IDs where brand equals Contoso.

The last step is to apply the fi lter on the Sales table. Since VertiPaq already has the list of values of 
Sales[ProductKey], it is enough to scan the Sales[ProductKey] column to transform this list of values into 
row numbers and fi nally count them. If, instead of computing a COUNTROWS, VertiPaq had to perform 
the SUM of a column, then it would perform an additional step transforming row numbers into column 
values to perform the last step.

The important takeaway is that the cost of a relationship depends on the cardinality of the column 
that defi nes the relationship. Even though the previous query fi ltered only one brand, the cost of the 
relationship was the number of products for that brand. The lower the cardinality of a relationship, 
the better. When the cardinality of a relationship is above one million unique values, the end user can 
experience slower performance. A performance degradation is already measurable when the relation-
ship has 100,000 unique values. VertiPaq aggregations can mitigate the impact of high-cardinality rela-
tionships by pre-aggregating data at a different granularity, removing the cost of traversing expensive 
relationships at query time. We briefl y discuss aggregations later in this chapter.

Introducing materialization

Now that we have provided a basic explanation of how VertiPaq stores data in memory, we can 
describe what materialization is. Materialization is a step of the query execution that occurs when using 
columnar databases. Understanding when and how it happens is of paramount importance.
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The basic principle about materialization is that every time the formula engine sends a request to 
the storage engine, the formula engine receives an uncompressed table that is generated dynamically 
by the storage engine. This special temporary table is called a datacache. A datacache is always the 
materialization of data that will be consumed by the formula engine, regardless of the storage engine 
used. Both VertiPaq and DirectQuery generate datacaches.

A large materialization happens when a single storage engine query produces a large datacache. 
The conditions for a DAX query to produce a large materialization depend on many factors; basically, 
whenever the storage engine is not able to execute all the operations required by the DAX query, the 
formula engine will do the work using a copy of the data owned by the storage engine. Be mindful that 
the formula engine cannot access the raw data directly, whether VertiPaq or DirectQuery. To access the 
raw data, the formula engine needs to ask the storage engine to retrieve the data and save it in a data-
cache. The amount and kind of materialization can be very different depending on the storage engine 
used. In this book, we only describe how to reduce the materialization in VertiPaq. For DirectQuery 
there could be differences between different data source drivers. Even so, the tools used to measure 
the materialization produced by the storage engine are the same used for VertiPaq.

The next chapters describe how to measure the materialization produced by a DAX query using spe-
cifi c tools and metrics. In this section, we just introduce the concept of materialization and how it relates 
to the result of a query. The cardinality of the result of every DAX query defi nes the optimal materializa-
tion. For example, the following query returns a single row, counting the number of rows in a table:

EVALUATE
ROW (
   "Result", COUNTROWS ( Sales )
)
 
-- Result
-- 100231

The optimal materialization for the previous query is a datacache with only one row. This means that 
the entire calculation is performed within the storage engine. The next query returns one row for each 
year; therefore, the optimal materialization is three rows, one for each year with sales:

EVALUATE
SUMMARIZECOLUMNS (
    'Date'[Calendar Year],
    "Sales Amount", [Sales Amount]
)
 
-- Calendar Year |  Sales Amount
-----------------|---------------
-- CY 2007       | 11,309,946.12
-- CY 2008       |  9,927,582.99
-- CY 2009       |  9,353,814.87

Whenever the storage engine produces a single datacache with the same cardinality as the result 
of the DAX query, that is called a late materialization. If the storage engine produces more datacaches 
and/or the datacache produced has more rows than those displayed in the result, we have an early 
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materialization. With a late materialization the formula engine does not have to aggregate data, 
whereas with an early materialization the formula engine must perform operations like joining and 
grouping, which result in slower queries for the end users.

Predicting materialization is not easy without a deep knowledge of the VertiPaq engine. For exam-
ple, the materialization of the following query is optimal because the entire calculation is executed 
within the storage engine:

EVALUATE
VAR LargeOrders =
    CALCULATETABLE (
        DISTINCT ( Sales[Order Number] ),
        Sales[Quantity] > 1
    )
VAR Result =
    ROW (
        "Orders", COUNTROWS ( LargeOrders )
    )
RETURN
    Result
    
-- Orders
-- 8388

On the other hand, the next query creates a temporary table that corresponds to the number of 
unique combinations between customers and dates related to sales with a quantity greater than one 
(for a total of 6,290 combinations):

EVALUATE
VAR LargeSalesCustomerDates =
    CALCULATETABLE (
        SUMMARIZE ( Sales, Sales[CustomerKey], Sales[Order Date] ),
        Sales[Quantity] > 1
    )
VAR Result =
    ROW (
        "CustomerDates", COUNTROWS ( LargeSalesCustomerDates )
    )
RETURN
    Result
    
-- CustomerDates
-- 6290

The latter query has a materialization of 6,290 rows, even though there is only one row in the result. 
The two queries are similar: a table is evaluated and then its rows are counted. The reason why the 
former has an earlier materialization is because it involves a single column, whereas the calculation 
requiring the combinations of two columns cannot be solved by the storage engine by just scanning 
the two columns. In general, any operation involving a single column has higher chances of being 
solved in the storage engine, but it would be a mistake to believe that involving multiple columns is 
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always an issue. For example, the following query has an optimal late materialization even though it 
multiplies two columns from two tables, Sales and Product:

DEFINE
    MEASURE Sales[Sales Amount] =
        SUMX (
            Sales,
            Sales[Quantity] * RELATED ( 'Product'[Unit Price] )
        )
EVALUATE
ROW ( "Sales Amount", [Sales Amount] )
 
-- Sales Amount
-- 33,690,148.51

In complex queries it is nearly impossible to obtain an optimal late materialization. Therefore, the 
effort for optimizing a query is reducing the materialization, pushing most of the workload to the stor-
age engine, if possible.

Introducing aggregations

A data model can have multiple tables related to the same original raw data. The purpose of this 
redundancy is to offer alternative ways to the storage engine to retrieve the data faster. The tables used 
to this purpose are called aggregations.

An aggregation is nothing but a pregrouped version of the original table. By pre-aggregating data, one 
reduces the number of columns (hence, the number of rows) and replaces values with their aggregate.

As an example, consider the Sales table in Figure 17-14, which has one row for each date, product, 
and customer.

Date Product Customer Quantity Amount

2018-09-01 AV010 C092 3 29.97

2018-09-01 AV022 C092 1 16.40

2018-09-01 AV010 C054 2 19.98

2018-09-01 FL892 C248 1 190.00

2018-09-01 GT400 C127 1 999.00

2018-09-02 AV010 C115 3 29.97

2018-09-02 FL580 C127 1 790.00

2018-09-02 AV022 C772 2 32.80

2018-09-02 KB723 C614 2 59.98

2018-09-02 FL580 C614 1 790.00

… … … … …

Sales

FIGURE 17-14 The original Sales table has a high number of rows.
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If a query requires the sum of Quantity or Amount by Date, the storage engine must evaluate and 
aggregate all the rows with the same Date. In VertiPaq this operation is relatively quick, thanks to the 
compression and the optimized algorithms that scan the memory. DirectQuery is usually much slower 
than VertiPaq to perform the same operation. Anyway, VertiPaq also requires time to scan billions of 
rows rather than millions of rows. Therefore, there could be an advantage in creating an alternate—
smaller—table to use in place of the original one.

Figure 17-15 shows the content of a Sales table aggregated by Date. In this case, there is only one 
row for every date, and the Quantity and Amount columns store the sum of the values included in the 
original rows, pre-aggregated by Date.

Date Quantity Amount

2018-09-01 8 1,255.35

2018-09-02 9 1,702.75

… …

Sales Agg Date

…

FIGURE 17-15 The Sales Agg Date table has one row for every date.

In an aggregated table, every column is either a “group by” or an aggregation of the original table. 
If a request to the storage engine only needs columns that are present in an aggregation table, then 
the engine uses the aggregation rather than the original source. The Sales Agg Date table shown in 
Figure 17-15 can be mapped as an aggregation of Sales by specifying the role of each column:

 ■ Date: GroupBy Sales[Date]

 ■ Quantity: Sum Sales[Quantity]

 ■ Amount: Sum Sales[Amount]

The aggregation type must be specifi ed for every column that is not a “group by.” The aggregation 
types available are Count, Min, Max, Sum, and count rows of the table. A column in an aggregation 
table can only map native columns in the original table; it is not possible to specify an aggregation over 
a calculated column.

  

Important Aggregations cannot be used to optimize the execution of complex calculations 
in DAX. The only purpose of aggregations is to reduce the execution time of storage engine 
queries. Aggregations can be useful for relatively small tables in DirectQuery, whereas 
aggregations for VertiPaq should be considered only for tables with billions of rows.

A table in a Tabular model can have multiple aggregations with different priorities in case there are 
multiple aggregations compatible with a specifi c storage engine request. Moreover, aggregations and 
original tables can be stored with different storage engines. A common scenario is storing aggrega-
tions in VertiPaq to improve the performance of large tables accessed through DirectQuery. Neverthe-
less, it is also possible to create aggregations in the same storage engine used for the original table.
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Note There could be limitations in storage engines available for aggregations and original 
tables, depending on the version and the license of the product used. This section provides 
general guidance on the concept of aggregations, which are one of the tools to optimize 
performance of a DAX query as described in the following chapters.

 

Aggregations are powerful, but they require a lot of attention to detail. An incorrect defi nition of 
aggregations produces incorrect or inconsistent results. It is a responsibility of the data modeler to 
guarantee that a query executed in an aggregation produces the same result as an equivalent query 
executed on the original table. Aggregations are an optimization tool and should be used only when-
ever strictly necessary. The presence of aggregations requires additional work to defi ne and maintain 
the aggregation tables in the data model. One should therefore use them only after having checked 
that a performance benefi t exists.

Choosing hardware for VertiPaq

Choosing the right hardware is critical for a solution based on a Tabular model using the VertiPaq stor-
age engine. Spending more does not always mean having a better machine. This section describes how 
to choose the right hardware for a Tabular model.

Since the introduction of Analysis Services 2012, we helped several companies adopt the new Tabu-
lar model in their solutions. A very common issue was that when going into production, performance 
was slower than expected. Worse, sometimes it was slower than in the development environments. 
Most of the times, the reason for that was incorrect hardware sizing, especially when the server was in 
a virtualized environment. As we will explain, the problem is not the use of a virtual machine in itself. 
Instead, the problem is more likely the technical specs of the underlying hardware. A very complete 
and detailed hardware-sizing guide for Analysis Services Tabular is available in the whitepaper titled 
“Hardware Sizing a Tabular Solution (SQL Server Analysis Services)” (http://msdn.microsoft.com/en-us/
library/jj874401.aspx). The goal of this section is to provide a quick guide to understand the issues 
affecting many data centers when they host a Tabular solution. Users of Power Pivot or Power BI Desk-
top on a personal computer can skip the details about Non-Uniform Memory Access (NUMA) support, 
but all the other considerations are equally true for choosing the right hardware.

Hardware choice as an option
The fi rst question is whether one can choose their hardware or not. The problem of using a virtual 
machine for a Tabular solution is that often the hardware has already been selected and installed. One 
can only infl uence the number of cores and the amount of RAM that are assigned to the server. Unfor-
tunately, these parameters are not so relevant for performance. If there are limited choices available, 
one should collect information about the CPU model and clock of the host server as soon as possible. 
If this information is not accessible, ask for a small virtual machine running on the same host server 
and run the Task Manager: The Performance tab shows the CPU model and the clock rate. With this 

http://msdn.microsoft.com/en-us/library/jj874401.aspx
http://msdn.microsoft.com/en-us/library/jj874401.aspx
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information, one can predict whether the performance will be worse than an average modern laptop. 
Unfortunately, chances are that many developers will be in that position. If so, then they must sharpen 
their political skills to convince the right people that running Tabular on that server is a bad idea. If the 
host server is a good machine, then one still needs to avoid the pitfall of running a virtual machine on 
different NUMA nodes (more on this later).

Set hardware priorities
If it is possible to infl uence the hardware selection, this is the order of priorities:

 1. CPU Clock and Model: the faster, the better.

 2. Memory Speed: the faster, the better.

 3. Number of Cores: the higher, the better. Still, a few fast cores are way better than many 
slow cores.

 4. Memory Size.

Disk I/O performance is not on the list. Indeed, it is not important at query time although it could 
have a role in improving the speed of a disaster recovery. There is only one condition (paging) where 
disk I/O affects performance, and we discuss it later in this section. However, the RAM of the system 
should be sized so that there will be no paging at all. Our reader should allocate the budget on CPU 
and memory speed, memory size, and not waste money on disk I/O bandwidth. The following sections 
include information to consider for such allocation.

CPU model
The most important factors that affect the speed of code running in VertiPaq are CPU clock and model. 
Different CPU models might have a different performance at the same clock rate, so considering the 
clock alone is not enough. The best practice is to run a benchmark measuring the different perfor-
mance in queries that stress the formula engine. An example of such a query is the following:

DEFINE
VAR t1 =
    SELECTCOLUMNS ( CALENDAR ( 1, 10000 ), "x", [Date] )
VAR t2 =
    SELECTCOLUMNS ( CALENDAR ( 1, 10000 ), "y", [Date] )
VAR c =
    CROSSJOIN ( t1, t2 )
VAR result =
    COUNTROWS ( c )
EVALUATE
    ROW ( "x", result )

This query can run in DAX Studio or SQL Server Management Studio connected to any Tabular 
model; the execution is intentionally slow and does not produce any meaningful result. Using a query 
of a typical workload for a specifi c data model is certainly better because performance might vary on 
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different hardware depending on the memory allocated to materialize intermediate results; the query 
in the preceding code block has a minimal use of memory.

For example, this query runs in 9.5 seconds on an Intel i7-4770K 3.5 GHz, and in 14.4 seconds on 
an Intel i7-6500U 2.5 GHz. These CPUs run a desktop workstation and a notebook, respectively. Do 
not assume that a server will be faster. You should always evaluate hardware performance by running 
the same test with the same version of the engine and looking at the results because they are often 
surprising.

In general, Intel Xeon processors used on a server are E5 and E7 series, and it is common to fi nd 
clock speed around 2–2.4 GHz even with a very high number of cores available. You should look for a 
clock speed of 3 GHz or more. Another important factor is the L2 and L3 cache size: The larger, the bet-
ter. This is especially important for large tables and relationships between tables based on columns that 
have more than 1 million unique values.

The reason why CPU and cache are so important for VertiPaq is clarifi ed in Table 17-1, which com-
pares the typical access time of data stored at different distances from the CPU. The column with 
human metrics represents the same difference using metrics that are easier for humans to understand.

TABLE 17-1 Expanded versions of the tables

Access Access Time Human Metrics

1 CPU cycle 0.3 ns 1 s

L1 cache 0.9 ns 3 s

L2 cache 2.8 ns 9 s

L3 cache 12.9 ns 43 s

RAM access 120 ns 6 min

Solid-state disk I/O 50–150 μs s 2–6 days

Rotational disk I/O 1–10 ms 1–12 months

As shown here, the fastest storage in a PC is not the RAM; it is the core cache. It should be clear that 
a large L2 cache is important, and the CPU speed plays a primary role in determining performance. 
The same table also clarifi es why keeping data in RAM is so much better than accessing data in other, 
slower storage devices.

Memory speed
The memory speed is an important factor for VertiPaq. Every operation made by the engine accesses 
memory at a very high speed. When the RAM bandwidth is the bottleneck, performance counters 
report CPU usage instead of I/O waits. Unfortunately, there are no performance counters that monitor 
the time spent waiting for the RAM access. In Tabular, this amount of time can be relevant, and it is hard 
to measure.
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In general, you should use RAM that has at least 1,833 MHz; however, if the hardware platform 
permits, you should select faster RAM—2,133 MHz or more.

Number of cores
VertiPaq splits execution on multiple threads only when the table involved has multiple segments. Each 
segment contains 8 million rows by default (1 million on Power BI and Power Pivot). A CPU with eight 
cores will not use all of them in a single query unless a table has at least 64 million rows, or 8 million 
rows in Power BI and Power Pivot.

For these reasons, scalability over multiple cores is effective only for very large tables. Raising the 
number of cores improves performance for a single query only when it hits a large table, 200 million 
rows or more. In terms of scalability (number of concurrent users), a higher number of cores might not 
improve performance if users access the same tables as they would contend access to shared RAM. 
A better way to increase the number of concurrent users is to use more servers in a load-balancing 
confi guration.

The best practice is to get the maximum number of cores available on a single socket, getting the 
highest clock rate possible. Having two or more sockets on the same server is not good, even though 
Analysis Services Tabular recognizes the NUMA architecture. NUMA requires a more expensive inter-
socket communication whenever a thread running on a socket accesses memory allocated by another 
socket. You can fi nd more details about NUMA architecture in Hardware Sizing a Tabular Solution (SQL 
Server Analysis Services) at http://msdn.microsoft.com/en-us/library/jj874401.aspx.

Memory size
The entire volume of data managed by VertiPaq must be stored in memory. Additional RAM is required 
to execute process operations—unless there is a separate process server—and to execute queries. 
Optimized queries usually do not have a high request for RAM, but a single query can materialize tem-
porary tables that could be very large. Database tables have a high compression rate, whereas materi-
alization of intermediate tables during a single query generates uncompressed data.

Having enough memory only guarantees that a query will end by returning a result, but increas-
ing available RAM does not produce any performance improvement. Cache used by Tabular does 
not increase just because there is more RAM available. However, a condition of low available memory 
might negatively affect query performance if the server starts paging data. Developers should have 
enough memory to store all the data of their database and to avoid materialization during query 
execution. More memory than this is a waste of resources.

Disk I/O and paging
You should not allocate budget on storage I/O for Analysis Services Tabular. This is very different from 
Multidimensional, where random I/O operation on disk occurs very frequently, especially in certain 
measures. In Tabular, there are no direct storage I/O operations during a query. The only event when 

http://msdn.microsoft.com/en-us/library/jj874401.aspx
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this might happen is under low memory conditions. However, it is less expensive and more effective to 
provide more RAM to a server than trying to improve performance by increasing storage I/O through-
put when there is systematic paging caused by low memory availability.

Best practices in hardware selection
You should measure performance before choosing the hardware for SSAS Tabular. It is common to 
observe a server running twice as slow as a development workstation, even if the server is very new. 
This is because a server designed to be scalable—especially for virtual machines—does not usually 
perform very well for activities made by a single thread. However, this type of workload is very com-
mon in VertiPaq. One will need time and numbers, doing a proper benchmark, to convince a company 
that a “standard server” could be the weak point of their entire BI solution.

Conclusions

In this fi rst chapter about optimization we described the internal architecture of a Tabular engine, and 
we provided the basic information about how data is stored in VertiPaq. As you will see in the following 
chapters, this knowledge is of paramount importance to optimize your code.

These are the main topics you learned in the chapter:

 ■ There are two engines inside a Tabular server: the formula engine and storage engine.

 ■ The formula engine is the top-level query engine. It is very powerful but rather limited in terms 
of speed because it is single-threaded.

 ■ There are two storage engines: VertiPaq and DirectQuery.

 ■ VertiPaq is an in-memory columnar database. It stores information on a column-by-column 
basis, providing very quick access to single columns. Using multiple columns in a single DAX 
formula might require materialization.

 ■ VertiPaq compresses columns to reduce the memory scan time. Optimizing a model means 
optimizing the compression by reducing the cardinality of a column as much as possible.

 ■ Both VertiPaq and DirectQuery storage engines can coexist in the same model; this is called a 
composite model. A single query can use only VertiPaq, only DirectQuery, or both, depending 
on the storage model of the tables involved in the query.

Now that we have provided the basic knowledge about the internals of the engine, in the next 
chapter we start learning a few techniques to optimize VertiPaq storage to reduce both the size of a 
data model and its execution time.
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Optimizing VertiPaq

The previous chapter introduced some of the internals of VertiPaq. That knowledge is useful to design 
and optimize a data model for a faster execution of DAX queries. While the previous chapter was 
more theoretical, in this chapter we move on to the more practical side. Indeed, this chapter describes 
the most important guidelines for saving memory and thereby improving the performance of a data 
model. The main objective in creating an effi cient data model is to reduce the cardinality of columns in 
order to decrease the dictionary size, improve the compression, and speed up any iteration and fi lter.

The fi nal goal of the chapter is optimizing a model. However, before going there, the fi rst and most 
important skill to learn is the ability to evaluate the pros and cons of each design choice. You should 
not follow any rules blindly without evaluating their impact. For this reason, the fi rst part of the chapter 
illustrates how to measure the size of each object in a model in memory. This is important when evaluat-
ing whether a decision made on a model was worth the effort or not, based on the memory impact of 
the decision.

Before moving on, we want to stress once more this important concept: You should always test the 
techniques described in every data model. Data distribution is important in VertiPaq. The very same 
Sales table structure may be compressed in different ways because of the data distribution, leading to 
different results for the same optimization techniques. Do not learn best practices. Instead, learn dif-
ferent optimization techniques, knowing in advance that not all of them will be applicable in every data 
model.

Gathering information about the data model

The fi rst step for optimizing a data model is gathering information about the cost of the objects in the 
database. This section describes the tools and the techniques to collect all the data that help in priori-
tizing the possible optimizations of the physical structure.

Table 18-1 shows the pieces of information to collect from each object in a database.

In general, object size strongly depends on the number of unique values in the columns being 
used or referenced. For this reason, the number of unique values in a column, also known as column 
cardinality, is the single most important piece of information to gather from a database.
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TABLE 18-1 Information to collect for each object in a database

Object Information to Collect

Table Number of rows

Column Number of unique values
Size of dictionary
Size of data (total size of all segments)

Hierarchy Size of hierarchy structure

Relationship Size of relationship structure

In Chapter 17, “The DAX engines,” we introduced the Dynamic Management Views (DMVs) to 
retrieve information about the objects in the VertiPaq storage engine. The following sections describe 
how to interpret the relevant information through VertiPaq Analyzer, which simplifi es the collection of 
data from DMVs.

The fi rst piece of information to consider in a data model is the size of each table, in terms of cardi-
nality (number of rows) and size in memory. Figure 18-1 shows the Table section of VertiPaq Analyzer 
executed on a Contoso data model in Power BI. The model used in this example contains more tables 
and data than the simplifi ed data model previously used throughout the book.

FIGURE 18-1 Details of tables shown in VertiPaq Analyzer.

The Table Size column represents the amount of memory used to store the compressed data in 
VertiPaq, whereas the Cardinality column shows the number of rows of each table. By drilling down a 
table name, it is possible to see the details of each column. At the column level, Cardinality shows the 
number of unique values in the entire table; however, the Table Size value is not available because each 
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column only has the cost shown in Columns Total Size. For example, Figure 18-2 shows the columns 
available in the largest table of the data model, SalesQuota; note that the total size of each column is 
extremely variable within the same table.

FIGURE 18-2 Details of tables and columns shown in VertiPaq Analyzer.

Each column reported by VertiPaq Analyzer carries a specifi c meaning described in the following list:

 ■ Cardinality: Object cardinality; the number of rows in a table or the number of unique values in 
a column, depending on the level of detail in the report.

 ■ Rows: Number of rows in the table. This metric is shown in the columns report (visible later in 
Figure 18-3) and not in the table report (in Figure 18-2), where the same information is available 
in the Cardinality metric, at the table detail level of the report.

 ■ Table Size: Size of the table in bytes. This metric contains the sum of Columns Total Size, User 
Hierarchies Size, and Relationships Size.

 ■ Columns Total Size: Size in bytes of a column. This metric contains the sum of Data Size, 
Dictionary Size, and Columns Hierarchies Size.

 ■ Data Size: Size in bytes of all the compressed data in segments and partitions. It does not 
include dictionary and column hierarchies. This number depends on the compression of the 
column, which, in turn, depends on the number of unique values and the distribution of the 
data across the table.

 ■ Dictionary Size: Size in bytes of dictionary structures. This number is only relevant for columns 
with hash encoding; it is a small fi xed number for columns with value encoding. The dictionary 
size depends on the number of unique values in the column and on the average length of the 
strings in case of a text column.
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 ■ Columns Hierarchies Size: Size in bytes of the automatically generated attribute hierarchies 
for columns. These hierarchies are necessary to access a column in MDX, and they are also used 
by DAX to optimize fi lter and sort operations.

 ■ Encoding: Type of encoding (hash or value) used for the column. The encoding of a column is 
selected automatically by the VertiPaq compression algorithm.

 ■ User Hierarchies Size: Bytes of user-defi ned hierarchies. This structure is computed at the 
table level, and its values are only visible at the table level detail in a VertiPaq Analyzer report. 
The user hierarchy size depends on the number of unique values and on the average length of 
the strings of the columns used in the hierarchy itself.

 ■ Relationship Size: Bytes of relationships between tables. The relationship size is related to the 
table on the many-side of a relationship. The size of a relationship depends on the cardinality of 
the columns involved in the relationship, although this is usually a tiny fraction of the cost of 
the table.

 ■ Table Size %: Ratio of Columns Total Size versus Table Size.

 ■ Database Size %: Ratio of Table Size versus Database Size, which is the sum of Table Size for all 
the tables.

 ■ Segments #: Number of segments. All the columns of a table have the same number of 
segments of the table.

 ■ Partitions #: Number of partitions. All the columns of a table have the same number of 
partitions of the table.

 ■ Columns #: Number of columns.

  

Attribute hierarchies and column encoding

Two columns in VertiPaq Analyzer provide information that could be used to optimize 
large data models. We report the link to relevant documentation because we do not 
cover these optimizations in this book.

The attribute hierarchy size reported in Columns Hierarchies Size depends on the 
number of unique values in the column and on the average length of the strings, similarly 
to the dictionary size. However, the attribute hierarchy is created for both value and hash 
encoding, whereas the dictionary only exists for hash encoding. The attribute hierarchy 
creation can be disabled when the column is only used in aggregations and not as a fi lter 
or grouping condition. This optimization might require advanced settings. More details 
about the setting to disable attribute hierarchies are available at https://docs.microsoft.com/
en-us/dotnet/api/microsoft.analysisservices.tabular.column.isavailableinmdx and https://
blogs.msdn.microsoft.com/analysisservices/2018/06/08/new-memory-options-for-
analysis-services/.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.analysisservices.tabular.column.isavailableinmdx
https://docs.microsoft.com/en-us/dotnet/api/microsoft.analysisservices.tabular.column.isavailableinmdx
https://blogs.msdn.microsoft.com/analysisservices/2018/06/08/new-memory-options-for-analysis-services/
https://blogs.msdn.microsoft.com/analysisservices/2018/06/08/new-memory-options-for-analysis-services/
https://blogs.msdn.microsoft.com/analysisservices/2018/06/08/new-memory-options-for-analysis-services/
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The Encoding selected for a column in the model might be changed by the developer. The 
data model can offer hints to suggest an encoding type to use. Usually, VertiPaq chooses the 
encoding that saves more memory; however, the developer might choose a specifi c encod-
ing that may turn out to be more expensive in order to meet specifi c needs, like improving the 
speed of dynamic aggregations. A difference in query performance might be visible in tables 
with billions of rows, whereas it is usually not signifi cant for tables with a few million rows. More 
details about encoding hints are available at https://docs.microsoft.com/en-us/sql/analysis-
services/what-s-new-in-sql-server-analysis-services-2017?view=sql-server-2017#encoding-hints.

The fi rst possible optimization using VertiPaq Analyzer reports is removing any columns that are 
not useful for the reports and that are expensive in memory. For example, the data shown in Figure 
18-2 highlights that one of the most expensive columns of the SalesQuota table is SalesQuotaKey. 
SalesQuota Key is not used in any report, and it is not required by the data model structure—as it hap-
pens for columns used in relationships. Indeed, the SalesQuotaKey column could be removed from the 
model without affecting any report and calculation, saving both refresh time and precious memory.

The process of identifying the most expensive columns is made simpler by using another report 
available in VertiPaq Analyzer shown in Figure 18-3. This Columns report shows all the columns in a 
fl attened list where the reported name is the concatenation of the table and column names, sorting 
the list by descending Columns Total Size.

FIGURE 18-3 Details of columns shown in VertiPaq Analyzer.

Two of the three most expensive columns of the entire Contoso data model, OnlineSalesKey and 
SalesOrderNumber in the OnlineSales table, are seldom used in a report at the aggregated level. Each 
of these two columns imported in VertiPaq requires 10% of the data size of the entire data model. By 
removing these two columns, it is possible to save 20% of the database size. Being aware of the cost of 
every column helps one choose what to keep in the data model and what is too expensive relative to its 
analytical value.

The reason why the report in Figure 18-3 shows Rows and Cardinality side-by-side is to help recog-
nize columns that are unique in a table. When the two numbers are close or identical, it is not useful to 
create summarized results over a column unless it is the target of an aggregation, such as the Amount 
column in the StrategyPlan table.

https://docs.microsoft.com/en-us/sql/analysis-services/what-s-new-in-sql-server-analysis-services-2017?view=sql-server-2017#encoding-hints
https://docs.microsoft.com/en-us/sql/analysis-services/what-s-new-in-sql-server-analysis-services-2017?view=sql-server-2017#encoding-hints
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Another important piece of information available in VertiPaq Analyzer is included in the Relation-
ships report shown in Figure 18-4. This report makes it easy to identify expensive relationships present 
in a data model, even though there are no critical situations in this specifi c example.

FIGURE 18-4 Size and cardinality of relationships shown in VertiPaq Analyzer.

In VertiPaq, relationships with a cardinality larger than 1 million unique values are particularly 
expensive, impacting the storage engine cost of any request involving that relationship. A common 
rule of thumb is to start paying attention to a relationship whenever its cardinality exceeds 100,000. 
Such relationships usually do not produce visible performance issues, but their presence starts to be 
measurable in hundreds of milliseconds and could create problems with any future growth of the data-
base. While a single large relationship does not necessarily slow down a report visibly, its presence can 
undermine the performance of more complex calculations and reports.

An awareness of the cardinality of tables and columns is important in any further analyses of a DAX 
query’s performance. While this information could be retrieved by running simple DAX queries, it is faster 
and more effi cient to use a tool like VertiPaq Analyzer to collect this data automatically—spending more 
time evaluating the metrics obtained rather than manually running trivial queries on the data model.

Denormalization

The fi rst optimization that can be applied to a data model is to denormalize data. Every relationship 
has a memory cost and an additional overhead when the engine transfers the fi lter from one table to 
another. Purely from a performance point of view, an optimal model would be one made of a single 
table. However, such an approach would be less than usable and would force a single granularity for all 
the measures. Thus, an optimal data model is organized as a star schema around each table defi ned for 
measures sharing the same granularity. For this reason, one should denormalize unnecessary related 
tables, thus reducing the number of columns and relationships in the data model.

The denormalization required in a data model for DAX is usually counterintuitive for anyone with 
some experience in data modeling for a relational database. For instance, consider a simple data model 
where a Payment table has two columns, Payment Code and Payment Description. In a relational data-
base, a table with Code and Description is commonly used to avoid duplicating the description content 
in each row of a Transactions table. It is common practice to only store the Payment Code in Transac-
tions to save space in a relational model.

Table 18-2 shows a denormalized version of the Transactions table. There are many rows with 
duplicated values of Credit Card and Cash in the Payment Type Description column.
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TABLE 18-2 Transactions table with Payment Type denormalized in the Code and Description columns

Date Amount Payment Type Code Payment Type Description

2015-06-21 100 00 Cash

2015-06-21 100 02 Credit Card

2015-06-22 200 02 Credit Card

2015-06-23 200 00 Cash

2015-06-23 100 03 Wire Transfer

2015-06-24 200 02 Credit Card

2015-06-25 100 00 Cash

By using a separate table containing all the payment types, it is possible to only store the Payment 
Type Code in the Transactions table, as shown in Table 18-3.

TABLE 18-3 Transactions table normalized, with Payment Type Code only

Date Amount Payment Type Code

2015-06-21 100 00

2015-06-21 100 02

2015-06-22 200 02

2015-06-23 200 00

2015-06-23 100 03

2015-06-24 200 02

2015-06-25 100 00

By storing the description of payment types in a separate table (see Table 18-4), there is only one 
row for each payment type code and description. That table in a relational database reduces the total 
amount of space required, by avoiding the duplication of a long string in the Transactions table.

TABLE 18-4 Payment Type table that normalizes Code and Description

Payment Type Code Payment Type Description

00 Cash

01 Debit Card

02 Credit Card

03 Wire Transfer

However, this optimization, which works perfectly fi ne for a relational database, might be a bad 
choice in a data model for DAX. The VertiPaq engine automatically creates a dictionary for each col-
umn, which means that the Transactions table will not pay a cost for duplicated descriptions as would 
be the case in a relational model.
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Note Compression techniques based on dictionaries are also available in certain relational 
databases. For example, Microsoft SQL Server offers this feature through the clustered col-
umnstore indexes. However, the default behavior of a relational database is to store data 
without using a dictionary-based compression.

 

In terms of space saving, the denormalization is always better by denormalizing a single column 
in a separate table; on the other hand, the denormalization of many columns in a single table—as is 
the case for the attributes of a Product—might be more expensive than using a normalized model. 
For example, we can compare the memory cost between a normalized and a denormalized model:

 ■ Memory cost for normalized model:

• Column Transactions[Type Code]

• Column Payments[Type Code]

• Column Payments[Type Description]

• Relationship Transactions[Type Code] – Payments[Type Code]

 ■ Memory cost for denormalized model:

• Column Transactions[Type Code]

• Column Transactions[Type Description]

The denormalized model removes the cost of the Payments[Type Code] column and the cost of the 
relationship on Transactions[Type Code]. However, the cost of the Type Description column is differ-
ent between Transactions and Payments tables, and in a very large table, the difference might be in 
favor of the normalized model. However, usually the aggregation of a column performs better when a 
fi lter is applied to another column of the same table, rather than a fi lter on a column in another table 
connected through a relationship. Does this justify a complete denormalization of the data model into 
a single table? Absolutely not! In terms of usability, the star schema should be always the preferred 
choice because it is a good trade-off in terms of resource usage and performance.

A star schema contains a table for each business entity such as Customer and Product, and all the 
attributes related to an entity are completely denormalized in such tables. For example, the Product 
table should have attributes such as Category, Subcategory, Model, and Color. This model works well 
whenever the cardinality of the relationship is not too large. As mentioned before, 1 million unique 
values is the threshold to defi ne a large cardinality for a relationship, although 100,000 unique values 
already classifi es a relationship as a potential risk for the performance of the queries.

In order to understand why the cardinality of a relationship is important for performance, it is 
useful to know what happens by applying a fi lter on a column. Consider the schema in Figure 18-5, 
where there are relationships between the Sales table and Product, Customer, and Date. By querying 
the data model fi ltering customers by gender, the engine transfers the fi lter from Customer to Sales by 
specifying the list of customer keys that belong to each gender type included in the query. If there are 
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10,000 customers, any list generated by a fi lter cannot be larger than this number. However, if there are 
6 million customers, a fi lter by a single gender type might generate a list of unique keys, resulting 
in around 3 million unique values for each gender. A large number of keys involved in a relationship 
always has an impact in performance, even though in absolute terms said impact also depends on the 
version of the engine and on the hardware being used (CPU clock, cache size, RAM speed).

FIGURE 18-5 The Sales table has relationships with the Product, Customer, and Date tables.

What can be done to optimize the data model when a relationship involves millions of unique val-
ues? If the measured performance degradation is not compatible with the query latency requirements, 
one might consider other forms of denormalization that reduce the cardinality of the relationship or 
that remove entirely the need for a relationship in certain queries. In the previous example, one might 
consider denormalizing the Gender column in the Sales table, in the event it is the only case where they 
need to optimize performance. If there are more columns to optimize, consider creating another table 
with the columns of Customer table that users query often and that have a low cardinality (and a low 
selectivity).

For instance, consider a table called Customer Info with Gender, Occupation, and Education col-
umns. If the cardinality of these columns is 2, 5, and 5 values, respectively, a table with all the possible 
combinations has 50 rows (2 × 5 × 5). A query on any of these columns will be much faster because 
the fi lter applied to Sales will have a very short list of values. In terms of usability, the user will see two 
groups of attributes for the same entity, corresponding to the two tables, Customer and Customer 
Info. This is not an ideal situation. For this reason, this optimization should only be considered when 
strictly necessary, unless the same result can be obtained by using the Aggregations feature in the 
Tabular model.
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Important The Aggregations feature is discussed later in this chapter. It is a feature that 
automates the creation of the underlying tables and relationships whose only purpose is to 
optimize the performance of the storage engine requests. As of April 2019, the Aggrega-
tions feature only works for tables stored in DirectQuery and cannot replace the techniques 
described in this section. This will be possible when the Aggregations also work for tables 
stored in VertiPaq.

It is important that both tables have a direct relationship with the Sales table, as shown in 
Figure 18-6.

FIGURE 18-6 Both the Customer and Customer Info tables have a relationship with Sales.

The CustomerInfoKey column should be added to the Sales table before any data is imported into 
it so that it is a native column. As discussed in Chapter 17, native columns are better compressed than 
calculated columns. However, a calculated column could also be created with the following DAX 
expression:

Sales[CustomerInfoKey] =
LOOKUPVALUE (
    'Customer Info'[CustomerInfoKey],
    'Customer Info'[Gender], RELATED ( Customer[Gender] ),
    'Customer Info'[Occupation], RELATED ( Customer[Occupation] ),
    'Customer Info'[Education], RELATED ( Customer[Education] )
)
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From a user experience perspective, the columns that are denormalized in the Customer Info table 
should be hidden from the Customer table. Showing the same attributes (Gender, Occupation, and Edu-
cation) in two tables would generate confusion. However, by hiding these attributes from the Customer 
table, it is not possible to create a report with the list of customers with a certain Occupation without 
looking at the transactions in the Sales table. In order to avoid losing such features, the model should 
be enhanced including an inactive relationship, which can be activated if needed. We need specifi c 
measures to activate that relationship, as we will see later in the optimized Sales Amount measure. 
Figure 18-7 shows that there is an active relationship between the Customer Info table and the Sales 
table, and an inactive relationship between the Customer Info table and the Customer table.

FIGURE 18-7 An inactive relationship connects the Customer and Customer Info tables.

The relationship between Customer Info and Customer can be activated whenever there is any other 
fi lter active in the Customer table. For example, consider the following defi nition of the Sales Amount 
measure:

Sales Amount :=
IF (
    ISCROSSFILTERED ( Customer[CustomerKey] ),
    CALCULATE (
        [Sales Internal],
        USERELATIONSHIP ( Customer[CustomerInfoKey], 'Customer Info'[CustomerInfoKey] ),
        CROSSFILTER ( Sales[CustomerInfoKey], 'Customer Info'[CustomerInfoKey], NONE )
    ),
    [Sales Internal]
)
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The cross fi lter is only active in the Customer table when there is a fi lter on any column of the 
Customer table, unless the relationship between Sales and Customer is bidirectional. Indeed, when 
the cross fi lter is active, the relationship between Customer and Customer Info is enabled by using 
USERELATIONSHIP, automatically disabling the other relationship between Customer Info and Sales. 
Furthermore, the CROSSFILTER in the function is not necessary, but it is a good idea to keep it there; it 
highlights the intention to disable the fi lter propagation in the relationship between Customer Info and 
Sales. The idea is that, since the engine must process a list of CustomerKey values in any case, it is better 
to reduce such a fi lter by also including the attributes moved into Customer Info. However, when the 
user fi lters columns in Customer Info and not in Customer, the default active relationship uses a better 
relationship made with a lower number of unique values. Unfortunately, in order to optimize the use of 
the Customer-Sales relationship in a data model, this DAX pattern must be applied to all the measures 
that might involve Customer Info attributes. This is not necessary using Aggregations in the data model 
because the pattern is implemented automatically by the engine without requiring any effort in the 
DAX code.

Another very common scenario where a high cardinality in a relationship should be denormalized is 
that of a relationship between two large tables. For example, consider the Sales Header and Sales Detail 
tables in the data model in Figure 18-8.

FIGURE 18-8 The Customer table fi lters Sales Detail transactions through relationships with Sales Header.

This situation is common because many normalized relational databases are composed of this same 
design. However, the relationship between Sales Header and Sales Detail is particularly dangerous for 
a DAX query because of the high number of unique values. Any query grouping the Quantity column 
(from Sales Detail) by Customer[Gender] transfers a fi lter from Sales Header to Sales Detail through the 
SalesOrderNumber column. A better design is possible by denormalizing in Sales Detail all the relation-
ships stored in Sales Header. In practice, there should be two star schemas sharing the same dimen-
sions. The only purpose of the denormalization is to avoid passing a fi lter through the relationship 
between Sales Header and Sales Detail, which no longer exists in the new design shown in Figure 18-9.
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FIGURE 18-9 There are direct relationships between the Sales Header and Sales Detail tables, and Customer and 
Calendar.

Use the right degree of denormalization in a data model for DAX, especially for performance 
reasons. The best practices described in this section provide a good balance between usability and 
performance.

Columns cardinality

The cardinality of a column is the number of unique values that the column contains. This number is 
important to reduce the size of the column, which has a direct impact on VertiPaq scan performance. 
Another reason to reduce the cardinality of a column to a necessary minimum is that many DAX opera-
tions, such as iterations and fi lters, have an execution time that directly depends on this number. Often, 
the cardinality of a column is more important than the number of rows of the table containing the 
column.

The data model designer should identify the cardinality of a column and consider possible optimi-
zations if the column is to be used in relationships, fi lters, or calculations. There are several common 
scenarios to consider:

 ■ Key of a relationship: The cardinality of the column cannot be changed unless the cardinality 
of the related table is changed, too. See the “Denormalization” section, earlier in this chapter.

 ■ Numeric value aggregated in a measure: Do not change the precision of a number if that 
number represents a quantity or the amount of a monetary transaction. However, if a number 
represents a measure with a fl oating-point value, one might consider removing the decimals 
that are not relevant. For example, when collecting temperatures, the value could be rounded 
down to the closest decimal digit; the removed part is probably lower than the precision of the 
measuring tool.
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 ■ Low cardinality text description: The only impact is on dictionary size in case the column 
has many unique values. There are no advantages in moving the column into a separate table 
because the dictionary would be the same. Keep this column if users need it.

 ■ High cardinality text notes: Potentially different for every row of the table, but it is not a big 
issue if most of the rows have a blank value.

 ■ Pictures: This column is required to display graphics in a client tool—for example, a picture of 
a product. This data type is not available in Power BI; storing the URL of an image that is loaded 
dynamically is a better alternative that saves memory.

 ■ Transaction ID: This column has a high cardinality in a large table. Consider removing it if it 
is not necessary in DAX queries. If used in drill-through operations—for example, to see the 
transactions that form a particular aggregation—consider splitting the number/string into two 
or more parts, each with a smaller number of unique values.

 ■ Date and time: Consider splitting the column into two parts. More on this in the following 
section in this chapter, “Handling date and time.”

 ■ Audit columns: A table in a relational database often has standard columns used for audit-
ing purposes—for instance, timestamp and user of last update. These columns should not be 
imported in a model stored by VertiPaq, unless required for drill-through. In that case, consider 
splitting the timestamp following the same rules applied to date and time.

As a rule of thumb, consider that reducing the cardinality of a column saves memory and improves 
performance. Because reducing cardinality might imply losing information and/or accuracy, be careful 
in considering the implications of these optimizations.

Handling date and time

Almost any data model has one or more date columns. Every so often, the time is also an interesting 
dimension of analysis. Usually, these columns come from original Datetime columns in the data source. 
There are several best practices to optimize these types of columns.

First and foremost, date and time should be always split into two separate columns, without using 
calculated columns to do so. The split should take place by reading the original column in two dif-
ferent columns of the data model: one for the date, the other for the time. For example, reading a 
Transaction Execution column from a table in SQL Server, one should use the following syntax in a T-SQL 
query to create two columns, TransactionDate and TransactionTime:

 ...
CAST ( TransactionExecution AS DATE ) AS TransactionDate,
CAST ( TransactionExecution AS TIME ) AS TransactionTime,
...
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It is very important to do this split operation; otherwise, the model would have a column in which 
dictionary and cardinality would increase every day. Moreover, analyzing a timestamp in Tabular is 
very hard. A Date table needs an exact match with the date, and the Datetime column would not work 
correctly in a relationship with the Date column of a Date table.

A Date column usually has a good granularity: 10 years correspond to less than 3,700 unique values, 
and even 100 years still fall within a manageable order of magnitude. Moreover, time intelligence func-
tions require a complete calendar for each year considered, so removing days (for example, keeping 
only one day per month) is not an optimization to consider.

The Time column, on the other hand, should be subject to more considerations. With a Time col-
umn, one should consider creating a Time table, which contains one row for each point in the chosen 
granularity. The time should be rounded to the same granularity as the one chosen for the Time table. 
The Time table will make it easy to consider different time periods: for example, morning and evening, 
or 15-minute intervals. Depending on the data and the analysis required, the time could be rounded 
down to the closest hour or millisecond—even though the latter is very unlikely. Table 18-5 shows the 
different cardinality corresponding to different precision levels.

TABLE 18-5 Cardinality corresponding to different precision levels for a Time column

Precision Cardinality

Hour 24

15 Minutes 96

5 Minutes 288

Minute 1,440

Second 86,400

Millisecond 86,400,000

Choosing the millisecond precision is usually the worst choice, and a precision down to the second 
still has a relatively high number of unique values. Most of the times the precision choice will be in a 
range between hours and minutes. At this point, one might think that the minute precision is a safe 
choice because it has a relatively low cardinality. However, remember that the compression of a column 
depends on the presence of duplicated values in contiguous rows. Thus, moving from a minute to 
15-minute precision can have a big impact on the compression of large tables.

The choice between rounding to the closest second/minute or truncating the detail not needed for 
the analysis depends on analytical requirements. Here is an example of the T-SQL code that truncates a 
time to different precision levels:

-- Truncate to the second
DATEADD (
    MILLISECOND,
    - DATEPART ( MILLISECOND, CAST ( TransactionExecution AS TIME(3) ) ),
    CAST ( TransactionExecution AS TIME(3) )
)
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-- Truncate to the minute
DATEADD (
    SECOND,
    - DATEPART (SECOND, CAST ( TransactionExecution AS TIME(0) ) ),
    CAST ( TransactionExecution AS TIME(0) )
)

-- Truncate to 5 minutes
--   change 5 to 15 to truncate to 15 minutes
--   change 5 to 60 to truncate to the hour
CAST ( 
    DATEADD ( 
        MINUTE,
        ( DATEDIFF ( 
              MINUTE, 
              0, 
              DATEADD ( 
                  SECOND, 
                  - DATEPART ( SECOND, CAST ( TransactionExecution AS TIME(0) ) ), 
                  CAST ( TransactionExecution AS TIME(0) ) 
              ) 
          ) / 5 ) * 5,
        0
    ) AS TIME(0) 
)

The following T-SQL code shows examples for rounding time instead of truncating it:

-- Round to the second
CAST ( TransactionExecution AS TIME(0) )

-- Round to the minute
CAST ( DATEADD (
    MINUTE,
    DATEDIFF ( 
        MINUTE, 
        0, 
        DATEADD ( SECOND, 30, CAST ( TransactionExecution AS TIME(0) ) )
    ),
    0
) AS TIME ( 0 ) )

-- Round to 5 minutes
--   change 5 to 15 to truncate to 15 minutes
--   change 5 to 60 to truncate to the hour
CAST ( DATEADD (
    MINUTE,
    ( DATEDIFF ( 
        MINUTE, 
        0, 
        DATEADD ( SECOND, 5 * 30, CAST ( TransactionExecution AS TIME(0) ) )
      ) / 5 ) * 5,
    0
) AS TIME ( 0 ) )
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Similar transformations can be applied in Power Query when importing data, though for tables with 
millions of rows a transformation made in the original data source may provide better performance.

When storing millions of new rows every day in a single table, these details can make a big differ-
ence in memory usage and performance. At the same time, do not spend too much time optimizing 
a data model that does not require very high a level of compression; after all, reducing the precision 
means removing some information that will no longer be available for deeper insights if needed.

Calculated columns

A calculated column stores the result of a DAX expression evaluated row-by-row during a table refresh. 
For this reason, calculated columns might be considered as a possible way to optimize query execu-
tion time. However, a calculated column has hidden costs, and it is only a good optimization technique 
under specifi c conditions.

Calculated columns should be considered as viable options only in these two situations:

 ■ Group or fi lter data: If a calculated column returns a value used to group or fi lter data, there 
is no alternative other than creating the same value before importing data into the data model. 
For example, the price of a product might be classifi ed into Low, Medium, and High categories. 
This value is usually a string, especially when the user makes it available as a selection.

 ■ Precalculate complex formulas: A calculated column can store the result of a complex cal-
culation that is not sensitive to fi lters made at query time. However, it is very hard to establish 
when this produces a real computational advantage, and it is necessary to measure the pres-
ence of a real advantage at query time in order to justify its use.

Do not make the wrong assumption that any calculated column is faster than doing the same 
computation at query time. This is often inaccurate. Other times, the advantage is barely measurable 
and does not balance out the cost of the calculated column. There should be a relevant performance 
improvement at query time to justify a calculated column for optimization reasons. There are also 
many factors to consider when evaluating the cost/benefi t ratio of a calculated column against an 
equivalent calculation made at runtime in a measure.

A calculated column is not as optimized as a native column. It might have a lower compression rate 
compared to native columns of the table because it does not take part in the heuristic that VertiPaq 
executes to fi nd the optimal sort order of the data in each segment. Only a column storing a very low 
number of unique values might benefi t from a good compression, but this is usually the result of logical 
conditions and not of numeric expressions.

For example, consider the case of a simple calculated column:

Sales[Amount] = Sales[Quantity] * Sales[Price]
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If there are 100 unique values in Quantity and 1,000 unique values in Price, the resulting Amount 
column might have a cardinality between 1 and 100,000 unique values, depending on the actual values 
in the columns and on their distribution across table rows. Usually, the larger the number of rows in the 
table, the higher the number of unique values found in the Amount column—because of statistical dis-
tribution. With a dictionary that is one or two orders of magnitude larger than the original columns, the 
compression is usually worse. What about query performance? It depends, and it should be measured 
case-by-case in order to get a correct answer, considering the two possible calculations: one based on 
a calculated column and the other completely dynamic and based on measures.

A simple measure can sum the Amount calculated column:

TotalAmountCC := SUM ( Sales[Amount] )

The alternative dynamic implementation transfers the expressions of the calculated column in an 
iterator over the table:

TotalAmountM := SUMX ( Sales, Sales[Quantity] * Sales[Price] )

Is the cost of scanning the single Sales[Amount] column smaller than scanning the two original 
Sales[Quantity] and Sales[Price] columns? It is impossible to estimate this in advance, so it must be 
measured. Usually, the difference between these two options is only visible in very large tables. 
In small tables the performance might be very close, so the calculated column is not worth its 
memory footprint.

Most of the time, calculated columns used to compute aggregated values can be replaced by 
using the same expressions in iterators such as SUMX and AVERAGEX. In the previous example, 
 TotalAmountM is a measure that dynamically executes the same expression defi ned in the calcu-
lated Amount column, used by the simple aggregation in TotalAmountCC.

A different evaluation is necessary when a context transition is present in an iterator. For example, 
consider the following DAX measure in a model where the Sales Header and Sales Detail tables are 
connected through a relationship:

AverageOrder :=
AVERAGEX (
    'Sales Header',
    CALCULATE (
        SUMX (
            'Sales Detail',
            'Sales Detail'[Quantity] * 'Sales Detail'[Unit Price]
        ),
        ALLEXCEPT ( 'Sales Detail', 'Sales Header' )
    )
)

In this case, the context transition within the loop can be very expensive, especially if the Sales 
Header table contains millions of rows or more. Storing the value in a calculated column will probably 
save a lot of execution time.
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'Sales Header'[Amount] =
CALCULATE (
    SUMX (
        'Sales Detail',
        'Sales Detail'[Quantity] * 'Sales Detail'[Unit Price]
    )
)

AverageOrder :=
AVERAGEX (
    'Sales Header',
    'Sales Header'[Amount]
)

We will never grow tired of repeating that these examples are guidelines. One should measure the 
performance improvements of a calculated column and its related memory cost in order to decide 
whether to use it or not.

Consider that a calculated column can be avoided by creating the same value for a native column 
in the data source when populating the table—for example, using an SQL statement or a Power Query 
transformation. A useful calculated column should leverage the VertiPaq engine, providing a faster 
and more fl exible way to compute a column than reading the entire table again from the data source. 
Usually, this happens when the calculated column expression aggregates rows from tables other than 
the one it belongs to; the previous Amount calculated column in the Sales Header table is an example 
of such condition.

Finally, a calculated column increases the time to refresh a data model especially because it is an 
operation that cannot scale on multiple threads, as explained in more detail in a following section, 
“Processing of calculated columns.”

At this point, it should be clear that calculated columns are expensive for two reasons:

 ■ Memory: The values are persisted using a nonoptimal compression.

 ■ Duration of Refresh: The process of calculated columns is a sequential operation using a single 
thread, which results in a nonscalable operation also in large servers.

With that said, calculated columns prove useful in many scenarios. We do not want to pass on the 
message that calculated columns are always to be avoided. Instead, be aware of their cost and make 
an educated decision on whether to use them or not. In the next section we describe a good example 
where calculated columns really shine in improving performance.

Optimizing complex fi lters with Boolean calculated columns
It is worth mentioning a specifi c case where optimization is achieved using calculated columns. A logi-
cal expression used to fi lter a high-cardinality column can be consolidated using a calculated column 
that stores the result of the logical expression itself.
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For example, consider the following measure:

ExpensiveTransactions :=
COUNTROWS (
    FILTER (
        Sales,
        VAR UnitPrice =
            IF ( 
                Sales[Unit Discount] > 0,
                RELATED ( 'Product'[Unit Price] ),
                Sales[Net Price]
            )
        VAR IsLargeTransaction = UnitPrice * Sales[Quantity] > 100
        VAR IsLargePrice = UnitPrice > 70
        VAR IsExpensive = IsLargeTransaction || IsLargePrice
        RETURN
            IsExpensive
    )
)

In case there are millions of rows in the Sales table, the fi lter iteration could be expensive. If the 
expression used in the fi lter does not depend on the existing fi lter context, as in this case, the result 
of the expression can be consolidated in a calculated column, applying a fi lter on that column in a 
CALCULATE statement instead. For example, the previous operation can be rewritten this way:

Sales[IsExpensive] = 
VAR UnitPrice =
    IF ( 
        Sales[Unit Discount] > 0,
        RELATED ( 'Product'[Unit Price] ),
        Sales[Net Price]
    )
VAR IsLargeTransaction = UnitPrice * Sales[Quantity] > 100
VAR IsLargePrice = UnitPrice > 70
VAR IsExpensive = IsLargeTransaction || IsLargePrice
RETURN
    IsExpensive

ExpensiveTransactions :=
CALCULATE (
    COUNTROWS ( Sales ),
    Sales[IsExpensive] = TRUE
)

The calculated column containing a logical value (TRUE or FALSE) usually benefi ts from good com-
pression and a low memory cost. It is also very effective at execution time because it applies a direct 
fi lter to the scan of the Sales table required to count the rows. In this case, the benefi t at query time is 
usually evident. Just consider if it is worth the longer processing time for the column; that processing 
time must be measured before making a fi nal decision.
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Processing of calculated columns
The presence of one or more calculated columns slows down the refresh of any part of a table that is 
somewhat related to the calculated column. This section describes the reasons for that; it also provides 
background information on why an incremental refresh operation can be very expensive because of 
the presence of calculated columns.

Any refresh operation of a table requires recomputing all the calculated columns in the entire data 
model referencing any column of that table. For example, refreshing a partition of a table—as during 
any incremental refresh—requires a complete update of all the calculated columns stored in the table. 
Such a calculation is performed for all the rows of the table, even though the refresh only affects a 
single partition of the table. It does not matter whether the expression of the calculated column only 
depends on other columns of the same table; the calculated column is always computed for the entire 
table and not for a single partition.

Moreover, the expression of a calculated column might depend on the content of other tables. 
In this case, the calculated columns referencing a partially refreshed table must also be recalculated 
to guarantee the consistency of the data model. The cost for computing a calculated column usually 
depends on the number of rows of the table where the column is stored.

The process of a calculated column is a single-thread job, which iterates all the rows of the table to 
compute the column expression. In case there are several calculated columns, they are evaluated one 
at a time, making the entire operation a process bottleneck for large tables. For these reasons, creating 
a calculated column in a large table with hundreds of millions of rows is not a good idea. Creating tens 
of calculated columns in a large table can result in a very long processing time, adding minutes to the 
time required to process the native data.

Choosing the right columns to store

The previous section about calculated columns explained that storing a column that can be computed 
row-by-row using other columns of the same table is not always an advantage. The same consideration 
is also valid for native columns of the table. When choosing the columns to store in a table, consider the 
memory size and the query performance. Good optimizations of resource allocation (and memory in 
particular) are possible by doing the right evaluation in this area.

We consider the following types of columns in a table:

 ■ Primary or alternate keys: The column contains a unique value for each row of the table.

 ■ Qualitative attributes: The column can be text or number, used to group and/or fi lter rows in 
a table; for instance, name, color, city, country.

 ■ Quantitative attributes: The number is a value used both as a fi lter (for example, less than a 
certain value) and as an argument in a calculation, such as price, amount, quantity.
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 ■ Descriptive attributes: The column contains text providing additional information about a 
row, but its content is never used to fi lter or to aggregate rows—for example, notes, comments.

 ■ Technical attributes: Information recorded in the database for technical reasons, without a 
business value, such as username of last update, timestamp, GUID for replication.

The general principle is to try to minimize the cardinality of the columns imported into a table, not 
importing columns that have a high cardinality and that are not relevant for the analysis. However, 
every type of column deserves additional considerations.

The columns for primary or alternate keys are necessary if there are one or more one-to-many 
relationships with other tables. For instance, the product code and the product key columns of a table 
of products are certainly required columns. However, a table should not include a primary or alternate 
key column not used in a relationship with other tables. For example, the Sales table might have a 
unique identifi er for each row in the original table. Such a column has a cardinality that corresponds to 
the number of rows of the Sales table. Moreover, a unique identifi er is not necessary for relationships 
because no tables target Sales for a relationship. For these reasons, it is a very expensive column in 
terms of memory, and it should not be imported in memory. In a composite data model, a similar high-
granularity column could be accessed only through DirectQuery without being stored in memory, as 
described later in the “Optimizing column storage” section of this chapter.

A table should always include qualitative attributes that have a low cardinality because they have 
a good compression and might be useful for the analysis. For example, the product category is a col-
umn that has a low cardinality, related to the Product table. In case there is a high cardinality, we should 
consider carefully whether to import the column or not because its storage memory cost can be high. 
The high selectivity might justify the cost, but we should check that fi lters in queries usually select a low 
number of values in that column. For instance, the production lot number might be a piece of informa-
tion included in the Sales table that users want to fi lter at query time. Its high cost might be justifi ed by 
a business need to apply this fi lter in certain queries.

All the quantitative attributes are generally imported to guarantee any calculation, although 
we might consider skipping columns providing redundant information. Consider the Quantity, Price, 
and Amount columns of a Sales table, where the Amount column contains the result of the product 
between Quantity and Price. We probably want to create measures that aggregate each of these col-
umns; yet we will probably calculate the price as a weighted average considering the sum of amount 
and quantity, instead of a simple average of the price considering each transaction at the same level. 
This is an example of the measure we want to defi ne:

Sum of Quantity := SUM ( Sales[Quantity] )

Sum of Amount   := SUM ( Sales[Amount] )

Average Price   := DIVIDE ( [Sum of Amount], [Sum of Quantity] )

By looking at these measures, we might say that we only need to import Quantity and Amount in 
the data model, without importing the Price column, which is not used by these measures. However, 
if we consider the cardinality of the columns, we start to have doubts. If there are 100 unique values 



 CHAPTER 18 Optimizing VertiPaq 601

in the Quantity column, and there are 10,000 unique values in the Price column, we might have up to 
1,000,000 unique values in the Amount column. At this point, we might consider importing only the 
Quantity and Price columns, using the following defi nition of the measures in the data model; only Sum 
of Amount changes, the other two measures did not change:

Sum of Quantity := SUM ( Sales[Quantity] )

Sum of Amount   := SUMX ( Sales, Sales[Quantity] * Sales[Price] )

Average Price   := DIVIDE ( [Sum of Amount], [Sum of Quantity] )

The new defi nition of the Sum of Amount measure might be slower because it has to scan two 
columns instead of one. However, these columns might be smaller than the original Amount. Trying to 
predict the faster option is very hard because we should also consider the distribution of the values in 
the table, and not only the cardinality of the column. We suggest measuring the memory used and the 
performance in both scenarios before making a fi nal decision. Based on our experience, removing the 
Amount column in a small data model can be more important for Power BI and Power Pivot. Indeed, 
the available memory in personal computers is usually more limited than that of a server, and a smaller 
memory footprint also produces a faster loading time opening the smaller fi le. At any rate, in a large 
table with billions of rows stored in an Analysis Services Tabular model, the performance penalty of the 
multiplication between two columns (Quantity and Price) could be larger than the increased memory 
scan time for the Amount column. In this case, the better response time for the queries justifi es the 
higher memory cost to store the Amount column. Regardless, we should measure size and perfor-
mance in each specifi c case because the distribution of data plays a key role in compression and affects 
any decision pertaining to it.

  

Note Storing Quantity and Price instead of Amount is an advantage if the table is stored in 
VertiPaq, whereas it is not the suggested best practice for DirectQuery models. Moreover, if 
the table in VertiPaq contains billions of rows in memory, the Amount column can provide 
better query performance and it is compatible with future Aggregations over VertiPaq. 
More details in the section “Managing VertiPaq Aggregations” later in this chapter.

We should consider whether to import descriptive attributes or not. In general, they have a high 
storage cost for the dictionary of the column when imported in memory. A few examples of descrip-
tive attributes are the Notes fi eld in an invoice and the Description column in the Product table. Usually, 
these attributes are mainly used to provide additional information about a specifi c entity. Users hardly 
use this type of column to group or fi lter data; the typical use case is to get detailed drill-through 
information. The only issue with including these columns in the data model is their memory storage 
cost, mainly related to the column dictionary. If the column has many blank values and a low number of 
unique nonblank values in the table, then its dictionary will be small and the column cost will be more 
acceptable. Nevertheless, a column containing the transcription of conversations made in a call center 
is probably too expensive for a Service Calls table containing date, time, duration, and operator who 
managed the call. When the cost of storing descriptive attributes in memory is too expensive, we can 
consider only accessing them through DirectQuery in a composite data model.
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A particular type of descriptive attribute is the information provided as detail for transactions in 
a drill-through operation. For example, the invoice number or the order number of a transaction is 
an attribute that has a high cardinality, but that could be important for some reports. In this case, we 
should consider the particular optimizations for drill-through attributes described in the next section, 
“Optimizing column storage.”

Most of the time, there is no reason to import columns for technical attributes, such as timestamp, 
date, time, and operator of the last update. This information is mainly for auditing and forensic require-
ments. Unless we have a data model specifi cally built for auditing requirements, the need for this 
information is usually low in an analytical solution. However, technical attributes are good candidates 
for columns accessed only through DirectQuery in a composite data model.

Optimizing column storage

The best optimization for a column is to remove the column from a table entirely. In the previous sec-
tion, we described when this decision makes sense based on the type of columns in a table. Once we 
defi ne the set of columns that are part of the data model, we can still use optimization techniques in 
order to reduce the amount of memory used, even though each optimization comes with side effects. 
In case the composite data model feature is available, an additional option is that of keeping a column 
in the data source, only making it accessible through DirectQuery.

Using column split optimization
The memory footprint of a column can be lowered by reducing the column cardinality. In certain 
conditions, we can achieve this result by splitting the column into two or more parts. The column split 
cannot be obtained with calculated columns because that would require storing the original column in 
memory. We show examples of the split operation in SQL, but any other transformation tool (such as 
Power Query) can obtain the same result.

For instance, if there is a 10-character string (such as the values in TransactionID), we can split the 
column in two parts, fi ve characters each (as in TransactionID_High and TransactionID_Low):

SELECT
    LEFT ( TransactionID, 5 ) AS TransactionID_High,
    SUBSTRING ( TransactionID, 6, LEN ( TransactionID ) - 5 ) AS TransactionID_Low,
    ...

In case of an integer value, we can use division and modulo for a number that creates an even distri-
bution between the two columns. If there is an integer TransactionID column with numbers between 0 
and 100 million, we can divide them by 10,000 as in the following example:

SELECT
    TransactionID / 10000 AS TransactionID_High,
    TransactionID % 10000 AS TransactionID_Low,
    ...
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We can use a similar technique for decimal numbers. An easy split is separating the integer from the 
decimal part, although this might not produce an even distribution. For example, we can transform a 
UnitPrice decimal number column into UnitPrice_Integer and UnitPrice_Decimal columns:

SELECT
    FLOOR ( UnitPrice ) AS UnitPrice_Integer,
    UnitPrice - FLOOR ( UnitPrice ) AS UnitPrice_Decimal,
    ...

We can use the result of a column split as is in simple details reports or measures that restore the 
original value during the calculation. If available in the client tool, the Detail Rows feature allows us to 
control the drill-through operation, showing to the client the original column and hiding the presence 
of the two split columns.

  

Important The column split can optimize numbers aggregated in measures, using the 
separation between integer and decimal parts as in the previous example or similar tech-
niques. However, consider that the aggregation operation will have to scan more than one 
column, and the total time of the operation is usually larger than with a single column. When 
optimizing for performance, saving memory might be not effective in this case, unless the 
dictionary is removed by enforcing value encoding instead of hash encoding for a currency 
or integer data type. A specifi c measurement is always required for a data model to validate 
if such optimization also works from a performance point of view.

Optimizing high-cardinality columns
A column with a high cardinality has a high cost because of a large dictionary, a large hierarchy struc-
ture, and a lower compression in encoding. The attribute hierarchy structure can be expensive and 
may be disabled under certain conditions. We describe how to disable attribute hierarchies in the next 
section.

If it is not possible to disable the hierarchy, or if this reduction is not enough for memory optimiza-
tion, then consider the column split optimization for a high-cardinality column used in a measure. We 
can hide this optimization from the user by hiding the split columns and by adapting the calculation 
in measures. For example, if we optimize UnitPrice using the column split, we can create the Sum of 
Amount measure this way:

Sum of Amount :=
SUMX ( 
    Sales, 
    Sales[Quantity] * ( Sales[UnitPrice_Integer] + Sales[UnitPrice_Decimal] ) 
)

Remember that the calculation will be more expensive, and only an accurate measurement of the 
performance of the two models (with and without column split optimization) can establish which one is 
better for a specifi c data model.
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Disabling attribute hierarchies
The attribute hierarchy structure is required by MDX queries that reference the column as an MDX 
attribute hierarchy. This structure contains a sorted list of all the values of the column, and its creation 
might require a large amount of time during a refresh operation, including incremental ones. The size 
of this structure is measured in the Columns Hierarchies Size column of VertiPaq Analyzer. If a column 
is only used by measures and in drill-through results, and it is not shown to the user as an attribute to 
fi lter or group data, then the attribute hierarchy structure is not necessary because it is never used.

The Available In MDX property of a column disables the creation of the attribute hierarchy struc-
ture when set to False. By default, this property is True. The name of this property in TMSL and TOM 
is isAvailableInMdx. Depending on the development tool and on the compatibility level of the data 
model, this property might be not available. A tool that shows this property is Tabular Editor: 
https://github.com/otykier/TabularEditor/releases/latest.

The attribute hierarchy structure is also used in DAX to optimize sorting and fi lter operations. It is 
safe to disable the isAvailableInMdx property when a column is only used in a measure expression, it is 
not visible, and it is never used to fi lter or sort data. This property is also documented at https://
docs.microsoft.com/en-us/dotnet/api/microsoft.analysisservices.tabular.column.isavailableinmdx.

Optimizing drill-through attributes
If a column contains data used only for drill-through operations, there are two possible optimizations. 
The fi rst is the column split optimization; the second is keeping the columns accessible only through 
DirectQuery in a composite data model.

When the column is not being used in measures, there are no concerns about possible costs of the 
materialization of the original values. By leveraging the Detail Rows feature, it is possible to show the 
original column in the result of a drill-through operation, hiding the presence of the two split columns. 
However, it is not possible to use the original value as a fi lter or group-by column.

In a composite data model, the entire table can be made accessible through a DirectQuery request, 
whereas the columns used by relationships and measures can be included in an in-memory aggre-
gation managed by the VertiPaq engine. This way, it is possible to get the best performance when 
aggregating data, whereas the query execution time will be longer when the drill-through attributes 
are requested to the data source via DirectQuery. The next section, “Managing VertiPaq Aggregations,” 
provides more details about that feature.

Managing VertiPaq Aggregations

The VertiPaq storage engine can be used for managing aggregations over DirectQuery data sources—
and in the future, also over large VertiPaq tables. Aggregations were initially introduced in late 2018 
as a Power BI feature. That same feature could later be adopted by other products. The purpose of 
Aggregations is to reduce the cost of a storage engine request, removing the need for an expensive 
DirectQuery request in case the data is available in a smaller table containing aggregated data.

https://github.com/otykier/TabularEditor/releases/latest
https://docs.microsoft.com/en-us/dotnet/api/microsoft.analysisservices.tabular.column.isavailableinmdx
https://docs.microsoft.com/en-us/dotnet/api/microsoft.analysisservices.tabular.column.isavailableinmdx
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The Aggregations feature is not necessarily related to VertiPaq: it is possible to defi ne aggrega-
tions in a DirectQuery model so that different tables are queried on the data source, depending on 
the granularity of a client request. However, the typical use case for Aggregations is defi ning them in a 
composite data model, where each table has three possible storage modes:

 ■ Import: The table is stored in memory and managed by the VertiPaq storage engine.

 ■ DirectQuery: The data is kept in the data source; at runtime, every DAX query might generate 
one or more requests to the data source, typically sending SQL queries.

 ■ Dual: The table is stored in memory by VertiPaq and can also be used in DirectQuery, typically 
joining other tables stored in DirectQuery or Dual mode.

The principle of aggregations is to provide different options to solve a storage engine request. For 
example, a Sales table can store the details of each transaction, such as product, customer, and date. 
When one creates an aggregation by product and month, the aggregated table has a much smaller 
number of rows. The Sales table could also have more than one aggregation, each one with a prece-
dence used in case of multiple aggregations compatible with the same request. Consider a case where 
the following aggregations are available in a model with Sales, Product, Date, and Store:

 ■ Product and Date—precedence 50

 ■ Store and Date—precedence 20

If a query required the total of sales by product brand and year, it would use the fi rst aggregation. 
The same aggregation would be used when drilling down at the month or day level. Indeed, the aggre-
gation that has the Sales data at the Product and Date granularity can solve any query that groups rows 
by using attributes included in these tables. With the same logic, a query aggregating data by store 
country and year will use the second aggregation created at the granularity of Store and Date. How-
ever, a query aggregating data by store country and product brand cannot use any existing aggrega-
tion. Such queries must use the Sales table that has all the details because none of the aggregations 
available have a granularity compatible with the request. If two or more aggregations are compatible 
with the request, the choice is made based on the precedence setting defi ned for each aggregation: 
The engine chooses the aggregation with the highest precedence. Table 18-6 recaps the aggregations 
used based on the query request in the examples described.

TABLE 18-6 Examples of aggregation used, based on query request

Query Request Aggregation Used

Group by product brand and year Product and Date

Group by product brand and month Product and Date

Group by store country and year Store and Date

Group by store country and month Store and Date

Group by year Product and Date (highest precedence)

Group by month Product and Date (highest precedence)

Group by store country and product brand No aggregation—query Sales table at detail level
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The engine chooses the aggregation to use only considering the precedence order, regardless of 
the aggregation storage mode. Indeed, every aggregation has an underlying table that can be stored 
either in VertiPaq or in DirectQuery. Common sense would suggest that a VertiPaq aggregation should 
be preferred over a DirectQuery aggregation. Nevertheless, the DAX engine only follows precedence 
rules. If a DirectQuery aggregation has a higher precedence over a VertiPaq aggregation, and both 
are candidates to speed up a request, the engine chooses the DirectQuery aggregation. It is up to the 
developer to defi ne a good set of precedence rules.

An aggregation can match a storage engine request depending on several conditions:

 ■ Granularity of the relationships involved in the storage engine request.

 ■ Matching of columns defi ned as GroupBy in the summarization type of the aggregation.

 ■ Summarization corresponding to a simple aggregation of a single column.

 ■ Presence of a Count summarization of the detail table.

These conditions might have an impact on the data model design. A model that imports all the 
tables in VertiPaq usually is designed to minimize the memory requirements. As described in the previ-
ous section, “Choosing the right columns to store,” storing the Quantity and Price columns allows the 
developer to compute the Amount at query time using a measure such as:

Sales Amount := SUMX ( Sales, Sales[Quantity] * Sales[Price] )

This version of the Sales Amount measure might not use an aggregation with a Sum summarization 
type because the Sum summarization only references a single column. However, an aggregation could 
match the request if Sales[Quantity] and Sales[Price] have the GroupBy summarization and if there is a 
Count summarization of the Sales table. For complex expressions it could be hard to defi ne an effi cient 
aggregation, and this could impact the model and aggregation design.

Consider the following code as an educational example. If there are two Sum aggregations for the 
Sales[Amount] and Sales[Cost] columns, then a Margin measure should be implemented using the 
difference between two aggregations (Margin1 and Margin2), instead of aggregating the difference 
computed row-by-row (Margin3).

Sales Amount := SUM ( Sales[Amount] )                         -- Can use Sum aggregations
Total Cost   := SUM ( Sales[Cost] )                           -- Can use Sum aggregations
Margin1      := [Sales Amount] - [Total Cost]                 -- Can use Sum aggregations
Margin2      := SUM ( Sales[Amount] ) - SUM ( Sales[Cost] )   -- Can use Sum aggregations

Margin3 := SUMX ( Sales, Sales[Amount] - Sales[Cost] )   -- CANNOT use Sum aggregations

However, the Margin3 measure could match an aggregation that defi nes the GroupBy summariza-
tion for the Sales[Amount] and Sales[Cost] columns and that also includes a Count summarization of the 
Sales table. Such aggregation would potentially also be useful for the previous defi nitions of the Sales 
Amount and Total Cost measures, even though it would be less effi cient than a Sum aggregation on the 
specifi c column.
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As of April 2019, the Aggregations feature is available for DirectQuery tables. While it is not possible 
to defi ne aggregations for a table imported in memory, that feature might be implemented in the near 
future. At that point, all these combinations will become possible:

 ■ DirectQuery aggregation over a DirectQuery table

 ■ VertiPaq aggregation over a DirectQuery table

 ■ VertiPaq aggregation over a VertiPaq table (not available as of April 2019)

The ability to create a VertiPaq aggregation over VertiPaq tables will provide a tool to optimize two 
scenarios for models imported in memory: very large tables (billions of rows) and relationships with a 
high cardinality (millions of unique values). These two scenarios can be managed by manually modi-
fying the data model and the DAX code as described in the “Denormalization” section earlier in this 
chapter. The aggregations over VertiPaq tables will automate this process, resulting in better perfor-
mance, reduced maintenance, and decreased development costs.

Conclusions

In this chapter we focused on how to optimize a data model imported in memory using the VertiPaq 
storage engine. The goal is to reduce the memory required for a data model, obtaining as a side effect 
an improvement in query performance. VertiPaq can also be used to store aggregations in composite 
models, combining the use of the DirectQuery and VertiPaq storage engines in a single model.

The main takeaways of this chapter are:

 ■ Only import in memory the columns required for the analysis.

 ■ Control columns cardinality, as a low cardinality column has better compression.

 ■ Manage date and time in separate tables and store them at the proper granularity level for the 
analysis. Storing a precision higher than required (e.g., milliseconds) consumes memory and 
lowers query performance.

 ■ Consider using VertiPaq to store in-memory aggregations for DirectQuery data sources in 
composite models.





  609

C H A P T E R  1 9

Analyzing DAX query plans

DAX is a functional language with an advanced query engine that can use different storage engines. As 
is the case with many query languages, it is usually possible to get the same result using different DAX 
expressions, each one performing differently. Optimizing a measure or a query requires fi nding the 
most effi cient way to obtain the desired result. In order to fi nd a more effi cient implementation for an 
expression, the fi rst step is to identify the bottlenecks of the existing code.

This chapter describes the components of the DAX query engine in more detail, explaining how to 
obtain information about query plans and performance counters related to a particular DAX expres-
sion using DAX Studio. This knowledge is fundamental to optimize any DAX formula.

Capturing DAX queries

In order to analyze a query plan, it is necessary to execute a DAX query. A report in Power BI or Excel 
automatically generates queries that invoke measures included in the data model. Thus, optimizing a 
DAX measure requires analyzing and optimizing the DAX query that invokes that measure. Collecting 
the queries generated for a report is the fi rst step in the DAX optimization journey. Indeed, a single 
slow report is likely to generate dozens of queries. The careful developer should fi nd the slowest query 
out of them all, thus focusing on the biggest bottleneck fi rst.

DAX Studio (http://daxstudio.org/) is a free open-source tool that offers several useful features to 
capture and analyze DAX queries. In the following example, see how DAX Studio connects to a Power 
BI data model to capture the queries generated by a report page.

The Power BI report shown in Figure 19-1 contains one visual that is slower to display. The table in 
the bottom-left corner with two columns (Product Name and Customers) requires a few seconds to be 
updated when the page is fi rst opened and when the user changes the Continent slicer selection. We 
know this because we created the report on purpose. But how would one uncover the slowest visual in 
a report? DAX studio proves to be very helpful in this.

http://daxstudio.org/
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FIGURE 19-1 A Power BI report with many visuals, one of which is slower to display.

DAX Studio can connect to a Power BI model by selecting the name of a Power BI Desktop fi le 
already opened on the same computer. This is shown in Figure 19-2.

FIGURE 19-2 DAX Studio can connect to multiple types of Tabular models, including Power BI.

Once connected, DAX Studio can start capturing all the queries sent to the Tabular engine after the 
user activates the All Queries button in the Traces tab of the Home ribbon. This is visible in Figure 19-3.

FIGURE 19-3 The All Queries feature captures all the queries sent to the Tabular engine.
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At this point, every action in the client might produce one or more queries. For example, Power BI 
generates at least one DAX query for every visual in the page. Figure 19-4 shows the queries captured 
in the sample from Figure 19-1 when selecting the Asia continent in the Continent slicer.

FIGURE 19-4 The All Queries pane shows all the queries captured by DAX Studio.

 

Note DAX Studio listens to all the queries sent to the Tabular server. By connecting DAX 
Studio to Power BI Desktop, the queries are always executed by the same user on the same 
database. Different Power BI fi les require different connections and a different window 
in DAX Studio. However, a connection to Analysis Services (which requires administrative 
rights) will show queries executed by different users and on different databases. The query 
type will be MDX for any queries generated by a client like Excel. The Duration column 
shows the execution time in milliseconds, and the Query column contains the complete text 
of the query executed on the server.

 

You can easily check that the fi rst query has a duration of around three seconds. All the remaining 
queries are very fast, thus not worth any further attention. In a real-world report you likely will notice 
more than one slow query. DAX Studio lets you quickly discover the slowest queries, focusing the 
attention on those and avoiding any waste of time on measures and queries that are quick enough. 

When you double-click on a line in the All Queries list, the query is copied into the editor window. 
For example, Figure 19-5 shows the complete text of the fi rst query in the previous list. When you press 
the highlighted Format Query button on the Home tab, the query is also formatted using the DAX 
Formatter web service.

Once a slow query is identifi ed following these steps, it can be executed in DAX Studio multiple 
times. One would analyze its query plan and other metrics to evaluate the bottlenecks and to try 
changes that could improve performance. The following sections analyze very simple queries created 
from scratch for educational reasons, although the end goal is to also analyze queries captured from a 
real workload.
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FIGURE 19-5 The Format Query button invokes DAX Formatter to format the DAX code in the editor.

Introducing DAX query plans

The DAX engine provides several details about how it executes a query in the query plan. However, 
“query plan” is a generic defi nition for a set of information including two different types of query plans 
(logical and physical) and a list of storage engine queries used by the physical query plan. Unless oth-
erwise specifi ed, the generic term “query plan” references the whole set of details available. These are 
introduced in this section and explained in more detail in the following part of the chapter.

In Chapter 17, “The DAX engines,” we explained that there are two layers in the DAX query engine: 
the formula engine (FE) and the storage engine (SE). Every query result is produced by executing the 
following steps:

 1. Building an Expression Tree. The engine transforms the query from a string to an expression 
tree, a data structure that is easier to manipulate for further optimization.

 2. Building a Logical Query Plan. The engine produces a list of the logical operations required 
to execute the query. This tree of logical operators resembles the original query syntax. It is 
easy to fi nd a correspondence between a DAX function and a similar operation in the logical 
query plan.

 3. Building a Physical Query Plan. The engine transforms the logical query plan into a set of 
physical operations. A physical query plan is still a tree of operators, but the resulting tree can 
be different from the logical query plan. 
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 4. Executing the Physical Query Plan. The engine fi nally executes the physical query plan, 
retrieving data from the SE and computing the query calculations.

The fi rst step is not interesting to analyze performance. Steps 2 and 3 involve the formula engine, 
whereas step 4 also involves the storage engine (SE). Technically, step 3 is the most important for deter-
mining how the query works, even though the physical query plan is available only after the actual 
execution of a query (step 4). Therefore, it is necessary to wait for the execution of a query before being 
able to see its physical query plan. However, during the execution of step 4, there are other interesting 
pieces of information (SE requests) that are easier to read compared to the physical query plan. For this 
reason, we will see how the analysis of a query often starts from the analysis of the SE requests gener-
ated at step 4.

 

Note Tabular can be queried in both MDX and DAX, even though its natural language is 
DAX. Nevertheless, the engine does not translate MDX into DAX. MDX queries generate 
both a logical and a physical query plan just as DAX queries do. Keep in mind that the same 
query written in DAX or in MDX typically produces different query plans despite returning 
similar results. Here the focus is on the DAX language; however, the information provided in 
this chapter is useful to analyze how Tabular handles MDX queries as well.

 

Collecting query plans
As explained in the previous section, a DAX query generates both a logical and a physical query plan. 
These plans describe the operations performed by the query engine in detail. Unfortunately, the query 
plan is only available in textual representation, not graphical visualization. Because of the complex-
ity and length of a typical query plan, other tools and techniques should be used to optimize a DAX 
expression before starting to analyze the query plan in detail. However, it is important to understand 
the basics of a DAX query plan in order to both understand the behavior of the engine and quickly 
spot potential bottlenecks in longer and more complex query plans. We will now describe in greater 
detail the different parts of a query plan using a simple query. As you will see, even the simplest query 
produces rather complex plans.

As an example, consider this query executed in DAX Studio:

EVALUATE
{ SUM ( Sales[Quantity] ) }

The result of the table constructor is a table with one row and one column (Value), fi lled with the 
sum of the Quantity column for all the rows of the Sales table, as shown in Figure 19-6.

FIGURE 19-6 The result of a query with a simple table constructor with one row and one column.
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The next sections describe the query plans generated and executed by this DAX query. Later on we 
will see how to obtain this information for any query. At this stage, just focus your attention on the role 
of the query plans, how they are structured, and the information they provide.

Introducing logical query plans
The logical query plan is a close representation of the DAX query expression tree. Figure 19-7 shows the 
logical query plan of the previous query.

FIGURE 19-7 The logical query plan of a simple query.

Each line is an operator, and the following lines, indented, are the parameters of the operator. By 
ignoring the parameters for each operator for a moment, it is possible to envision a simpler structure:

AddColumns:  
        Sum_Vertipaq:  
                 Scan_Vertipaq:  
                 'Sales'[Quantity]: 

The outermost operator is AddColumns. It creates the one-row table with the Value column contain-
ing the value returned by the DAX query. The Sum_VertiPaq operator scans the Sales table and sums 
the Sales[Quantity] column. The two operators included within Sum_Vertipaq are Scan_Vertipaq and a 
reference to the scanned column.

This query plan in plain English would be: “Create a table with a column named Value, fi lled with the 
content of a SUM operation, performed by the storage engine by scanning the Quantity column in the 
Sales table.”

The logical query plan shows what the DAX query engine plans to do in order to compute the 
results. Not surprisingly, it scans Sales summarizing Quantity using SUM. Clearly, more complex query 
plans will be harder to decode.

Introducing physical query plans
The physical query plan has a similar format to the logical query plan. Each line is an operator and its 
parameters are in subsequent lines, indented with one tab. Apart from this aesthetic similarity, the two 
query plans use completely different operators. Figure 19-8 shows the physical query plan generated 
by the previous DAX query.
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FIGURE 19-8 The physical query plan of a simple query.

Again, a simplifi ed version of the query plan is possible by removing the parameters of each 
operator:

AddColumns:  
         SingletonTable:  
         SpoolLookup: LookupPhyOp  
                 ProjectionSpool<ProjectFusion<Copy>>: SpoolPhyOp
                          Cache: IterPhyOp
 

The fi rst operator, AddColumns, builds the result table. Its fi rst parameter is a SingletonTable, which 
is an operator returning a single-row table generated by the table constructor. The second parameter, 
SpoolLookup, searches for a value in the datacache obtained by a query sent to the storage engine. 
This is the most intricate part of DAX query plans. The physical query plan shows that it uses some data 
that was previously spooled by other SE queries, but it does not show exactly from which one. In other 
words, the code of an SE query cannot be obtained by reading the DAX query plan. It is possible to 
retrieve the queries sent to the storage engine, but matching them with the exact point in the query 
plan is only possible in simple DAX queries. In more complex—yet realistic—DAX operations, this asso-
ciation might require a longer analysis.

Before moving forward, it is important to highlight some important information included in the 
query plan:

ProjectionSpool<ProjectionFusion<Copy>>: SpoolPhyOp #Records=1 
        Cache: IterPhyOp #FieldCols=0 #ValueCols=1
 

 

Note In former versions of the Tabular engine that did not support composite models, 
the ProjectionSpool and Cache operators were called AggregationSpool and VertiPaqResult, 
respectively. Besides some differences in operator names, the structure of the physical query 
plan did not change much, and the same logic described in this chapter can be applied to 
older Tabular engines.

 

The ProjectionSpool operator represents a query sent to the storage engine; the next section will 
describe storage engine requests. The ProjectionSpool operator iterates the result of the query, show-
ing the total number of rows iterated in the #Records=1 parameter. The number of records also repre-
sents the number of rows returned by the nested Cache operator.
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The number of records is important for two reasons: 

 ■ It provides the size (in rows) of the datacache created by VertiPaq or DirectQuery. A large data-
cache consumes more memory at query time and takes more time to scan.

 ■ The iteration performed by ProjectionSpool in the formula engine runs in a single thread. When 
a query is slow and this number is large, it could indicate a bottleneck in the query execution.

Because of the importance of the number of records, DAX Studio reports it in the Records column of 
the query plan. We sometimes refer to the number of records as the cardinality of the operator.

Introducing storage engine queries
The previous physical query plan includes a ProjectionSpool operator that represents an internal query 
sent to the storage engine (SE). Because the model is in Import mode, DAX uses the VertiPaq SE, which 
receives queries in xmSQL. The following is the xmSQL query generated during the execution of the 
DAX query analyzed in the previous sections:

SET DC_KIND="AUTO";
SELECT
SUM ( 'DaxBook Sales'[Quantity] )
FROM 'DaxBook Sales';
 
'Estimated size ( volume, marshalling bytes ) : 1, 16'

The preceding code is a simplifi ed version shown in DAX Studio, which removes a few internal 
details that are not relevant in performance analysis. The original xmSQL visible in SQL Server Profi ler is 
the following:

SET DC_KIND="AUTO";
SELECT
SUM([DaxBook Sales (905)].[Quantity (923)]) AS [$Measure0]
FROM [DaxBook Sales (905)];
 
[Estimated size (volume, marshalling bytes): 1, 16]

This query aggregates all the rows of the Sales table, returning a single column with the sum of 
Quantity. The SE executes the entire aggregation operation, returning a small datacache (one row, one 
column) regardless of the size of the Sales table. The materialization required for this datacache is mini-
mal. Moreover, the only data structures read by this query are those storing the Quantity column in 
the Sales table. A Sales table with hundreds of other columns would not affect the performance of this 
xmSQL query. The VertiPaq SE only scans columns included in the xmSQL query. If the model had been 
using DirectQuery, the query generated would have been a SQL query like the following one:

SELECT
SUM ( [Quantity] )
FROM Sales
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Note From here on out, we will not cover the details of query plans using DirectQuery. As 
discussed in Chapter 17, optimizing DirectQuery requires an optimization of the data source. 
However, changes to the DAX query can improve the SQL code sent to the DirectQuery data 
source, so the same techniques for analyzing a query plan described for VertiPaq can also be 
applied to DirectQuery, even though the assumptions on the speed of the storage engine 
are no longer valid for DirectQuery.

 

Later in the chapter we will explain why measuring the execution time of each SE query is an impor-
tant part of the optimization process. Keep in mind that VertiPaq performance is related to the size of 
the columns involved in a query, and not only to the number of rows of the table. Different columns 
can have different compression rates and different sizes in memory, resulting in different scan times.

Capturing profi ling information

The previous section introduced the DAX query plans. This section describes the tools to capture these 
events and how to measure their duration, which are the fi rst steps in DAX optimization.

The DAX engine has grown as part of Microsoft SQL Server Analysis Services. Analysis Services pro-
vides trace events that can be captured with the SQL Server Profi ler tool or by intercepting extended 
events (xEvents). Other products such as Power Pivot and Power BI use the same engine, although these 
products do not have the same tools available as for Analysis Services to capture trace or extended 
events. For example, Power Pivot for Excel and Power BI Desktop have diagnostic options that save 
trace events on a fi le, which can be opened later with the same SQL Server Profi ler tool.

However, the events generated by the engine require some massage to be useful for performance 
analysis; the SQL Server Profi ler is a general-purpose tool that is not designed specifi cally for this task. 
On the other hand, DAX Studio reads and interprets Analysis Services events, summarizing relevant 
information in an easier way. This is why we strongly suggest using DAX Studio as a primary tool to edit, 
test, and optimize DAX queries and expressions. A later section includes a description of SQL Server 
Profi ler, providing more details to the readers interested in understanding the internal details. DAX 
Studio collects the same events as SQL Server Profi ler, processing them and displaying summarized 
information in a very effi cient way.

Using DAX Studio
As explained at the beginning of this chapter, DAX Studio can also capture DAX queries sent to the 
Tabular engine. Indeed, DAX Studio can execute any valid DAX query, including those captured by DAX 
Studio itself. The DAX query syntax is explained in Chapter 13, “Authoring queries.” DAX Studio collects 
trace events generated by one or more queries executed from within DAX Studio and displays the 
relevant information about the query plans and storage engine. DAX Studio can connect to Power BI, 
Analysis Services, and Power Pivot for Excel. 

Before analyzing a query in DAX Studio, we must enable the Query Plan and Server Timings options 
in the Traces tab of the Home tab, as shown in Figure 19-9.
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FIGURE 19-9 The Query Plan and Server Timings options enable the tracing features in DAX Studio.

When the user enables these options, DAX Studio shows the Query Plan and Server Timings panes 
next to the Output and Results pane, which is visible by default. DAX Studio connects to the DAX 
engine as if it were a profi ler, and it captures the trace events described in the next section. It automati-
cally only fi lters the events related to the executed query, so we do not have to worry if there are other 
concurrent users active on the same server.

The Query Plan pane displays the two query plans generated by the query, as shown in Figure 19-10. 
The physical query plan is in the upper half of the pane, and the logical query plan is in the lower half. The 
physical query plan is usually the most important to analyze when looking for a performance bottleneck 
in the formula engine. For this reason, this list also provides a column containing the number of records 
iterated by a spool operation (which is an iteration performed by the formula engine, usually over a 
datacache). This way, we can easily recognize which operations iterate over a large number of records in a 
complex query plan. We will describe how to use this information later in Chapter 20, “Optimizing DAX.”

FIGURE 19-10 The Query Plan pane displays the Physical Query Plan and the Logical Query Plan.

The Server Timings pane in Figure 19-11 shows information related to SE queries and how the 
execution time splits between FE and SE.

FIGURE 19-11 The Server Timings pane displays a summary of timings information and the details of the storage 
engine queries.
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Note The SE query displayed in Figure 19-11 is applied to a model with 4 billion rows to 
show high CPU consumption. The model used for this example is not included in the com-
panion fi les for the book.

 

The following metrics are found on the left side of the Server Timings pane: 

 ■ Total: Elapsed time for the complete DAX query. It corresponds to the Duration of the Query 
End event.

 ■ SE CPU: Sum of the CPU Time value for all the VertiPaq scan events. It also reports the degree of 
parallelism of VertiPaq operations (number of cores used in parallel).

 ■ FE: Time elapsed in the formula engine, in milliseconds and as a percentage of the Total time.

 ■ SE: Time elapsed in the storage engine, in milliseconds and as a percentage of the Total time.

 ■ SE Queries: Number of queries sent to the storage engine.

 ■ SE Cache: Number of storage engine queries resolved by the storage engine cache, displayed 
as an absolute number and as a percentage of the SE Queries value.

The list in the center shows the SE queries executed, and the panel on the right side displays the 
complete code of the SE query selected in the center list. By default, the list includes only one row for 
each query, hiding the VertiPaq Scan Internal and other cache events that are always visible in SQL 
Server Profi ler. We can show/hide these more detailed events by enabling the Cache, Internal, and 
Batch buttons of the Server Timings group on the Home tab from Figure 19-9. However, these events 
are usually not necessary in the performance analysis and are thus hidden by default.

A DAX performance analysis usually starts from the results displayed in the Server Timings pane. If 
the query spent more than 50% of the execution time in FE, then we might analyze the query plans fi rst, 
looking for the most expensive operations in the FE. Otherwise, when most of the execution time is spent 
in SE, then we will look for the most expensive SE queries in the center list of the Server Timings pane.

Information provided in the Duration and CPU columns is helpful to identify performance bottle-
necks in a query. Both values are in milliseconds. The Duration is the time elapsed between the start 
and the end of the request made to the SE. The CPU column shows the total amount of time consumed 
by one core. If the CPU number is larger than Duration, it means that more cores have been used in 
parallel to complete the operation.

The parallelism of an operation is obtained by dividing CPU by Duration. When this number is close 
to the total number of cores in the server, we cannot improve performance by increasing the parallel-
ism. In this example, we used a system with eight cores. Thus, with a parallelism of 7.5, the query has 
reached the limits of the hardware. A concurrent user would not be able to get optimal performance 
executing a long-running query and would also slow down other users. In this condition, more cores 
would improve the speed of the query. In case the parallelism of a query is much smaller than the num-
ber of cores available, there would not be any benefi t from providing more cores to the Tabular engine. 
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The parallelism is computed only for SE operations because the FE runs in a single thread. Formula 
engine operations cannot benefi t from parallel execution.

The Rows and KB columns show the estimated number of rows and size of the result (datacache) 
provided by each SE query. Because every datacache must be consumed by the FE in a single thread, 
a datacache with a large cardinality might be responsible for a slow FE operation. Moreover, the size 
of a datacache represents the memory cost required by the materialization of a set of data in an 
uncompressed format; indeed, the FE only consumes uncompressed data. The SE cost to create a large 
datacache is usually caused by the need to allocate and write uncompressed data in memory. There-
fore, reducing the need for the materialization of a datacache is important to lower the volume of data 
exchanged between SE and FE, reducing memory pressure and improving both query performance 
and scalability.

 

Note The Rows and KB columns show an estimated value that can sometimes be wrong. 
The exact number of rows returned by an SE query is available in the physical query plan. It 
is reported in the Records column of the ProjectionSpool event consuming a Cache element. 
The exact size of a datacache is not available, but it can be approximated proportionally to 
the ratio between Records in the query plan and the estimated Rows of the SE query.

 

DAX Studio allows sorting of the queries by any column, making it easy to fi nd the most expensive 
queries when they are sorted by CPU, Duration, Rows, or KB, depending on the ongoing investigation. 
DAX Studio makes fi nding the bottlenecks in a DAX query more productive. It does not optimize DAX 
by itself, but it simplifi es the optimization task. In the remaining part of the book we will use DAX Stu-
dio as a reference. However, the same information could also be obtained by using SQL Server Profi ler, 
which would be more expensive.

Using the SQL Server Profi ler
The SQL Server Profi ler tool is installed as part of the SQL Server Management environment, which 
can be freely downloaded from https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-
management-studio-ssms. SQL Server Profi ler can be connected to an Analysis Services instance and 
collects all the events related to a DAX query execution. SQL Server Profi ler can also load a fi le contain-
ing a trace session produced by the same SQL Server Profi ler, or by other services such as Power Pivot 
for Excel and Power BI Desktop. This section explains how to use SQL Server Profi ler in case DAX Studio 
cannot be used for any reason. However, you can skip this section if DAX Studio is available. We provide 
it as a reference because it can be interesting to understand the underlying behavior of the events 
involved in performance analysis.

In order to catch DAX query plans and storage engine queries, it is necessary to confi gure a new 
trace session selecting the interesting events for a DAX query. This is shown in Figure 19-12.

https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
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FIGURE 19-12 SQL Server Profi ler settings to capture DAX query plans and SE queries.

There are fi ve classes of events required to collect the same information used by DAX Studio:

 ■ Query End: Event fi red at the end of a query. One might include the Query Begin event too, but 
we suggest only catching Query End because it contains the execution time.

 ■ DAX Query Plan: Event fi red after the query engine has computed the query plan. It contains a 
textual representation of the query plan. This event class includes two different subclasses, Logi-
cal Plan and Physical Plan. For each query, the engine generates both classes: one logical query 
plan and one physical query plan.

 ■ DirectQuery End: Event fi red when the DirectQuery engine answers a query. As with the Query 
End event, to gather timing information we suggest including the end event of the queries 
executed by the DirectQuery engine.

 ■ VertiPaq SE Query Cache Match: Event fi red when a VertiPaq query is resolved by looking at 
the cache data. It is useful in order to see how much of your query performs real computations 
and how much of it just does cache lookups.

 ■ VertiPaq SE Query End: Event fi red when the VertiPaq engine answers a query. As with the 
Query End event, to gather timing information, we suggest including the end event of the que-
ries executed by the VertiPaq storage engine.
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Tip Once you select the events needed, it is a good idea to organize columns (clicking the 
Organize Columns button you see in Figure 19-12), and to save a template of the selections 
made, so you do not have to repeat the same selection every time you start a new session. 
You can save a trace template by using the File / Templates / New Template menu in SQL 
Server Profi ler.

  

Note In a production environment, one should fi lter the events of a single user session. 
Otherwise, all the events of different queries executed at the same time would be visible, 
which makes it harder to analyze events related to a single query. By running the Profi ler in 
a development or test environment where there are no other active users, only the events 
related to the query executed for the performance tests would be visible without any back-
ground noise. DAX Studio automatically fi lters the events related to a single query analyzed, 
removing any background noise without requiring any further actions.

In order to see the sequence of events fi red, we analyze what has happened by running the query 
used to generate the SE query displayed in Figure 19-11 using DAX Studio over a large table (over 
4 billion rows):

EVALUATE
ROW ( "Result", SUM ( Audience[Weight] ) )

The log window of the SQL Server Profi ler shows the result, visible in Figure 19-13.

FIGURE 19-13 Trace events captured in a SQL Server Profi ler session for a simple DAX query.

Even for such a simple query, the DAX engine fi res fi ve different events:

 1. A DAX VertiPaq Logical Plan event, which is the logical query plan.

 2. An Internal VertiPaq Scan event, which corresponds to an SE query. There could be more than 
one internal event (subclass 10) for each VertiPaq Scan event (subclass 0).

 3. A VertiPaq Scan event, which describes a single SE query received by the FE.

 4. A DAX VertiPaq Physical Plan event, which is the physical query plan.

 5. A fi nal Query End event, which returns the query duration of the complete DAX query. The 
CPU time reported by this event should be ignored. It should be close to the time spent in the 
FE but is not as accurate as the calculation explained later.
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All the events show both CPU time and duration, expressed in milliseconds. CPU Time is the amount 
of CPU time consumed to answer the query, whereas Duration is the time the user has had to wait for 
their result. When Duration is lower than CPU Time, the operation has been executed in parallel on 
many cores. When Duration is greater than CPU Time, the operation had to wait for other operations 
(usually logged in different events) to be completed.

 

Note The accuracy of the CPU Time and Duration columns is not very reliable for values 
lower than 16 milliseconds, and CPU Time can be less accurate than that in conditions of 
high parallelism. Moreover, these timings might depend on other operations in progress on 
the same server. It is a common practice to run the same test multiple times in order to cre-
ate an average of the execution time of single operations, especially when one needs accu-
rate numbers. However, if only looking for an order of magnitude, one might just ignore 
differences under 100 milliseconds.

 

Considering the sequence of events, the logical query plan precedes all the SE queries (VertiPaq 
scans), and only after their execution is the physical query plan raised. In other words, the physical 
query plan is an actual query plan and not an estimated one. Indeed, it contains the number of rows 
processed by any iteration in the FE, though it does not provide information about the CPU time and 
duration of each step in the query plan.

Logical and physical query plans do not provide any timing information, which are only available in 
the other events gathered by the Profi ler. Information provided in the CPU Time and Duration columns 
is the same shown in CPU and Duration by DAX Studio for SE queries. However, the calculation of the 
time spent in the FE displayed in DAX Studio requires some more work using SQL Server Profi ler.

The Query End event only provides the total elapsed time for a DAX query in the Duration column, 
summing both the FE and SE durations. The VertiPaq scan events provide the time spent in the SE. The 
elapsed time in FE is obtained by subtracting the duration of all the SE queries from the duration of the 
entire DAX query provided in the Query End event.

As shown in Figure 19-13, the Query End event had a Duration of 844 milliseconds. The time spent in 
the SE was 838 milliseconds. There was only one SE query, which lasted 838 milliseconds; only consider 
the VertiPaq Scan event, ignoring internal ones. The difference is 6 milliseconds, which is the amount of 
time spent in the FE. In case of multiple SE queries, their execution time must be aggregated to calcu-
late the total amount of time spent in the SE, which must be subtracted from the total duration to get 
the amount of time spent in the FE.

Finally, the SQL Server Profi ler can save and load a trace session. SQL Server Profi ler cannot connect 
to Power Pivot for Excel, but it can open a trace fi le saved by Power Pivot for Excel or Power BI Desktop. 
However, Power Pivot for Excel has an Enable Power Pivot Tracing check box in the Settings dialog box 
that generates a TRC fi le; TRC is the extension for trace fi le. The events captured in the profi ler session 
saved this way cannot be customized; they also usually include more event types than those required 
to analyze DAX query plans. DAX Studio cannot load a trace session but can connect directly to all the 
tools including Power Pivot for Excel without any limitation.
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Reading VertiPaq storage engine queries

In the previous sections, we described some details of the physical and logical query plans. Although 
these plans are useful in some scenarios, the most interesting part of a query plan is the set of VertiPaq 
SE queries.

In this section we describe how to read the VertiPaq SE queries and understand what happens in 
VertiPaq to execute an xmSQL query. This information is useful to solve a bottleneck in the VertiPaq 
storage engine. However, reading these queries is useful to also understand what happens in the FE: 
If a calculation is not performed by the SE, it must be computed in the FE. Because the number of SE 
queries is usually smaller than the rows in the query plan, it is more productive to always start analyzing 
the SE queries regardless of the detected bottleneck type.

Introducing xmSQL syntax
In the previous section, we introduced a simple SE query described in a simplifi ed xmSQL syntax, which 
is the same as displayed by DAX Studio:

SELECT
SUM ( Sales[Quantity] ) 
FROM Sales;

This syntax would be quite similar in standard ANSI SQL:

SELECT
SUM ( Quantity ) 
FROM Sales;

Every xmSQL query involves a GROUP BY condition, even if this is not explicitly stated as part of its 
syntax. For example, the following DAX query returns the list of unique values of the Color column in 
the Product table:

EVALUATE VALUES ( 'Product'[Color] )

It results in this xmSQL query; note that no GROUP BY appears in the query:

SELECT Product[Color] 
FROM Product;

The corresponding query in ANSI SQL would have a GROUP BY condition:

SELECT Color
FROM Product
GROUP BY Color



 CHAPTER 19 Analyzing DAX query plans 625

The reason we compare the xmSQL to an ANSI SQL query with GROUP BY instead of DISTINCT—
which would be possible for the previous example—is that most of the time xmSQL queries also 
include aggregated calculations. For example, consider the following DAX query:

EVALUATE
SUMMARIZECOLUMNS (
    Sales[Order Date], 
    "Revenues", CALCULATE ( SUM ( Sales[Quantity] ) ) 
)

This is the corresponding xmSQL query sent to the SE:

SELECT Sales[Order Date], SUM ( Sales[Quantity] ) 
FROM Sales;

In ANSI SQL there would be a GROUP BY condition for the Order Date column:

SELECT [Order Date], SUM ( Quantity ) 
FROM Sales
GROUP BY [Order Date]

An xmSQL query never returns duplicated rows. When a DAX query runs over a table that does not 
have a unique key, the corresponding xmSQL query includes a special RowNumber column that keeps 
the rows unique. However, the RowNumber column is not accessible in DAX. For example, consider this 
DAX query:

EVALUATE Sales

It generates the following xmSQL code:

SELECT Sales[RowNumber], Sales[column1], Sales[column2], ... ,Sales[columnN] 
FROM Sales

Aggregation functions
xmSQL includes the following aggregation operations:

 ■ SUM sums the values of a column.

 ■ MIN returns the minimum value of a column.

 ■ MAX returns the maximum value of a column.

 ■ COUNT counts the number of rows in the current GROUP BY.

 ■ DCOUNT counts the number of distinct values of a column.
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The behavior of SUM, MIN, MAX, and DCOUNT is similar. For example, the following DAX query 
returns the number of unique customers for each order date:

EVALUATE
SUMMARIZECOLUMNS (
    Sales[Order Date], 
    "Customers",  DISTINCTCOUNT ( Sales[CustomerKey] )
)

It generates the following xmSQL code:

SELECT Sales[Order Date], DCOUNT ( Sales[CustomerKey] ) 
FROM Sales;

Which corresponds to this ANSI SQL query:

SELECT [Order Date], COUNT ( DISTINCT CustomerKey ) 
FROM Sales
GROUP BY [Order Date]

The COUNT function does not have an argument. Indeed, it computes the number of rows for the 
current group. For example, consider the following DAX query that counts the number of products for 
each color:

EVALUATE
SUMMARIZECOLUMNS (
    'Product'[Color], 
    "Products", COUNTROWS ( 'Product' ) 
)

This is the xmSQL code sent to the SE:

SELECT Product[Color], COUNT ( ) 
FROM Product;

A corresponding ANSI SQL query could be the following:

SELECT Color, COUNT ( * ) 
FROM Product
GROUP BY Color

Other aggregation functions in DAX do not have a corresponding xmSQL aggregation function. For 
example, consider the following DAX query using AVERAGE:

EVALUATE
SUMMARIZECOLUMNS (
    'Product'[Color], 
    "Average Unit Price", AVERAGE ( 'Product'[Unit Price] ) 
)
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The corresponding xmSQL code includes two aggregations: one for the numerator and one for the 
denominator of the division that will compute a simple average in the FE:

SELECT Product[Color], SUM ( Product[Unit Price] ), COUNT ( ) 
FROM Product
WHERE Product[Unit Price] IS NOT NULL;

Converting the xmSQL query in ANSI SQL, we would write:

SELECT Color, SUM ( [Unit Price] ), COUNT ( * ) 
FROM Product
WHERE Product[Unit Price] IS NOT NULL
GROUP BY Color

Arithmetical operations
xmSQL includes simple arithmetical operations: +, −, *, / (sum, subtraction, multiplication, division). 
These operations work on single rows, whereas the FE usually performs arithmetical operations 
between the results of aggregations. It is common to see arithmetical operations in the expression 
used by an aggregation function. For example, the following DAX query returns the sum of the product 
of Quantity by Unit Price calculated row-by-row for the Sales table:

EVALUATE
{ SUMX ( Sales, Sales[Quantity] * Sales[Unit Price] ) }

It generates the following xmSQL code:

WITH
    $Expr0 := ( Sales[Quantity] * Sales[Unit Price] ) 
SELECT
SUM ( @$Expr0 )
FROM Sales;

The WITH statement introduces expressions associated with symbolic names (starting with the $Expr 
prefi x) that are referenced later in the remaining part of the query. For example, in the previous code 
the $Expr0 expression corresponds to the multiplication between Quantity and Unit Price that is later 
evaluated for each row of the Sales table, summing the result in the aggregated value. 

The previous xmSQL code corresponds to this ANSI SQL query:

SELECT SUM ( [Quantity] * [Unit Price] ) 
FROM Sales

xmSQL can also execute casts between data types to perform arithmetical operations. It is impor-
tant to remember that these operations only happen within a row context, from the point of view of a 
DAX expression.
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Filter operations
An xmSQL query can include fi lters in a WHERE condition. The performance of a fi lter depends on the 
cardinality of the conditions applied (this will be discussed in more detail later in the section “Under-
standing scan time”).

For example, consider the following query that returns the sum of the Quantity column for all sales 
with a unit price equal to 42:

EVALUATE
CALCULATETABLE (
    ROW ( "Result", SUM ( Sales[Quantity] ) ), 
    Sales[Unit Price] = 42
)

The resulting xmSQL query is the following:

SELECT SUM ( Sales[Quantity] ) 
FROM Sales
WHERE Sales[Unit Price] = 420000;

 

Note The reason why the value in the WHERE condition is multiplied by 10,000 is because 
the Unit Price column is stored as a Currency data type (also known as Fixed Decimal Num-
ber in Power BI). That number is stored as an Integer in VertiPaq, so the FE performs the 
conversion to a decimal number by dividing the result by 10,000. Such division is not visible, 
neither in the query plan nor in the xmSQL code.

 

The WHERE condition might include a test with more than one value. For example, consider a small 
variation of the previous query that sums either the quantity or the sales with a unit price equal to 
16 or 42. You see this in the following DAX query:

EVALUATE
CALCULATETABLE (
    ROW ( "Result", SUM ( Sales[Quantity] ) ), 
    OR ( Sales[Unit Price] = 16, Sales[Unit Price] = 42 ) 
)

The xmSQL uses the IN operator to include a list of values:

SELECT SUM ( Sales[Quantity] ) 
FROM Sales
WHERE Sales[Unit Price] IN ( 16000, 42000 );

Any fi lter condition in xmSQL only includes existing values of the column. For example, if a DAX 
condition references a value that does not exist in the column, the resulting xmSQL code will include a 
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condition that will fi lter out all the rows. For example, if neither 16 nor 42 existed in the Sales table, the 
previous xmSQL query could be not invoked at all from the FE or would become something like:

SELECT SUM ( Sales[Quantity] ) 
FROM Sales
WHERE Sales[Unit Price] IN ( );

The result of such an xmSQL query will always be empty.

It is important to remember that xmSQL is a textual representation of an SE query. The actual 
structure is more optimized. For example, when the list of values allowed for a column is very long, the 
xmSQL reports a few values, highlighting the total number of values passed internally to the query. This 
happens quite often for time intelligence functions. For example, consider the following DAX query 
that returns the sum of the quantity for one year of sales:

EVALUATE
CALCULATETABLE (
    ROW ( "Result", SUM ( Sales[Quantity] ) ), 
    Sales[Order Date] >= DATE ( 2006, 1, 1 ) && Sales[Order Date] <= DATE ( 2006, 12, 31 ) 
)

Using a recent version of the DAX engine, it generates the following xmSQL query:

SELECT SUM ( Sales[Quantity] ) 
FROM Sales
WHERE Sales[Order Date] >= 38718.000000
  VAND Sales[Order Date] <= 39082.000000

DAX represents date and time values as fl oating-point numbers. For this reason, the comparison of 
the Order Date column happens with two numbers corresponding to the two dates used in the fi lter 
argument of the DAX expression.

However, older versions of the DAX engine might produce the following xmSQL query instead:

SELECT SUM ( Sales[Quantity] ) 
FROM Sales
WHERE Sales[Order Date] IN ( 38732.000000, 38883.000000, 38846.000000, 38997.000000,
38809.000000, 38960.000000, 38789.000000, 38923.000000, 39074.000000, 38752.000000..[365 
total values, not all displayed] ) ;

In this case, instead of a range condition, the xmSQL query has a bitmap index that identifi es all the 
values included in the fi lter. The WHERE / IN condition represents such a bitmap index, only report-
ing in the xmSQL code a sample of the values followed by the total number of values in the column. In 
order to obtain the list of values for a range, another xmSQL query might be executed before:

SELECT Sales[Order Date] 
FROM Sales
WHERE Sales[Order Date] >= 38718.000000
    VAND Sales[Order Date] <= 39082.000000
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The actual xmSQL query generated in this last example might be more complex, including a callback 
to the FE to transform the result of the DATE function into the corresponding fl oating-point value. 
More information about these callbacks is included in the section “Understanding CallbackDataID” 
later in this chapter.

Join operators
The xmSQL code can execute JOIN conditions when a DAX query involves multiple tables connected by 
relationships in the data model. For example, consider the following DAX query returning the sum of 
the Quantity column in the Sales table for each Color name in the Product table:

EVALUATE
SUMMARIZECOLUMNS (
    'Product'[Color], 
    "Sales",  SUM ( Sales[Quantity] ) 
)

If there is a one-to-many relationship between the Product and Sales tables in the data model, the 
corresponding xmSQL code includes a LEFT OUTER JOIN between the two tables, as shown in the 
following SE query:

SELECT Product[Color], SUM ( Sales[Quantity] ) 
FROM Sales
    LEFT OUTER JOIN Product ON Sales[ProductKey] = Product[ProductKey];

The ON condition of the JOIN automatically includes the columns that defi ne the relationship in the 
data model. For each relationship involved in the query, there is one join in xmSQL.

Temporary tables and shallow relationships in batch events
VertiPaq can execute xmSQL queries whose result is kept in memory for another xmSQL query without 
being consumed by the FE. This improves the query performance because this temporary result is not 
materialized for the SE. If the temporary table is used in a different xmSQL operation, there should 
be a Batch operation in the VertiPaq storage engine grouping the different SE queries executed. For 
example, consider the following DAX query computing the average yearly income of customers that 
made at least one purchase in the corresponding year:

EVALUATE
CALCULATETABLE (
    SUMMARIZECOLUMNS (
        'Date'[Calendar Year],
        "Yearly Income", AVERAGE ( Customer[Yearly Income] ) 
    ),
    CROSSFILTER ( Sales[CustomerKey], Customer[CustomerKey], BOTH )
)
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The presence of the bidirectional fi lter between the Sales and Customer tables activates a special 
behavior of the SE, which generates a query executed in different steps of a Batch statement. In DAX 
Studio, the Batch event is hidden by default, but it can be activated to see the Batch event after one or 
more Scan events. This is shown in Figure 19-14.

FIGURE 19-14 SE events captured in DAX Studio enabling the Batch fi lter in Server Timings.

The Batch reported at line 7 includes all the Scan events reported in lines 2, 4, and 6. The SE query 
of each Scan event is separated by a comma, but the Batch event could have additional statements 
like the one highlighted in the complete code of the Batch event that follows. The CREATE SHALLOW 
RELATION statement implements the behavior of the bidirectional fi lter at the SE level, optimizing the 
execution of a DAX query involving one or more bidirectional fi lters:

--
-- This query is also the first Scan event processed
--
DEFINE TABLE '$TTable3' := 
SELECT
    Customer[CustomerKey], Date[Calendar Year]
FROM Sales
    LEFT OUTER JOIN Customer 
        ON Sales[CustomerKey]=Customer[CustomerKey]
    LEFT OUTER JOIN Date 
        ON Sales[OrderDateKey]=Date[DateKey],
 
--
-- This directive does not generate any Scan event 
--
CREATE SHALLOW RELATION '$TRelation1' MANYTOMANY 
    FROM Customer[CustomerKey] TO '$TTable3'[Customer$CustomerKey],
 
--
-- This query is the second Scan event processed
--
DEFINE TABLE '$TTable4' := 
SELECT
    SIMPLEINDEXN ( '$TTable3'[Customer$CustomerKey] )
FROM '$TTable3',
 
--
-- This query is the third and last Scan event processed for this batch
--
DEFINE TABLE '$TTable1' := 
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SELECT
    '$TTable3'[Date$Calendar Year],
    SUM ( '$TTable2'[$Measure0] ), SUM ( '$TTable2'[$Measure1] )
FROM '$TTable2'
    INNER JOIN '$TTable3' 
        ON '$TTable2'[Customer$CustomerKey]='$TTable3'[Customer$CustomerKey]
 
REDUCED BY
 
'$TTable2' := 
SELECT
    Customer[CustomerKey],
    SUM ( Customer[Yearly Income] ), 
    SUM (  ( PFDATAID ( Customer[Yearly Income] ) <> 2 )  )
FROM Customer
WHERE
Customer[CustomerKey] ININDEX '$TTable4'[$Index1];

Only the last DEFINE TABLE statement in a batch generates a result returned to the FE, correspond-
ing to the $TTable2 query. All the previous DEFINE TABLE statements generate temporary tables used 
later within the same batch. It is worth noting that the last query starts from DEFINE TABLE $TTable1 
and ends at the end of the batch, including the REDUCED BY clause. REDUCED BY is a syntax defi ning 
a subquery within the same SE request rather than requiring a separate SE query executed within the 
same batch, like $TTable3 and $TTable4 in this batch. The result of a temporary table defi ned within 
DEFINE TABLE before the last one in the batch could contain binary information that is never returned 
as a DAX result. For example, the SIMPLEINDEXN function generates an index structure, so that a 
following query can use that index to apply a fi lter to a column through the ININDEX operator. These 
temporary tables are not returned to the FE; they are only kept in the SE with an effi cient structure used 
only to improve the internal evaluation of other SE queries.

Understanding scan time
After having described the syntax of xmSQL queries, it is time to consider the work performed by the 
storage engine to execute such statements.

VertiPaq performs a complete scan of each column involved in an SE query. There could be more 
iterations for a column, depending on the request. Because there are no indexes, the time required to 
complete a scan depends on the memory footprint of the column, which depends on the number of 
unique values in the column, on their distribution across the rows, and on the number of rows in the 
table. The importance of these factors depends on the aggregation function used in the xmSQL 
query. For example, consider a large table with four columns: Date, Time, Age, and Score. The table 
has 4 billion rows, so that we can observe relevant differences in execution time. We executed the 
following DAX queries for each column:
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EVALUATE
ROW ( "Sum", SUM ( Example[<column name>] ) ) 
 
EVALUATE
ROW ( 
    "Distinct Count", 
    CALCULATE ( 
        DISTINCTCOUNT ( Example[<column name>] ),
        NOT ISBLANK ( Example[<column name>] )
    )
)

 

Note The second query includes a NOT ISBLANK condition that is required to obtain an SE 
query to execute the query. If the query did not have a fi lter, the number of distinct values 
in a column would have been retrieved from the metadata of the model, without actually 
executing any SE request.

 

We are not interested in the values returned by these queries. We are only interested in the time 
spent in the SE, which for these simple queries is always close to the entire execution time of the DAX 
queries. Table 19-1 shows the results where we reported, for each column:

 ■ Memory (MB): The memory footprint of the column for the entire table (4 billion rows).

 ■ Distinct Values: The number of unique values in the column, obtained by executing the 
DISTINCTCOUNT aggregation function in DAX.

 ■ SUM (ms): The execution time of the query that applies the SUM aggregation to the column.

 ■ DISTINCTCOUNT (ms): The execution time of the query that applies the DISTINCTCOUNT 
aggregation to the column.

TABLE 19-1 Column size, cardinality, and execution time of aggregation functions

Column Memory (MB) Distinct Values SUM (ms) DISTINCTCOUNT (ms)

Date 0.03 1,588 9 20

Age 165.26 96 146 333

Score 2,648.40 9,766,664 837 4,288

Time 6,493.57 1,439 1,330 4,102

At fi rst sight, a few results might appear counterintuitive. Usually, the larger the number of unique 
values in a column, the slower the query. In this case, Date is faster than Age, which has a smaller 
number of unique values. Moreover, the Time column, which has a cardinality similar to Date, has a 
difference in performance of at least one order of magnitude compared to Date. The reasons for these 
differences are the different compression rates, derived by different sort orders of the columns.
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The Date column always has the faster execution time. This is because the 4 billion rows have been 
processed as reading rows sorted by date. Even without partitioning, this created segments with one 
or two unique values each. Thus, all the rows in each segment had a very high compression rate, as is 
made clear by the memory used by the Date column.

The Age column has the second-best performance for both SUM and DISTINCTCOUNT. This column 
has a larger memory footprint than Date because there are different Age values for each Date, and 
rows are sorted by Date fi rst. 

The Score and Time columns have a slower performance. The performance of SUM depends mainly 
on the memory footprint, whereas DISTINCTCOUNT is also sensitive to the number of distinct values in 
the column. The reason for that is the different calculation algorithm used for these two aggregations.

The important concept here is that we can obtain a different performance for an SE query depend-
ing on the memory footprint of a column. We can optimize a VertiPaq SE query by reducing the 
memory footprint of the columns used. We can obtain that by using columns with a smaller number of 
unique values, or with a different sort order of the data source, or by reducing the number of rows in 
the table, or by applying other techniques that we will describe in the remaining part of this book.

Understanding DISTINCTCOUNT internals
The use of the DISTINCTCOUNT function in a DAX expression generates multiple VertiPaq Scan Inter-
nal events for a single VertiPaq Scan event. We can see internal events by enabling the Internal button 
in the Server Timings group of DAX Studio.

Consider the following DAX query:

EVALUATE
ROW ( 
    "Distinct Count", 
    CALCULATE ( 
        DISTINCTCOUNT ( Example[Score] ),
        Example[Score] <> 0
    )
)

Table 19-2 shows the complete list of VertiPaq Scan events generated by the preceding query. 

TABLE 19-2 VertiPaq Scan events for a DAX query with a DISTINCTCOUNT measure

Line Subclass Duration CPU Query

1 Internal 4,269 31,641 SELECT Example[Score] FROM Example;

2 Internal 4,269 31,641 SELECT Example[Score] FROM Example;

3 Internal 19 31,766 SELECT COUNT( ) FROM $DCOUNT_DATACACHE;

4 Scan 4,288 31,766 SELECT DCOUNT ( Example[Score] ) FROM Example;
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The last line includes the SE query requested by the FE. However, internally the query is split into 
two subqueries. The fi rst result is duplicated in two identical rows (see the content of the Duration and 
CPU columns). The following is the xmSQL code of the fi rst internal subquery, which retrieves the list of 
unique values in the Score column of the Example table:

SELECT Example[Score] 
FROM Example
WHERE Example[Score] <> 0;

The result of this SE query is a list of the unique values in the Score column of the Example table. The 
next step is to count how many rows are in this list. In other words, counting the rows returned by the 
internal query provides the correct result to the original query. This particular xmSQL query just refer-
ences a special table named $DCOUNT_DATACACHE, which references the previous result from an SE 
query:

SELECT COUNT ( ) 
FROM $DCOUNT_DATACACHE;

Table 19-2 also shows that the duration of the Scan event corresponds to the sum of the duration of 
the two internal events, although the duplicated event only counts once. Regarding the CPU Time, it is 
always the same in all the events of the same query. The parallelism ratio you can evaluate by dividing 
CPU Time by Duration is around seven, which means that up to eight threads in parallel were executed. 
The next section presents a deeper discussion about parallelism within an SE query.

Understanding parallelism and datacache
Every SE query described by an xmSQL statement returns a result called a datacache, which is a single 
uncompressed table in memory. The result of an SE query can be completely materialized in memory, 
or its rows can be consumed during the iteration without them persisting. Usually, we refer to a data-
cache when this result is materialized, which is the case most of the time in complex queries.

The execution of the SE query can be parallelized among many cores, using different execution 
threads. The number of threads used depends on the hardware and on the physical structure of the 
columns involved in the query. The VertiPaq engine assigns one thread to each segment involved in a 
single scan operation as described in the section, “Understanding segmentation and partitioning” in 
Chapter 17. When the operation runs on multiple threads, every thread creates a partial result. Only 
when all the threads complete their execution will VertiPaq consolidate these results into a single fi nal 
datacache. The FE will then consume the datacache in a single thread. It is also for this reason that the 
result of an SE query requires such a consolidation. You can see the parallel processing and consolida-
tion behavior described in a schema in Figure 19-15.
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FIGURE 19-15 The fi nal datacache is a consolidation of different datacaches created by concurrent VertiPaq queries 
when the engine parallelizes execution.

A segment should not be too small because the consolidation process requires time. The effi ciency 
of running scan operations in multiple threads should balance the overhead of the consolidation, but 
this is not possible if the segments are too small. As a side effect, VertiPaq operations on small tables 
cannot get the benefi ts of multiple cores: The consolidation process would be more expensive than the 
gain provided by the parallelization of small tables.

It is useful to remember that the SE query only provides data to the FE. In a simple scenario, we have 
the following steps:

 1. The SE receives an xmSQL query.

 2. The SE executes the scan operations potentially on many threads, creating one datacache per 
thread.

 3. The SE consolidates the different datacaches into a single, fi nal datacache.

 4. The FE consumes the datacache in a single thread.

 5. The FE can use the same datacache in different steps of the query plan.
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In the Profi ler, you will always see the SE events before the query plan. The physical query plan 
always appears at the end of the events related to a query. The logical query plan can be preceded by a 
few SE queries. When this is the case, it is because the DAX engine itself sends queries to retrieve infor-
mation about the size and density of columns. The DAX engine uses this information to create a better 
query plan. Using DAX Studio, you cannot see such a behavior because this tool shows query plans and 
SE queries in different parts of the user interface.

Understanding the VertiPaq cache
The DAX formula engine does not have a cache, whereas the VertiPaq storage engine has one: the 
Verti Paq cache. Its primary goal is to improve the performance of multiple requests of the same 
datacache within the same query. Its secondary goal is to improve the performance of different DAX 
queries requesting the same datacache. It is important to understand the goals of the VertiPaq cache in 
order to analyze its behavior and evaluate its effi ciency.

For example, consider the following DAX query:

EVALUATE
ADDCOLUMNS (
    VALUES ( Example[Date] ), 
    "A", CALCULATE ( SUM ( Example[Amt] ) ),
    "Q", CALCULATE ( SUM ( Example[Qty] ) )
)

The result of the query includes two columns, A and Q, summing the Amt and Qty columns of the 
Example table for each Date. We are going to run the query twice, analyzing the different execution 
time of the two runs. Table 19-3 shows the sequence of Scan events for the fi rst execution, enabling 
both Cache and Internal events in DAX Studio.

TABLE 19-3 VertiPaq events for the fi rst execution of a DAX query with two aggregations

Line Subclass Duration CPU Query

1
 

Internal 1,796 13,516 SELECT 
    Example[Date], SUM ( Example[Amt] ),
    SUM ( Example[Qty] ), COUNT ( )
FROM Example;

2 Scan 1,796 13,516 SELECT 
    Example[Date], SUM ( Example[Amt] ),
    SUM ( Example[Qty] ), COUNT ( )
FROM Example;

3 Internal 6 31 SELECT Example[Date], COUNT ( ) FROM Example;

4 Scan 6 31 SELECT Example[Date] FROM Example;
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The second execution of the same query produces a different result because the second execution 
can benefi t from the VertiPaq cache of the fi rst run. This result is visible in Table 19-4.

TABLE 19-4 VertiPaq events for the second execution of a DAX query with two aggregations

Line Subclass Duration CPU Query

1 Cache 0 0 SELECT 
    Example[Date], SUM ( Example[Amt] ),
    SUM ( Example[Qty] ), COUNT ( )
FROM Example;

2 Scan 0 0 SELECT 
    Example[Date], SUM ( Example[Amt] ),
    SUM ( Example[Qty] ), COUNT ( )
FROM Example;

3 Cache 0 0 SELECT Example[Date], COUNT ( ) FROM Example;

4 Scan 0 0 SELECT Example[Date] FROM Example;

The duration of the second execution is zero milliseconds. The reason is that the second time 
the query was run, a datacache containing the required data was already available in the VertiPaq 
cache. Therefore, the engine did not execute any VertiPaq query; instead it simply retrieved the result 
from the cache.

The Cache and Internal events are disabled by default in DAX Studio, so the typical result visible 
when hitting the cache for SE queries is shown in Table 19-5. The only visible events are the Scan events, 
with a duration of 0 milliseconds.

TABLE 19-5 VertiPaq Scan events visible for a DAX query with two aggregations

Line Subclass Duration CPU Query

2 Scan 0 0 SELECT 
    Example[Date], SUM ( Example[Amt] ),
    SUM ( Example[Qty] ), COUNT ( )
FROM Example;

4 Scan 0 0 SELECT Example[Date] FROM Example;

The VertiPaq engine only reuses data in cache when the cardinality is the same and the columns are 
a subset of a previous query. This algorithm is very simple because the lookup in the VertiPaq cache 
must not be an overhead of the memory scan operation that it is trying to avoid. For this reason, the 
VertiPaq cache only keeps in memory a limited number of datacaches. Therefore, there is no guarantee 
that a request will hit the cache, even when the query plan repeats the same storage query multiple 
times within the same DAX query. Nevertheless, in most conditions the VertiPaq cache satisfi es several 
of the requests that occur within a short period.
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Note VertiPaq ignores row-level security settings. The DAX formula engine manages the 
role-based security and generates different VertiPaq storage engine queries depending on 
security settings and user credentials. For this reason, the VertiPaq cache is a global resource 
and shares the results between different users and sessions. The FE guarantees the correct-
ness of the result, generating different SE queries depending on the requirements.

 

When analyzing performance, it is important to clear the cache before running a query. In order to 
fi nd bottlenecks and areas of improvement for a query plan, it is better to observe the time required to 
complete a scan in memory, simulating the worst-case scenario (empty cache). Because of the reduced 
size of the VertiPaq cache, missing the cache is a frequent event on a busy server with many concurrent 
users running queries.

DAX Studio provides two techniques to clear the cache before executing a query:

 ■ Clicking the Clear Cache button on the Home tab to clear the cache on the DAX engine before 
executing a query with the Run Query button.

 ■ Selecting the Clear Cache then Run button on the Home tab so that the cache gets cleared 
before each Run execution.

The Run and Clear Cache then Run buttons are shown in Figure 19-16.

FIGURE 19-16 The Home tab in DAX Studio has several options to clear the cache of the DAX engine.

DAX Studio internally sends a clear cache command to the DAX engine using the following XMLA 
command, which removes the cache of results related to the specifi ed database. This example clears 
the cache of the Contoso database:

<ClearCache xmlns="http://schemas.microsoft.com/analysisservices/2003/engine"> 
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    <Object>
        <DatabaseID>Contoso</DatabaseID>
    </Object>
</ClearCache>

Understanding CallbackDataID
The VertiPaq SE only supports a limited set of operators and functions in xmSQL. Thus, it is up to the 
FE to execute any operation not directly supported by the SE. However, when a complex calculation 
is required within a VertiPaq iterator, the SE may call the FE using a special xmSQL function called 
CallbackDataID.

The operators supported in xmSQL include the basic mathematical operations (sum, subtraction, 
multiplication, and division) but do not include mathematical functions such as square root (SQRT in 
DAX), or conditional logic such as the IF function. If you include an expression that is not supported 
by xmSQL in an iterator, then the query plan generates an xmSQL query containing a special function: 
CallbackDataID. During the iteration, the SE calls the FE for every row, passing the DAX expression and 
the values of its members as arguments.

For example, consider the sum of rounded values in this DAX query:

EVALUATE
ROW (
    "Result", SUMX ( Sales, ROUND ( Sales[Line Amount], 0 ) )
)

In this expression, the SE cannot evaluate the ROUND function. Therefore, the query plan generates 
the following xmSQL statement:

WITH
    $Expr0 := [CallbackDataID ( ROUND ( Sales[Line Amount]] ), 0 ) ] 
              ( PFDATAID ( Sales[Line Amount] ) ) 
SELECT
    SUM ( @$Expr0 ) 
FROM Sales;

The CallbackDataID function contains the DAX expression that rounds a value to the closest integer. 
This expression is evaluated for the Line Amount column in the Sales table for the current row. The 
PFDATAID syntax is not relevant for analyzing the logic we are describing now. The SE calls the Call-
backDataID function for each row of the Sales table. The result of the xmSQL query is a datacache with 
only one row, corresponding to the aggregated result. Even though the FE is single threaded, when the 
SE calls the FE through a CallbackDataID, the parallelism of the SE is not affected. Indeed, there could 
be multiple instances of the FE executed in parallel, one for each thread of the SE.
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Parallelism of CallbackDataID and possible alternatives

In order to understand how the parallelism interacts with CallbackDataID and the as-
sociated cost, consider what could happen if the CallbackDataID were not available. 
We might have a query plan requesting a datacache with the value of the Line Amount 
column for all the rows of the Sales table, using an xmSQL query such as the following:

SELECT
    Sales[Line Amount], COUNT( ) 
FROM Sales;

The datacache obtained by the FE would contain one row for each unique value of 
the Line Amount column and the number of rows having this value in the Sales table 
(returned by COUNT). Using this information, the FE would apply the ROUND function 
to the value of Line Amount for each row of the datacache, multiplying that result by the 
number of occurrences of the Line Amount value in the Sales table. The result provided 
by the FE would be identical, but the SE should create a much larger datacache than the 
one-row datacache obtained by the xmSQL query with the CallbackDataID. Remember 
that the SE often materializes the entire datacache in memory, and that this would be 
in an uncompressed format. Then the FE would iterate this datacache sequentially in a 
single thread. This would result in poor performance and a larger memory consumption.

The execution using CallbackDataID is less expensive in terms of memory (the data-
cache materialized only has one row) and is more scalable. If the VertiPaq Scan operation 
spans on multiple threads, calls made to the FE through CallbackDataID use a thread 
instance of the FE. In other words, we can imagine that every running thread has its own 
instance of the FE—even within the same query. The only sequential operation is the con-
solidation made by the SE on the datacaches created by the running threads. However, 
this operation will be very fast because it consolidates different datacaches only contain-
ing one column each.

From a performance point of view, CallbackDataID has three other implications:

 ■ Expressions solved through CallbackDataID calls are more expensive than expressions 
solved by internal operators of the SE. There is an overhead associated with each call to 
CallbackDataID. 

 ■ In a trace session, a VertiPaq SE event includes the time spent in the FE by a 
CallbackDataID call. Consider that optimizing an SE query that has a long execution time 
might require you to reduce or to remove the calls to CallbackDataID made by xmSQL queries.

 ■ The SE cache does not save datacaches produced by an xmSQL query containing 
CallbackDataID calls. Therefore, the presence of CallbackDataID in an xmSQL function 
should be carefully evaluated when the storage executes it in an iteration.
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Important The FE is single-threaded, but when the SE calls the FE through CallbackDataID, 
the execution of the code in the FE is parallelized through the several threads created by the 
SE. The parallelism provided by this technique reduces overall Duration, but CPU Time might 
increase because of the CallbackDataID calls overhead.

In order to understand the performance impact of CallbackDataID, consider the following DAX 
query that sums the result of a division made row by row:

EVALUATE
{
    SUMX (
        Example,
        IF (
            Example[Denominator] <> 0,
            Example[Numerator] / Example[Denominator] 
        )
    )
}

The IF function avoids a calculation error in case one row contains a zero value in the denominator 
column. The xmSQL query sent to the SE is similar to the following one:

WITH
    $Expr0 := [CallbackDataID ( 
        IF (
            Example[Denominator] <> 0,
            Example[Numerator] / Example[Denominator] 
        ) ] 
        ( PFDATAID ( Example[Numerator] ), PFDATAID ( Example[Denominator] ) )
SELECT
    SUM ( @$Expr0 )
FROM Example;

We executed a corresponding DAX query on our Example table with 4 billion rows, obtaining the SE 
events shown in Table 19-6.

TABLE 19-6 VertiPaq Scan events with a CallbackDataID including an IF function in DAX

Line Subclass Duration CPU Rows Query

1 Internal 8,379 64,234 1 WITH $Expr0 := [CallbackDataID ( IF ( Example[Denominator] <> 0, …

2 Scan 8,379 64,234 1 WITH $Expr0 := [CallbackDataID ( IF ( Example[Denominator] <> 0, …

The parallelism ratio (CPU Time divided by Duration) is close to eight because we used a server with 
eight cores. The important point is that different threads executed parallel calls to the FE. In previ-
ous chapters, we have seen that in DAX the DIVIDE function can replace the specifi c IF condition used 
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to check whether the denominator of a division is equal to zero. We can see what happens if we use 
DIVIDE instead of IF in this example. The DAX query is the following:

EVALUATE
{
    SUMX (
        Example,
        DIVIDE ( Example[Numerator], Example[Denominator] )
    )
}

The DIVIDE function does not have a corresponding syntax in xmSQL, so we have a CallbackDataID 
in the corresponding xmSQL query sent to the engines in this case too:

WITH
    $Expr0 := [CallbackDataID ( 
        DIVIDE ( Example[Numerator], Example[Denominator] ) ] 
        ( PFDATAID ( Example[Numerator] ), PFDATAID ( Example[Denominator] ) )
SELECT
    SUM ( @$Expr0 )
FROM Example;

Table 19-7 shows the SE events obtained from running the query over the same 4-billion-row table 
used in the previous example.

TABLE 19-7 VertiPaq Scan events with a CallbackDataID including a DIVIDE function in DAX

Line Subclass Duration CPU Rows Query

1 Internal 6,790 51,984 1 WITH $Expr0 := [CallbackDataID ( IF ( Example[Denominator] <> 0, …

2 Scan 6,790 51,984 1 WITH $Expr0 := [CallbackDataID ( IF ( Example[Denominator] <> 0, …

Using DIVIDE instead of IF, we obtained a 19% performance improvement in both Duration and CPU 
Time. However, despite the parallelism achieved with this technique, the overhead of CallbackDataID 
is still high because the SE calls a function in the FE. If we remove the CallbackDataID completely, this 
overhead disappears. In this case, this is possible by simply applying a fi lter so that the iteration ignores 
rows containing zero in the Denominator column. This is possible with the following DAX query:

EVALUATE
{
    CALCULATE (
        SUMX (
            Example,
            Example[Numerator] / Example[Denominator]
        ),
        Example[Denominator] <> 0
    )
}
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The corresponding syntax in xmSQL for this entire DAX expression does not use CallbackDataID:

WITH
    $Expr0 := Example[Numerator] / Example[Denominator]
SELECT
    SUM ( @$Expr0 )
FROM Example
WHERE Example[Denominator] <> 0;

The resulting SE events shown in Table 19-8 demonstrate an improvement of more than 50% 
compared to the performance of the DIVIDE version.

TABLE 19-8 VertiPaq Scan events without CallbackDataID to execute a safe division in DAX

Line Subclass Duration CPU Rows Query

1 Internal 3,108 23,859 1 WITH $Expr0 := Example[Numerator] / Example[Denominator], …

2 Scan 3,108 23,859 1 WITH $Expr0 := Example[Numerator] / Example[Denominator], …

This last version also offers another advantage by avoiding the use of CallbackDataID. The VertiPaq 
cache now keeps the datacache for future executions, which is not possible when the xmSQL query 
includes a CallbackDataID. If we execute the last DAX query twice, the second execution produces the 
events shown in Table 19-9.

TABLE 19-9 VertiPaq Scan events without CallbackDataID hitting the SE cache

Line Subclass Duration CPU Rows Query

1 Cache 0 0 1 WITH $Expr0 := Example[Numerator] / Example[Denominator], …

2 Scan 0 0 1 WITH $Expr0 := Example[Numerator] / Example[Denominator], …

In general, a careful developer should avoid or at least reduce to a minimum the number of calls to 
CallbackDataID made by the SE. We will show some examples of this optimization in Chapter 20.

  

Profi ler limitations for CallbackDataID in Analysis Services 2012/2014

There are important limitations in profi ler events generated by Analysis Services 2012 and 
2014 when the xmSQL query includes CallbackDataID. The internal DAX expression passed 
to CallbackDataID might include subquery statements in DAX generating further requests 
to the SE. Unfortunately, versions of Analysis Services released before 2015 only provide 
information about these subqueries in the logical query plan. The physical query plan does 
not include the subexpression included within CallbackDataID. The SE queries executed to 
evaluate these subexpressions do not fi re any event visible in the profi ler. Analysis Services, 
Excel, and Power BI Desktop versions released since 2016 do not have this problem.
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Reading DirectQuery storage engine queries

This section describes how to read the DirectQuery SE queries. These queries are expressed in the SQL 
language accepted by the data source. It is advisable to read the previous section about VertiPaq stor-
age engine queries before reading this section to understand the similarities and differences between 
the two.

For example, consider the following DAX query:

EVALUATE
SUMMARIZECOLUMNS (
    Sales[Order Date], 
    "Total Quantity", SUM ( Sales[Quantity] ) 
)

When executed in a DirectQuery model, the DAX engine generates a single SE query sent to the 
data source in SQL language, like the following one:

SELECT 
    TOP (1000001) [t4].[Order Date], 
    SUM ( CAST ( [t4].[Quantity] as BIGINT ) ) AS [a0]
FROM  (
    select [StoreKey],
           [ProductKey],
           ... // other columns of the tables omitted here
    from [dbo].[Sales] as [$Table] 
) AS [t4]
GROUP BY [t4].[Order Date]

The presence of a TOP condition limits the number of rows transferred from the data source to the 
DAX engine. If the number of rows returned is identical to the parameter of the TOP condition, then 
the DAX query fails because it is not able to retrieve the full set of data from the data source. For this 
reason the argument of TOPN is 1,000,001 when the limit of rows accepted by DirectQuery is 1,000,000. 
This limit avoids the consumption of too much memory because the entire result of the SE query 
should be loaded in memory in an uncompressed way after being transferred from the data source to 
the DAX engine.

 

Note The limit or rows accepted in a storage engine request using DirectQuery is 1,000,000 
by default. This number can be modifi ed in the MaxIntermediateRowsetSize confi guration 
setting available in Analysis Services but not in Power BI. More details about this behavior 
are available in the article at https://www.sqlbi.com/articles/tuning-query-limits-for-
directquery/.

 

Figure 19-17 shows an example of the information retrieved for SQL SE queries sent to a DirectQuery 
data source. The Duration column shows the time in milliseconds spent waiting for the data source to 

https://www.sqlbi.com/articles/tuning-query-limits-for-directquery/
https://www.sqlbi.com/articles/tuning-query-limits-for-directquery/
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provide the result of the SQL query. The CPU is usually a low number, if not 0, because it should report 
the cost to the DirectQuery engine to retrieve the result, but it ignores the effective cost on the data 
source. In order to evaluate the actual CPU consumption on the data source, it is necessary to analyze 
the query running on the data source engine—for example, by using SQL Server Profi ler for Microsoft 
SQL Server databases.

FIGURE 19-17 DirectQuery SE queries are displayed as SQL queries.

The SQL event in Figure 19-17 does not have any information for the columns Rows and KB; indeed, 
the SQL events do not have an estimate of the result in terms of rows and memory as it happens for 
xmSQL queries sent to VertiPaq.

Finally, the result of a DirectQuery SE query is never persisted in the storage engine cache, 
therefore, the SE Cache counter is always zero for a DirectQuery data model.

Analyzing composite models
In a composite model the same DAX query can generate a mix of VertiPaq and DirectQuery SE queries. 
For example, consider the following DAX query executed in a model where the Sales table has a Direct-
Query storage mode and all the other tables have a Dual storage mode:

EVALUATE
ADDCOLUMNS (
    VALUES ( 'Date'[Calendar Year] ),
    "Quantity", CALCULATE ( SUM ( Sales[Quantity] ) )
)

The ADDCOLUMNS function usually generates at least two SE queries: one for the VALUES function 
and the other to compute the sum of sales quantity by calendar year. The screenshot in Figure 19-18 
shows two storage queries of different types, indeed.

FIGURE 19-18 DirectQuery SE are displayed as SQL queries.
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The sum of quantity by calendar year requires that a SQL query (displayed at line 1) be sent to the 
DirectQuery data source. The list of Calendar Year names requested by VALUES is provided by the 
xmSQL VertiPaq SE query at line 3.

When analyzing a composite model, pay attention to the Subclass column that identifi es the type 
of SE used. SQL always corresponds to a DirectQuery data source, which is usually slower than VertiPaq 
and can be optimized by using aggregations. This is described in the next section. 

Using aggregations in the data model
As described in Chapter 18, “Optimizing VertiPaq,” the presence of aggregations in a data model can 
improve the performance of the SE query. Aggregations can be defi ned in both VertiPaq and Direct-
Query, providing alternative ways to execute an SE query. When there are aggregations available, the 
engine tries to rewrite an original SE query into a different one using an aggregation. This rewriting 
attempt is successful when there is a compatible aggregation. Whenever the rewriting attempt fails 
because of the lack of a compatible aggregation, the engine executes the original SE query.

DAX Studio can show the rewriting attempts to match an aggregation. These details might be useful 
to understand why an existing aggregation is not used when this was expected. For example, consider 
the following query executed in a composite model:

EVALUATE
SUMMARIZECOLUMNS (
    'Date'[Calendar Year],
    "Qty", SUM ( Sales[Quantity] ),
    "Qty Red", CALCULATE (
        SUM ( Sales[Quantity] ),
        'Product'[Color] = "Red"
    )
)

The model has an aggregation for the Sales table with the granularity of Date and Customer. The 
query computes two expressions for each calendar year: Qty is the sum of the quantity for all the 
orders made in the reported year, and Qty Red is the quantity for the orders of red products made in 
the same year. The screenshot in Figure 19-19 shows the SE queries reported by DAX Studio executing 
the preceding DAX query.

FIGURE 19-19 Use of aggregations reported by RewriteAttempted events in DAX Studio.
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There are two RewriteAttempted subclass events describing the evaluation made by the DAX engine 
before generating the SE query. The Qty calculation requires a fi lter by year; this request is compatible 
with the existing aggregation (which groups by Date and Customer). This is reported in Line 1 and the 
details about the match found are reported in the details of the event shown in Figure 19-20.

FIGURE 19-20 A matching aggregation reports the use of aggregations reported by RewriteAttempted events in 
DAX Studio.

Because the aggregation is a table imported in memory, the engine generates the following 
VertiPaq SE query reported at Line 3 in Figure 19-19:

SELECT
    'Date'[Calendar Year],
    SUM ( 'Sales_Agg'[Quantity] )
FROM 'Sales_Agg'
    LEFT OUTER JOIN 'Date' ON 'Sales_Agg'[Order Date]='Date'[Date];

The RewriteAttempted event at line 4 in Figure 19-19 does not fi nd a matching aggregation for the Qty 
Red calculation, which requires a fi lter by Date and Product. In this case the Sales original table (whose 
storage is DirectQuery) must be queried directly without using any aggregation, as shown in the details 
in Figure 19-21.

FIGURE 19-21 Failed matching of aggregations reported by RewriteAttempted events in DAX Studio.

Because the Sales table has a DirectQuery storage, the engine generates an SQL query reported 
on line 5. The longer duration (more than two seconds) is normal and expected. Aggregations can be 
considered to improve the performance of DAX queries whose bottleneck is the SE. Aggregations are 
usually not useful for bottlenecks in the FE.
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Reading query plans

At the beginning of this chapter, we described the two types of query plans available in DAX: logical 
and physical. In reality, we do not use these query plans often because we focus our attention on the 
SE queries fi rst. We can analyze the performance of the SE queries to fi nd issues caused by the SE 
and/or by the materialization of large datacaches in memory. SE queries are much easier to read than 
DAX query plans.

In this section, we describe some of the important behaviors to check in a query plan in order to 
identify performance bottlenecks. A complete and detailed coverage of all the operators used in 
logical and physical query plans is beyond the scope of this book. The goal here is to understand the 
relationships between a query plan and the SE queries, thus improving one’s ability to fi nd bottlenecks 
and to improve query performance.

A query plan usually generates more than one SE query. The FE combines the results of different 
datacaches, doing operations like joins between temporary tables. Consider the following DAX query; 
it returns a table with the quantity sold for each product color, only for transactions with a Net Price 
greater than 1,000:

EVALUATE
CALCULATETABLE (
    ADDCOLUMNS (
        ALL ( Product[Color] ),
        "Units", CALCULATE (
            SUM ( Sales[Quantity] )
        )
    ),
    Sales[Net Price] > 1000
)
ORDER BY Product[Color]

The result visible in Figure 19-22 includes all the unique values of Color, including those without 
any unit sold. In order to do that, the approach of the DAX engine is different from the one we would 
expect in plain SQL language; this is because of the different technique used to join tables in the SE. 
We will highlight this difference later; pay attention to the process for now.

FIGURE 19-22 The result of ADDCOLUMNS includes rows with a blank value in the Units column.



650 CHAPTER 19 Analyzing DAX query plans

The logical query plan shown in Figure 19-23 includes three Scan_Vertipaq operations, two of which 
correspond to two datacaches provided by SE queries.

FIGURE 19-23 Logical query plan of a simple DAX query.

The two Scan_Vertipaq operations at lines 4 and 6 require different sets of columns. The third Scan_
Vertipaq operation at line 9 is used for a fi lter, and it does not generate a separate datacache. Its logic 
is included in one of the other two SE queries generated.

The Scan_Vertipaq at line 4 only uses the product color, whereas the Scan_Vertipaq at line 6 includes 
product color and sales quantity, which are two columns in two different tables. When this happens, a 
join between two or more tables is required.

After the logical query plan, the profi ler receives the events from the SE. The corresponding xmSQL 
queries are the following:

SELECT
    Product[Color], 
    SUM ( Sales[Quantity] ) 
FROM Sales
    LEFT OUTER JOIN Product ON Sales[ProductKey] = Product[ProductKey]
WHERE Sales[Net Price] > 1000;
 
SELECT Product[Color] FROM Product;

The fi rst SE query retrieves a table containing one row for each color that has at least one unit sold 
at a price greater than 1,000 in the Sales table. In order to do that, the query joins Sales and Product 
using the ProductKey column. The second xmSQL statement returns the list of all the product colors, 
independent of the Sales table. These two queries generate two different datacaches, one with two 
columns (product color and sum of quantity) and another with only one column (the product color).

At this point, we might wonder why a second query is required. Why is the fi rst xmSQL not enough? 
The reason is that the LEFT JOIN in xmSQL has Sales on the left side and Product on the right side. In 
plain SQL code, we would have written another query:



 CHAPTER 19 Analyzing DAX query plans 651

SELECT
    Product.Color,
    SUM ( Sales.Quantity )
FROM Product
LEFT OUTER JOIN Sales 
    ON Sales.ProductKey = Product.ProductKey
WHERE Sales.NetPrice > 1000
GROUP BY Product.Color
ORDER BY Product.Color;

Having the Product table on the left side of a LEFT JOIN would produce a result that includes all the 
product colors. However, the SE can only generate queries between tables with a relationship in the 
data model, and the resulting join in xmSQL always puts the table that is on the many-side of the rela-
tionship on the left side of the join condition. This guarantees that even though there are missing prod-
uct keys in the Product table, the result will also include sales for those missing products; these sales will 
be included in a row with a blank value for all the product attributes, in this case the product color.

Now that we have seen why the DAX engine produces two SE queries for the initial DAX query, we 
can analyze the physical query plan shown in Figure 19-24, where we can fi nd more information about 
the query execution.

FIGURE 19-24 Physical query plan of a simple DAX query.

The physical query plan uses the Cache operator (line 6 and 9) to indicate where it is consuming a 
datacache provided by the SE. Unfortunately, it is not possible to see the corresponding SE query for 
each operation. Nevertheless, at least in simple cases like the one considered, we can fi gure out this 
association by looking at other pieces of information. For example, one Cache only has one column 
obtained with a group operation, whereas the other Cache has two columns: one that is the result of 
a group operation and the other that is the result of an aggregation (the sum of the quantity). In the 
physical query plan, #ValueCols reports the number of columns that are the result of an aggregation, 
whereas #FieldCols reports the number of other columns used to group the result. By looking at the 
columns consumed by each Cache node, it is often possible to identify the corresponding xmSQL query 
even though it is a time-consuming process in complex query plans. In this example, the Cache node at 
line 6 returns a column with 16 product color names; on the other hand, the Cache node at line 9 only 
returns 10 rows and two columns, only with the product color names that have at least one transaction 
in Sales within the condition specifi ed for Net Price (which must be greater than 1,000).
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The ProjectionSpool<> operation consumes the datacaches corresponding to Cache nodes in 
the physical query plan. Here we can fi nd an important piece of information: the number of records 
iterated, which corresponds to the number of rows in the datacache used. This number follows the 
#Records attribute, which is also reported in the Records column in DAX Studio. We can fi nd the 
same #Records attribute in parent nodes of the query plan—a place where the type of aggrega-
tion performed by the engine is also available if there is one. In this example, the Cache at line 9 has 
two columns: one is Product[Color] and the other is the result of a sum aggregation. This informa-
tion is available in the LogOp argument of the Spool_Iterator and SpoolLookup nodes at lines 4 and 7, 
respectively.

At this point, we can recap what we are reading in the query plans and the SE queries:

 1. The FE consumes two datacaches, corresponding to Cache nodes in the physical query plan.

 2. The FE iterates over the list of product colors, which is a table containing 16 rows and one 
column. This is the datacache obtained by the second SE query. Do not make assumptions 
about the order of the SE queries in the profi ler.

 3. For each row of this datacache (a product color), the FE executes a lookup in the other data-
cache containing the product colors and the quantity sold for each color; this is a table with 
two columns and 10 rows.

The entire process executed by the FE is sequential and single-threaded. The FE sends one request 
at a time to the SE. The SE might parallelize the query, but the FE does not send multiple requests in 
parallel to the SE.

 

Note The FE and the SE are subject to optimizations and improvements made in new 
releases. The behavior described might be different in newer versions of the DAX engine.

 

The FE can combine different results by using the lookup operation described in the previous query 
plan or other set operators. In any case, the FE executes this operation sequentially. For this reason, 
we might expect longer execution times by combining large datacaches or by performing a lookup 
for millions of rows in a large lookup datacache. A simple and effective way to identify these potential 
bottlenecks in the physical query plan is to look for the highest number of records in the operators 
of a logical query plan. For this reason, DAX Studio extracts that number from the query plan, mak-
ing it easier to sort query plan operators by using the number of records iterated. It is possible to sort 
the rows by this number by clicking the Records column shown in Figure 19-24. We will show a more 
detailed example of this approach in Chapter 20.

The presence of relationships in the data model is important in order to obtain better performance. 
We can examine the behavior of a join between two tables when a relationship is not available. For 
example, consider a query returning the same result as the previous example, but operating in a data 
model that does not have a relationship between the Product and Sales tables. We need a DAX query 
such as the following; it uses the virtual relationship pattern shown in Chapter 15, “Advanced relation-
ships,” in the section “Transferring a fi lter using INTERSECT”:
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DEFINE
    MEASURE Sales[Units] =
        CALCULATE (
            SUM ( Sales[Quantity] ),
            INTERSECT (
                ALL ( Sales[ProductKey] ),
                VALUES ( 'Product'[ProductKey] )
            ),
            -- Disable the existing relationship between Sales and Product
            CROSSFILTER ( Sales[ProductKey], 'Product'[ProductKey], NONE )
        )
EVALUATE
ADDCOLUMNS (
    ALL ( 'Product'[Color] ),
    "Units", [Units]
)
ORDER BY 'Product'[Color]

The function in the Units measure defi nition is equivalent to a relationship between Sales and 
Product. The resulting query plan is more complex than the previous one because there are many more 
operations in both the logical and the physical query plans. Without doing a dump of the complete 
query plan, which would be too long for a book, we can summarize the behavior of the query plan in 
these logical steps:

 1. Retrieves the list of ProductKey values for each product color.

 2. Sums the Quantity value for each ProductKey.

 3. For each color, aggregates the Quantity of the related ProductKey values. 

The FE executes four SE queries, as shown in Figure 19-25.

FIGURE 19-25 SE queries executed for a DAX calculation using a virtual relationship with INTERSECT.

The following are the complete xmSQL statements of the four SE queries:

SELECT
Sales[ProductKey] 
FROM Sales;
 
SELECT
Product[Color] 
FROM Product;
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SELECT
Product[ProductKey], Product[Color] 
FROM Product;
 
SELECT
Sales[ProductKey], SUM ( Sales[Quantity] ) 
FROM Sales
WHERE     Sales[ProductKey] IN ( 490, 479, 528, 379, 359, 332, 374, 597, 387, 
                                 484..[158 total values, not all displayed] );

The WHERE condition highlighted in the last SE query might seem useless because the DAX query 
does not apply a fi lter over products. However, usually in the real world there are other fi lters active 
on products or other tables. The query plan tries to only extract the quantities sold of products that 
are relevant to the query, lowering the size of the datacache returned to the FE. When there are similar 
WHERE conditions in the SE, the only concern is the size of the corresponding bitmap index moved 
back and forth between the FE and the SE.

The FE has to group all the products belonging to each color. The performance of this join per-
formed at the FE level mainly depends on the number of products and secondarily on the number of 
colors. Once again, the size of a datacache is the fi rst and most important element to consider when we 
look for a performance bottleneck in the FE.

We considered the virtual relationship using INTERSECT for educational purposes. We wanted to 
display the SE queries required for a join condition resolved mainly by the FE. However, whenever 
possible, if a physical relationship is not available, TREATAS should be considered as a more optimized 
alternative. Consider this alternative implementation of the previous DAX query:

DEFINE
    MEASURE Sales[Units] =
        CALCULATE (
            SUM ( Sales[Quantity] ),
            TREATAS (
                VALUES ( 'Product'[ProductKey] ),
                Sales[ProductKey]
            ),
            -- Disable the existing relationship between Sales and Product
            CROSSFILTER ( Sales[ProductKey], 'Product'[ProductKey], NONE )
        )
EVALUATE
ADDCOLUMNS (
    ALL ( 'Product'[Color] ),
    "Units", [Units]
)
ORDER BY 'Product'[Color]

As shown in Figure 19-26, there are only three SE queries generated instead of four. Remember 
that Batch is just a recap of the previous Scan events. Moreover, the size of the datacaches is smaller 
because one result alone has 2,517 rows corresponding to the number of products in the Product table. 
In the previous implementation using INTERSECT, there were a larger number of queries returning 
thousands of rows. All of these datacaches must be consumed by the FE.
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FIGURE 19-26 SE queries executed for a DAX calculation using a virtual relationship with TREATAS.

The following is the content of the Batch event at line 5, which includes the fi rst two Scan events 
(lines 2 and 4):

DEFINE TABLE '$TTable3' := SELECT
'Product'[ProductKey], 'Product'[Color]
FROM 'Product',
 
CREATE SHALLOW RELATION '$TRelation1' MANYTOMANY 
FROM 'Sales'[ProductKey] TO '$TTable3'[Product$ProductKey],
 
DEFINE TABLE '$TTable1' := SELECT
    '$TTable3'[Product$Color],
    SUM ( '$TTable2'[$Measure0] )
FROM '$TTable2'
    INNER JOIN '$TTable3' ON '$TTable2'[Sales$ProductKey]='$TTable3'[Product$ProductKey]
REDUCED BY
'$TTable2' := SELECT
    'Sales'[ProductKey],
    SUM ( 'Sales'[Quantity] ) AS [$Measure0]
FROM 'Sales';

The performance advantage of TREATAS is that it moves the execution of the operation to the SE, 
thanks to the CREATE SHALLOW RELATION statement highlighted in the previous code. This way, there 
is no need to materialize more data for the SE. Indeed, the join is executed within the FE, which reduces 
the number of lines of the physical query plan—from the 37 required by INTERSECT (not displayed in 
the book for brevity) to the 10 required by TREATAS. This results in a query plan very similar to the one 
shown in Figure 19-24.

Analyzing complex and longer query plans would require another book, considering the length 
of the query plans involved. More details about the internals of the query plans are available in the 
white papers “Understanding DAX Query Plans” (http://www.sqlbi.com/articles/understanding-dax-
query-plans/) and “Understanding Distinct Count in DAX Query Plans” (http://www.sqlbi.com/articles/
understanding-distinct-count-in-dax-query-plans/).

Conclusions

As you have seen, diving into the complexity of query plans opens up a whole new world. In this chap-
ter we barely scratched the surface of query plans, and a deeper analysis would require twice the size of 
this book. The good news is that in most—if not all—scenarios, going into more detail turns out to be 
useless.

http://www.sqlbi.com/articles/understanding-dax-query-plans/
http://www.sqlbi.com/articles/understanding-dax-query-plans/
http://www.sqlbi.com/articles/understanding-distinct-count-in-dax-query-plans/
http://www.sqlbi.com/articles/understanding-distinct-count-in-dax-query-plans/
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An experienced DAX developer who aims to write optimal code should be able to focus their atten-
tion on the low-hanging fruit that can be discovered very quickly by looking at the most relevant parts 
of the query plan:

 ■ In the physical query plan, the presence of a large number of rows scanned indicates the mate-
rialization of large datasets. This suggests that the query is memory-hungry and potentially 
slow.

 ■ Most of the time, the VertiPaq queries include enough information to fi gure out the overall 
algorithm of the calculation. Whatever is not computed in a VertiPaq query, it must be com-
puted by the formula engine. Knowing this enables you to get a clear idea of the whole query 
process.

 ■ CallbackDataID presence indicates iterations at the row level where your code requires calcula-
tions that are too complex for VertiPaq storage engine. CallbackDataIDs by themselves are not 
totally bad. Nevertheless, removing them almost always results in better performance.

 ■ VertiPaq and DirectQuery models are different. When using DirectQuery, the performance of 
DAX is strongly connected to the performance of the data source. It makes sense to use Direct-
Query if and only if the underlying data source is specifi cally optimized for the kind of queries 
generated by the DirectQuery storage engine.

In the next chapter, we are going to use the knowledge gained in this and previous chapters to 
provide a few guided optimization processes.
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C H A P T E R  2 0

Optimizing DAX

This is the last chapter of the book, and it is time to use all the knowledge you have gained so far to 
explore the most fascinating DAX topic: optimizing formulas. You have learned how the DAX engines 
work, how to read a query plan, and the internals of the formula engine and of the storage engine. 
Now all the pieces are in place and you are ready to learn how to use that information to write 
faster code.

There is one very important warning before approaching this chapter. Do not expect to learn best 
practices or a simple way to write fast code. Simply stated: There is no way in DAX to write code that 
is always the fastest. The speed of a DAX formula depends on many factors, the most important of 
which unfortunately is not in the DAX code itself: It is data distribution. You have already learned that 
VertiPaq compression strongly depends on data distribution. The size of a column (hence, the speed 
to scan it) depends on its cardinality: the larger, the slower. Thus, the very same formula might behave 
differently when executed on one column or another.

You will learn how to measure the speed of a formula, and we will provide you with several examples 
where rewriting the expression differently leads to a faster execution time. Learn all these examples for 
what they are—examples that might help you in fi nding new ideas for your code. Do not take them as 
golden rules, because they are not.

We are not teaching you rules; we are trying to teach you how to fi nd the best rules in the very 
specifi c scenario that is your data model. Be prepared to change them when the data model changes 
or when you approach a new scenario. Flexibility is key when optimizing DAX code: fl exibility, a deep 
technical knowledge of the engine, and a good amount of creativity, to be prepared to test formulas 
and expressions that might be not so intuitive.

Finally, all the information we provide in this book is valid at the time of printing. New versions of 
the engine come on the market every month, and the development team is always working on improv-
ing the DAX engine. So be prepared to measure different numbers for the examples of the book in 
the version of the engine you will be running and be prepared to use different optimization methods 
if necessary. If one day you measure your code and reach the educated conclusion that “Marco and 
Alberto are wrong; this code runs much faster than their suggested code,” that will be our brightest 
day, because we will have been able to teach you all that we know, and you are moving forward in 
writing better DAX code than ours.
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Defi ning optimization strategies

The optimization process for a DAX query, expression, or measure requires a strategy to reproduce a 
performance issue, identify the bottleneck, and remove it. Initially, you always observe a slowness in 
a complex query, but optimizing a complicated expression including several DAX measures is more 
involved than optimizing one measure at a time. For this reason, the approach we suggest is to isolate 
the slowest measure or expression fi rst, and optimize it in a simpler query that reproduces the issue 
with a shorter query plan.

This is a simple to-do list you should follow every time you want to optimize DAX:

 1. Identify a single DAX expression to optimize.

 2. Create a query that reproduces the issue.

 3. Analyze server timings and query plan information.

 4. Identify bottlenecks in the storage engine or formula engine.

 5. Implement changes and rerun the test query.

You can see a more complete description of each of these steps in the following sections.

Identifying a single DAX expression to optimize
If you have already found the slowest measure in your model, you probably can skip this section and 
move to the following one. However, it is common to get a performance issue in a report that might 
generate several queries. Each of these queries might include several measures. The fi rst step is to 
identify a single DAX expression to optimize. Doing this, you reduce the reproduction steps to a single 
query and possibly to a single measure returned in the result.

A complete refresh of a report in Power BI or Reporting Services or of a Microsoft Excel workbook 
typically generates several queries in either DAX or MDX (PivotTables and charts in Excel always gener-
ate the latter). When a report generates several queries, you have to identify the slowest query fi rst. 
In Chapter 19, “Analyzing DAX query plans,” you saw how DAX Studio can intercept all the queries sent 
to the DAX engine and identify the slowest query looking at the largest Duration amount.

If you are using Excel, you can also use a different technique to isolate a query. You can extract 
the MDX query it generates by using OLAP PivotTable Extensions, a free Excel add-in available at 
https://olappivottableextensions.github.io/.

Once you extract the slowest DAX or MDX query, you have to further restrict your focus and isolate 
the DAX expression that is causing the slowness. This way, you will concentrate your efforts on the right 
area. You can reduce the measures included in a query by modifying and executing the query interac-
tively in DAX Studio.

For example, consider the following table result in Power BI with four expressions (two distinct 
counts and two measures) grouped by product brand, as shown in Figure 20-1.

https://olappivottableextensions.github.io/
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FIGURE 20-1 Simple visualization in Power BI generated by a DAX query with four expressions.

The report generates the following DAX query, captured by using DAX Studio:

EVALUATE
TOPN (
    502,
    SUMMARIZECOLUMNS (
        ROLLUPADDISSUBTOTAL ( 'Product'[Brand], "IsGrandTotalRowTotal" ),
        "DistinctCountProductKey", CALCULATE (
            DISTINCTCOUNT ( 'Product'[ProductKey] )
        ),
        "Sales_Amount", 'Sales'[Sales Amount],
        "Margin__", 'Sales'[Margin %],
        "DistinctCountOrder_Number", CALCULATE (
            DISTINCTCOUNT ( 'Sales'[Order Number] )
        )
    ),
    [IsGrandTotalRowTotal], 0,
    'Product'[Brand], 1
)
ORDER BY
    [IsGrandTotalRowTotal] DESC,
    'Product'[Brand]

You should reduce the query by trying one calculation at a time, to locate the slowest one. If you can 
manipulate the report, you might just include one calculation at a time. By accessing the DAX code, it 
is enough to comment or remove three of the four columns calculated in the SUMMARIZECOLUMNS 
function (DistinctCountProductKey, Sales_Amount, Margin__, and DistinctCountOrder_Number), fi nd-
ing the slowest one before proceeding. In this case, the most expensive calculation is the last one. The 
following query takes up 80% of the time required to compute the original query, meaning that the 
distinct count over Sales[Order Number] is the most expensive operation in the entire report:

EVALUATE
TOPN (
    502,
    SUMMARIZECOLUMNS (
        ROLLUPADDISSUBTOTAL ( 'Product'[Brand], "IsGrandTotalRowTotal" ),
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//        "DistinctCountProductKey", CALCULATE (
//            DISTINCTCOUNT ( 'Product'[ProductKey] )
//        ),
//        "Sales_Amount", 'Sales'[Sales Amount],
//        "Margin__", 'Sales'[Margin %],
        "DistinctCountOrder_Number", CALCULATE (
            DISTINCTCOUNT ( 'Sales'[Order Number] )
        )
    ),
    [IsGrandTotalRowTotal], 0,
    'Product'[Brand], 1
)
ORDER BY
    [IsGrandTotalRowTotal] DESC,
    'Product'[Brand]

Another example is the following MDX query generated by the pivot table in Excel as seen in 
Figure 20-2:

SELECT {
    [Measures].[Sales Amount],
    [Measures].[Total Cost],
    [Measures].[Margin],
    [Measures].[Margin %]
  } DIMENSION PROPERTIES PARENT_UNIQUE_NAME, HIERARCHY_UNIQUE_NAME ON COLUMNS,
NON EMPTY HIERARCHIZE(
    DRILLDOWNMEMBER(
        { { DRILLDOWNMEMBER( 
                { { DRILLDOWNLEVEL( 
                        { [Date].[Calendar].[All] },,, include_calc_members ) 
                } },
            { [Date].[Calendar].[Year].&[CY 2008] },,, include_calc_members ) 
        } },
        { [Date].[Calendar].[Quarter].&[Q4-2008] },,, include_calc_members 
    ) 
)
DIMENSION PROPERTIES PARENT_UNIQUE_NAME,HIERARCHY_UNIQUE_NAME ON ROWS
FROM [Model] 
CELL PROPERTIES VALUE, FORMAT_STRING, LANGUAGE, BACK_COLOR, FORE_COLOR, FONT_FLAGS

FIGURE 20-2 Simple pivot table in Excel that generates an MDX query with four measures.
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You can reduce the measures either in the pivot table or directly in the MDX code. You can manipu-
late the MDX code by reducing the list of measures in braces. For example, you reduce the code to only 
the Sales Amount measure by modifying the list, as in the following initial part of the query:

SELECT
{ [Measures].[Sales Amount] }
DIMENSION PROPERTIES PARENT_UNIQUE_NAME, HIERARCHY_UNIQUE_NAME ON COLUMNS,
...

Regardless of the technique you use, once you identify the DAX expression (or measure) that is 
responsible for a performance issue, you need a reproduction query to use in DAX Studio.

Creating a reproduction query
The optimization process requires a query that you can execute several times, possibly changing the 
defi nition of the measure in order to evaluate different levels of performance.

If you captured a query in DAX or MDX, you already have a good starting point for the reproduc-
tion (repro) query. You should try to simplify the query as much as you can, so that it becomes easier to 
fi nd the bottleneck. You should only keep a complex query structure when it is fundamental in order to 
observe the performance issue.

Creating a reproduction query in DAX
When a measure is constantly slow, you should be able to create a repro query producing a single value 
as a result. Using CALCULATE or CALCULATETABLE, you can apply all the fi lters you need. For example, 
you can execute the Sales Amount measure for November 2008 using the following code, obtaining 
the same result ($96,777,975.30) you see in Figure 20-2 for that month:

EVALUATE
{
    CALCULATE (
        [Sales Amount],
        'Date'[Calendar Year] = "CY 2008",
        'Date'[Calendar Year Quarter] = "Q4-2008",
        'Date'[Calendar Year Month] = "November 2008"
    )
}

You can also write the previous query using CALCULATETABLE instead of CALCULATE:

EVALUATE
CALCULATETABLE (
    { [Sales Amount] },
    'Date'[Calendar Year] = "CY 2008",
    'Date'[Calendar Year Quarter] = "Q4-2008",
    'Date'[Calendar Year Month] = "November 2008"
)

The two approaches produce the same result. You should consider CALCULATETABLE when the 
query you use to test the measure is more complex than a simple table constructor.
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Once you have a repro query for a specifi c measure defi ned in the data model, you should consider 
writing the DAX expression of the measure as local in the query, using the MEASURE syntax. 
For example, you can transform the previous repro query into the following one:

DEFINE
    MEASURE Sales[Sales Amount] =
        SUMX ( Sales, Sales[Quantity] * Sales[Net Price] )
EVALUATE
CALCULATETABLE (
    { [Sales Amount] },
    'Date'[Calendar Year] = "CY 2008",
    'Date'[Calendar Year Quarter] = "Q4-2008",
    'Date'[Calendar Year Month] = "November 2008"
)

At this point, you can apply changes to the DAX expression assigned to the measure directly into the 
query statement. This way, you do not have to deploy a change to the data model before executing the 
query again. You can change the query, clear the cache, and run the query in DAX Studio, immediately 
measuring the performance results of the modifi ed expression.

Creating query measures with DAX Studio
DAX Studio can generate the MEASURE syntax for a measure defi ned in the model by using the Defi ne 
Measure context menu item. The latter is available by selecting a measure in the Metadata pane, as 
shown in Figure 20-3.

FIGURE 20-3 Screenshot of how a user would access the “Defi ne Measure” menu item.

If a measure references other measures, all of them should be included as query measures in order 
to consider any possible change to the repro query. The Defi ne Dependent Measures feature includes 
the defi nition of all the measures that are referenced by the selected measure, whereas Defi ne and 
Expand Measure replaces any measure reference with the corresponding measure expression. 
For example, consider the following query that just evaluates the Margin % measure:

EVALUATE
{ [Margin %] }
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By clicking Defi ne Measure on Margin %, you get the following code, where there are two other 
references to Sales Amount and Margin measures:

DEFINE
    MEASURE Sales[Margin %] =
        DIVIDE ( [Margin], [Sales Amount] )
EVALUATE
{ [Margin %] }

Instead of repeating the Defi ne Measure action on all the other measures, you can click on Defi ne 
Dependent Measures on Margin %, obtaining the defi nition of all the other measures required; this 
includes Total Cost, which is used in the Margin defi nition:

DEFINE
    MEASURE Sales[Margin] = [Sales Amount] - [Total Cost]
    MEASURE Sales[Sales Amount] =
        SUMX ( Sales, Sales[Quantity] * Sales[Net Price] )
    MEASURE Sales[Total Cost] =
        SUMX ( Sales, Sales[Quantity] * Sales[Unit Cost] ) 
    MEASURE Sales[Margin %] =
        DIVIDE ( [Margin], [Sales Amount] )
EVALUATE
{ [Margin %] }

You can also obtain a single DAX expression without measure references by clicking Defi ne and 
Expand Measure on Margin %:

DEFINE
    MEASURE Sales[Margin %] =
        DIVIDE (
            CALCULATE (
                CALCULATE ( SUMX ( Sales, Sales[Quantity] * Sales[Net Price] ) )
                    - CALCULATE ( SUMX ( Sales, Sales[Quantity] * Sales[Unit Cost] ) )
            ),
            CALCULATE ( SUMX ( Sales, Sales[Quantity] * Sales[Net Price] ) )
        )
EVALUATE
{ [Margin %] }

This latter technique can be useful to quickly evaluate whether a measure includes nested iterators 
or not, though it could generate very verbose results.

Creating a reproduction query in MDX
In certain conditions, you have to use an MDX query to reproduce a problem that only happens in MDX 
and not in DAX. The same DAX measure, executed in a DAX or in an MDX query, generates different 
query plans; it might display a different behavior depending on the language of the query. However in 
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this case too, you can defi ne the DAX measure local to the query. That way, it is more effi cient to edit 
and run again. For instance, you can defi ne the Sales Amount measure local to the MDX query using 
the WITH MEASURE syntax:

WITH
     MEASURE Sales[Sales Amount] = SUMX ( Sales, Sales[Quantity] * Sales[Unit Price] )
SELECT {
    [Measures].[Sales Amount],
    [Measures].[Total Cost],
    [Measures].[Margin],
    [Measures].[Margin %]
  } DIMENSION PROPERTIES PARENT_UNIQUE_NAME, HIERARCHY_UNIQUE_NAME ON COLUMNS,
NON EMPTY HIERARCHIZE(
    DRILLDOWNMEMBER(
        { { DRILLDOWNMEMBER( 
                { { DRILLDOWNLEVEL( 
                        { [Date].[Calendar].[All] },,, include_calc_members ) 
                } },
            { [Date].[Calendar].[Year].&[CY 2008] },,, include_calc_members ) 
        } },
        { [Date].[Calendar].[Quarter].&[Q4-2008] },,, include_calc_members 
    ) 
)
DIMENSION PROPERTIES PARENT_UNIQUE_NAME,HIERARCHY_UNIQUE_NAME ON ROWS
FROM [Model] 
CELL PROPERTIES VALUE, FORMAT_STRING, LANGUAGE, BACK_COLOR, FORE_COLOR, FONT_FLAGS

As you see, in MDX you must use WITH instead of DEFINE, which is how you can rename the syntax 
generated by DAX Studio if you optimize an MDX query. The syntax after MEASURE is always DAX 
code, so you will follow the same optimization process for an MDX query. Regardless of the repro 
query language (either DAX or MDX), you always have a DAX expression to optimize, which you can 
defi ne within a local MEASURE defi nition.

Analyzing server timings and query plan information
Once you have a repro query, you run it and collect information about execution time and query 
plan. You saw in Chapter 19 how to read the information provided by DAX Studio or SQL Server 
Profi ler. In this section, we recap the steps required to analyze a simple query in DAX Studio.

For example, consider the following DAX query:

DEFINE
    MEASURE Sales[Sales Amount] =
        SUMX ( Sales, Sales[Quantity] * Sales[Unit Price] )
EVALUATE
ADDCOLUMNS (
    VALUES ( 'Date'[Calendar Year] ),
    "Result", [Sales Amount]
)
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If you execute this query in DAX Studio after clearing the cache and enabling Query Plan and Server 
Timings, you obtain a result with one row for each year in the Date table, and the total of Sales Amount 
for sales made in that year. The starting point for an analysis is always the Server Timings pane, which 
displays information about the entire query, as shown in Figure 20-4.

FIGURE 20-4 Server Timings pane after a simple query execution.

Our query returned the result in 25 ms (Total), and it spent 72 percent of this time in the storage 
engine (SE), whereas the formula engine (FE) only used up 7 ms of the total time. This pane does not 
provide much information about the formula engine internals, but it is rich in details on storage engine 
activity. For example, there were two storage engine queries (SE Queries) that consumed a total of 
94 ms of processing time (SE CPU). The CPU time can be larger than Duration thanks to the parallelism 
of the storage engine. Indeed, the engine used 94 ms of logical processors working in parallel, so that 
the duration time is a fraction of that number. The hardware used in this test had 8 logical processors, 
and the parallelism degree of this query (ratio between SE CPU and SE) is 5.2. The parallelism cannot be 
higher than the number of logical processors you have.

The storage engine queries are available in the list, and you can see that a single storage engine 
operation (the fi rst one) consumes the entire duration and CPU time. By enabling the display of Internal 
and Cache subclass events, you can see in Figure 20-5 that the two storage engine queries were actu-
ally executed by the storage engine.

FIGURE 20-5 Server Timings pane with internal subclass events visible.
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If you execute the same query again without clearing the cache, you see the results in Figure 20-6. 
Both storage engine queries retrieved the values from the cache (SE cache), and the storage engine 
queries resolved in the cache are visible in the Subclass column.

FIGURE 20-6 Server Timings pane with cache subclass events visible, after second execution of the same DAX query.

Usually, we will use the repro query with a cold cache (clearing the cache before the execution), but 
in some cases it is important to evaluate whether a given DAX expression can leverage the cache in an 
upcoming request or not. For this reason, the Cache visualization in DAX Studio is disabled by default, 
and you enable it on demand.

At this point, you can start looking at the query plans. In Figure 20-7 you see the physical and logical 
query plans of the query used in the previous example.

The physical query plan is the one you will use more often. In the query of the previous example, there 
are two datacaches—one for each storage engine query. Every Cache row in the physical query plan 
consumes one of the datacaches available. However, there is no simple way to match the correspondence 
between a query plan operation and a datacache. You can infer the datacache by looking at the columns 
used in the operations requiring a Cache result (the Spool_Iterator and SpoolLookup rows, in Figure 20-7).

FIGURE 20-7 Query Plan pane showing physical and logical query plans.
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An important piece of information available in the physical query plan is the column showing the 
number of records processed. As you will see, when optimizing bottlenecks in the formula engine, it 
might be useful to identify the slowest operation in the formula engine by searching for the line with 
the largest number of records. You can sort the rows by clicking the Records column header, as you see 
in Figure 20-8. You restore the original sort order by clicking the Line column header.

FIGURE 20-8 Steps in physical query plan sorted by Records column.

Identifying bottlenecks in the storage engine 
or formula engine
There are many possible optimizations usually available for any query. The fi rst and most important 
step is to identify whether a query spends most of the time in the formula engine or in the storage 
engine. A fi rst indication is available in the percentages provided by DAX Studio for FE and SE. Usually, 
this is a good starting point, but you also have to identify the distribution of the workload in both the 
formula engine and the storage engine. In complex queries, a large amount of time spent in the stor-
age engine might correspond to a large number of small storage engine queries or to a small number 
of storage engine queries that concentrate the most of the workload. As you will see, these differences 
require different approaches in your optimization strategy.

When you identify the execution bottleneck of a query, you should also prioritize the optimization 
areas. For example, there might be different ineffi ciencies in the query plan resulting in a large formula 
engine execution time. You should identify the most important ineffi ciency and concentrate on that 
fi rst. If you do not follow this approach, you might end up spending time optimizing an expression that 
only marginally affects the execution time. Sometimes the more effi cient optimizations are simple but 
hidden in counterintuitive context transitions or in other details of the DAX syntax. You should always 
measure the execution time before and after each optimization attempt, making sure that you obtain a 
real advantage and that you are not just applying some optimization pattern you found on the web or 
in this book without any real benefi t.
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Finally, remember that even if you have an issue in the formula engine, you should always start your 
analysis by looking at the storage engine queries. They provide valuable information about the content 
and size of the datacaches used by the formula engine. Reading the query plan that describes the opera-
tions made by the formula engine is a very complex process. It is easier to consider that the formula 
engine will use the content of datacaches and will have to do all the operations required to produce the 
result of a DAX query that has not already been produced by the storage engine. This approach is espe-
cially effi cient for large and complex DAX queries. Indeed, these might generate thousands of lines in a 
query plan, but a relatively small number of datacaches produced by storage engine queries.

Implementing changes and rerunning the test query
Once the bottlenecks have been identifi ed, the next step is to change the DAX expressions and/or the 
data model, so that the query plan is more effi cient. Running the test query again, it is possible to verify 
that the improvement is effective, starting the search for the next bottleneck and continuing the loop 
restarting at the step “Analyzing server timings and query plan information.” This process will continue 
until the performance is optimal or there are no further possible improvements that are worth the effort.

Optimizing bottlenecks in DAX expressions

A longer execution time in the storage engine is usually the consequence of one or more of the 
following causes (explained in more detail in Chapter 19):

 ■ Longer scan time. Even for a simple aggregation, a DAX query must scan one or more col-
umns. The cost for this scan depends on the size of the column, which depends on the number 
of unique values and on the data distribution. Different columns in the same table can have 
very different execution times.

 ■ Large cardinality. A large number of unique values in a column affects the DISTINCTCOUNT 
calculation and the fi lter arguments of the CALCULATE and CALCULATETABLE functions. A large 
cardinality can also affect the scan time of a column, but it could be an issue by itself regardless 
of the column data size.

 ■ High frequency of CallbackDataID. A large number of calls made by the storage engine to 
the formula engine can affect the overall performance of a query.

 ■ Large materialization. If a storage engine query produces a large datacache, its generation 
requires time (allocating and writing RAM). Moreover, its consumption (by the formula engine) 
is also another potential bottleneck.

In the following sections, you will see several examples of optimization. Starting with the concepts you 
learned in previous chapters, you will see a typical problem reproduced in a simpler query and optimized.

Optimizing fi lter conditions
Whenever possible, a fi lter argument of a CALCULATE/CALCULATETABLE function should always fi lter 
columns rather than tables. The DAX engine has improved over the years, and several simple table 
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fi lters are relatively well optimized in 2019 or newer engine versions. However, expressing a fi lter 
condition by columns rather than by tables is always a best practice.

For example, consider the report in Figure 20-9 that compares the total of Sales Amount with the 
sum of the sales transactions larger than $1,000 (Big Sales Amount) for each product brand.

FIGURE 20-9 Sales Amount and Big Sales Amount reported by product brand.

Because the fi lter condition in the Big Sales Amount measure requires two columns, a trivial way to 
defi ne the fi lter is by using a fi lter over the Sales table. The following query computes just the Big Sales 
Amount measure in the previous report, generating the server timings results visible in Figure 20-10:

DEFINE
    MEASURE Sales[Big Sales Amount (slow)] =
        CALCULATE (
            [Sales Amount],
            FILTER (
                Sales,
                Sales[Quantity] * Sales[Net Price] > 1000
            )
        ) 
EVALUATE
SUMMARIZECOLUMNS (
    ROLLUPADDISSUBTOTAL ( 'Product'[Brand], "IsGrandTotalRowTotal" ),
    "Big_Sales_Amount", 'Sales'[Big Sales Amount (slow)]
)

FIGURE 20-10 Server Timings running the query for the Big Sales Amount (slow) measure.
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Because FILTER is iterating a table, this query is generating a larger datacache than necessary. The 
result in Figure 20-9 only displays 11 brands and one additional row for the grand total. Nevertheless, 
the query plan estimates that the fi rst two datacaches return 3,937 rows, which is the same number as 
reported also in the Query Plan pane visible in Figure 20-11.

FIGURE 20-11 Query Plan pane running the query for Big Sales Amount (slow) measure.

The formula engine receives a much larger datacache than the one required for the query result 
because there are two additional columns. Indeed, the xmSQL query at line 2 is the following:

WITH
    $Expr0 := ( CAST ( PFCAST ( 'DaxBook Sales'[Quantity] AS  INT ) AS  REAL ) 
                  * PFCAST ( 'DaxBook Sales'[Net Price] AS  REAL )  )
SELECT
    'DaxBook Product'[Brand], 
    'DaxBook Sales'[Quantity], 
    'DaxBook Sales'[Net Price],
    SUM ( @$Expr0 ) 
FROM 'DaxBook Sales'
    LEFT OUTER JOIN 'DaxBook Product' 
        ON 'DaxBook Sales'[ProductKey]='DaxBook Product'[ProductKey]
WHERE
  ( COALESCE (  ( CAST ( PFCAST ( 'DaxBook Sales'[Quantity] AS  INT ) AS  REAL ) 
    * PFCAST ( 'DaxBook Sales'[Net Price] AS  REAL )  )  ) > COALESCE ( 1000.000000 ) );

The structure of the xmSQL query at line 4 in Figure 20-10 is similar to the previous one, just without 
the SUM aggregation. The presence of a table fi lter in CALCULATE results in this side effect in the query 
plan because the semantic of the fi lter includes all the columns of the Sales expanded table (expanded 
tables are described in Chapter 14, “Advanced DAX concepts”).

The optimization of the measure only requires a column fi lter. Because the fi lter expression uses 
two columns, a row context requires a table with just those two columns to produce a corresponding 
and more effi cient fi lter argument to CALCULATE. The following query implements the columns fi lter 
adding KEEPFILTERS to keep the same semantic as the previous version, generating the server timings 
results visible in Figure 20-12:



 CHAPTER 20 Optimizing DAX 671

DEFINE
    MEASURE Sales[Big Sales Amount (fast)] =
        CALCULATE (
            [Sales Amount],
            KEEPFILTERS (
                FILTER (
                    ALL (
                        Sales[Quantity],
                        Sales[Net Price]
                    ),
                    Sales[Quantity] * Sales[Net Price] > 1000
                )
            )
        )
EVALUATE
SUMMARIZECOLUMNS (
    ROLLUPADDISSUBTOTAL ( 'Product'[Brand], "IsGrandTotalRowTotal" ),
    "Big_Sales_Amount", 'Sales'[Big Sales Amount (fast)]
)

FIGURE 20-12 Server Timings when running the query for the Big Sales Amount (fast) measure.

The DAX query runs faster, but what is more important is that there is only one datacache for the 
rows of the result, excluding the grand total, which still has a separate xmSQL query. The materializa-
tion of the datacache at line 2 in Figure 20-12 only returns 14 estimated rows, when there are only 11 
in the actual count visible in the Query Plan pane in Figure 20-13.

FIGURE 20-13 Query Plan pane running the query for Big Sales Amount (fast) measure.

The reason for this optimization is that the query plan can create a much more effi cient calculation 
in the storage engine without returning additional data to the formula engine because of the semantic 
required by a table fi lter. The following is the xmSQL query at line 2 in Figure 20-12:
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WITH
    $Expr0 := ( CAST ( PFCAST ( 'DaxBook Sales'[Quantity] AS  INT ) AS  REAL ) 
                  * PFCAST ( 'DaxBook Sales'[Net Price] AS  REAL )  )
SELECT
    'DaxBook Product'[Brand],
    SUM ( @$Expr0 )
FROM 'DaxBook Sales'
    LEFT OUTER JOIN 'DaxBook Product' 
        ON 'DaxBook Sales'[ProductKey]='DaxBook Product'[ProductKey]
WHERE
  ( COALESCE (  ( CAST ( PFCAST ( 'DaxBook Sales'[Quantity] AS  INT ) AS  REAL ) 
    * PFCAST ( 'DaxBook Sales'[Net Price] AS  REAL )  )  ) > COALESCE ( 1000.000000 ) );

The datacache no longer includes the Quantity and Net Price columns, and its cardinality 
corresponds to the cardinality of the DAX result. This is an ideal condition for minimal materialization. 
Keeping the fi lter conditions using columns rather than tables is an important effort to achieve 
this goal.

The important takeaway of this section is that you should always pay attention to the rows returned 
by storage engine queries. When their number is much bigger than the rows included in the result of 
a DAX query, there might be some overhead caused by the additional work performed by the storage 
engine to materialize datacaches and by the formula engine to consume such datacaches. Table fi lters 
are one of the most common reasons for excessive materialization, though they are not always 
responsible for bad performance.

 

Note When you write a DAX fi lter, consider the cardinality of the resulting fi lter. If the car-
dinality using a table fi lter is identical to a column fi lter and the table fi lter does not expand 
to other tables, then the table fi lter can be used safely. For example, there is not usually 
much difference between fi ltering a Date table versus the Date[Date] column.

 

Optimizing context transitions
The storage engine can only compute simple aggregations and simple grouping over columns of the 
model. Anything else must be computed by the formula engine. Every time there is an iteration and a 
corresponding context transition, the storage engine materializes a datacache at the granularity level 
of the iterated table. If the expression computed during the iteration is simple enough to be solved 
by the storage engine, the performance is typically good. Otherwise, if the expression is too com-
plex, a large materialization and/or a CallbackDataID might occur as we demonstrate in the following 
example. In these scenarios, simplifying the code by reducing the number of context transitions and 
by reducing the granularity of the iterated table greatly helps in improving performance. For example, 
consider a Cashback measure that multiplies the Sales Amount by the Cashback % attribute assigned 
to each Customer based on an algorithm defi ned by the marketing department. The report in Figure 
20-14 displays the Cashback amount for each country.
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FIGURE 20-14 Cashback reported by customer country.

The easiest and most intuitive way to create the Cashback measure is also the slowest, which multi-
plies the Cashback % by the Sales Amount for each customer, summing the result. The following query 
computes the slowest Cashback measure in the previous report, generating the server timings results 
visible in Figure 20-15:

DEFINE
    MEASURE Sales[Cashback (slow)] =
        SUMX (
            Customer,
            [Sales Amount] * Customer[Cashback %]
        )
EVALUATE
SUMMARIZECOLUMNS (
    ROLLUPADDISSUBTOTAL ( 'Customer'[Country], "IsGrandTotalRowTotal" ),
    "Cashback", 'Sales'[Cashback (slow)]
)

FIGURE 20-15 Server Timings running the query for the Cashback (slow) measure reported by country.

The queries at lines 2 and 4 of Figure 20-15 compute the result at the Country level, whereas the 
queries at lines 6 and 8 run the same task for the grand total. We will focus exclusively on the fi rst two 
storage engine queries. In order to check whether the estimation for the rows materialized is correct, 
you can look at the query plan in Figure 20-16. This could be surprising, because it seems that a few 
storage engine queries are not used at all.
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FIGURE 20-16 Query Plan pane running the query for the Cashback (slow) measure reported by country.

The query plan in Figure 20-16 only reports two Cache nodes, which correspond to lines 4 and 8 of 
the Server Timings pane in Figure 20-15. This is another example of why looking at the query plan 
could be confusing. The formula engine is actually doing some other work, but the execution within 
a CallbackDataID is not always reported in the query plan, and this is one of those cases. This is the 
xmSQL query at line 4 of Figure 20-15, which returns 29 effective rows instead of the estimated 32:

WITH
    $Expr0 := ( [CallbackDataID ( SUMX ( Sales, Sales[Quantity]] * Sales[Net Price]] ) ) 
                   ] ( PFDATAID ( 'DaxBook Customer'[CustomerKey] ) ) 
                * PFCAST ( 'DaxBook Customer'[Cashback %] AS  REAL )  ) 
SELECT
    'DaxBook Customer'[Country],
    SUM ( @$Expr0 )
FROM 'DaxBook Customer';

The DAX code passed to CallbackDataID must be computed for each customer by the formula 
engine, which receives the CustomerKey as argument. You can see the additional storage engine que-
ries, but the corresponding query plan is not visible in this case. Therefore, we can only imagine what 
the query plan does by looking at the other storage engine query at line 2 of Figure 20-15:

WITH 
    $Expr0 := ( CAST ( PFCAST ( 'DaxBook Sales'[Quantity] AS  INT ) AS  REAL )  
              * PFCAST ( 'DaxBook Sales'[Net Price] AS  REAL )  ) 
SELECT 
    'DaxBook Customer'[CustomerKey], 
    SUM ( @$Expr0 ) 
FROM 'DaxBook Sales' 
    LEFT OUTER JOIN 'DaxBook Customer' 
        ON 'DaxBook Sales'[CustomerKey]='DaxBook Customer'[CustomerKey];

The result of this xmSQL query only contains two columns: the CustomerKey and the result of the 
Sales Amount measure for that customer. Thus, the formula engine uses the result of this query to 
provide a result to the CallbackDataID request of the former query.
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Once again, instead of trying to describe the exact sequence of operations performed by the 
engine, it is easier to analyze the result of the storage engine queries, checking whether the material-
ization is larger than what is required for the query result. In this case the answer is yes: the DAX query 
returns only 6 visible countries, whereas a total of 29 countries were computed by the formula engine. 
In any case, there is a huge difference with the materialization of 18,872 customers produced by the 
latter xmSQL query analyzed. Is it possible to push more workload to the storage engine, aggregating 
the data by country instead of by customer? The answer is yes, by reducing the number of context tran-
sitions. Consider the original Cashback measure: the expression executed in the row context depends 
on a single column of the Customer table (Cashback %):

Sales[Cashback (slow)] := 
SUMX ( 
    Customer, 
    [Sales Amount] * Customer[Cashback %] 
)

Because the Sales Amount measure can be computed for a group of customers that have the same 
Cashback %, the optimal cardinality for the SUMX iterator is defi ned by the unique values of the Cash-
back % column. The following optimized version just replaces the fi rst argument of SUMX using the 
unique values of Cashback % visible in the fi lter context:

DEFINE 
    MEASURE Sales[Cashback (fast)] = 
        SUMX ( 
            VALUES ( Customer[Cashback %] ), 
            [Sales Amount] * Customer[Cashback %] 
        ) 
EVALUATE 
SUMMARIZECOLUMNS ( 
    ROLLUPADDISSUBTOTAL ( 'Customer'[Country], "IsGrandTotalRowTotal" ), 
    "Cashback", 'Sales'[Cashback (fast)] 
)

This way, the materialization is much smaller, as visible in Figure 20-17. However, even though the 
number of rows materialized is signifi cantly smaller, the overall execution time is similar if not larger; 
remember that a difference of a few milliseconds should not be considered relevant.

FIGURE 20-17 Server Timings running the query for Cashback (fast) reported by country.
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This time there is a single xmSQL query to compute the amount by country. This is the xmSQL query 
at line 2 of Figure 20-17:

WITH 
    $Expr0 := ( CAST ( PFCAST ( 'DaxBook Sales'[Quantity] AS  INT ) AS  REAL )  
              * PFCAST ( 'DaxBook Sales'[Net Price] AS  REAL )  ) 
SELECT 
    'DaxBook Customer'[Country],  
    'DaxBook Customer'[Cashback %], 
    SUM ( @$Expr0 ) 
FROM 'DaxBook Sales' 
    LEFT OUTER JOIN 'DaxBook Customer' 
        ON 'DaxBook Sales'[CustomerKey]='DaxBook Customer'[CustomerKey];

The result of this query contains three columns: Country, Cashback %, and the corresponding Sales 
Amount value. Thus, the formula engine multiplies Cashback % by Sales Amount for each row, aggregat-
ing the rows belonging to the same country. The result presents an estimated count of 288 rows, whereas 
there are only 65 rows consumed by the formula engine. This is visible in the query plan in Figure 20-18.

FIGURE 20-18 Query Plan pane running the query for Cashback (fast) reported by country.

Even though it is not evident, this measure is faster than the original measure. Having a smaller 
footprint in memory, it performs better in more complex reports. This is immediately visible by using a 
slightly different report like the one in Figure 20-19, grouping the Cashback measure by product brand 
instead of by customer country.

FIGURE 20-19 Cashback reported by product brand.
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The following query computes the slowest Cashback measure in the report shown in Figure 20-19, 
generating the server timings results visible in Figure 20-20:

DEFINE 
    MEASURE Sales[Cashback (slow)] = 
        SUMX ( 
            Customer, 
            [Sales Amount] * Customer[Cashback %] 
        ) 
EVALUATE 
SUMMARIZECOLUMNS ( 
    ROLLUPADDISSUBTOTAL ( Product[Brand], "IsGrandTotalRowTotal" ), 
    "Cashback", 'Sales'[Cashback (slow)] 
)

FIGURE 20-20 Server Timings running the query for Cashback (slow) reported by brand.

There are a few differences in this query plan, but we focus on the materialization of 192,514 rows 
produced by the following xmSQL query at line 2 of Figure 20-20:

WITH 
    $Expr0 := ( CAST ( PFCAST ( 'DaxBook Sales'[Quantity] AS  INT ) AS  REAL )  
              * PFCAST ( 'DaxBook Sales'[Net Price] AS  REAL )  ) 
SELECT 
    'DaxBook Customer'[CustomerKey], 
    'DaxBook Product'[Brand], 
    SUM ( @$Expr0 ) 
FROM 'DaxBook Sales' 
    LEFT OUTER JOIN 'DaxBook Customer' 
        ON 'DaxBook Sales'[CustomerKey]='DaxBook Customer'[CustomerKey] 
    LEFT OUTER JOIN 'DaxBook Product'  
        ON 'DaxBook Sales'[ProductKey]='DaxBook Product'[ProductKey];

The reason for the larger materialization is that now, the inner calculation computes Sales Amount 
for each combination of CustomerKey and Brand. The estimated count of 192,514 rows is confi rmed by 
the actual count visible in the query plan in Figure 20-21.

FIGURE 20-21 Query Plan pane running the query for the Cashback (slow) measure reported by country.
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When the test query is using the faster measure, the materialization is much smaller and the query 
response time is also much faster. The execution of the following DAX query produces the server 
timings results visible in Figure 20-22:

DEFINE 
    MEASURE Sales[Cashback (fast)] = 
        SUMX ( 
            VALUES ( Customer[Cashback %] ), 
            [Sales Amount] * Customer[Cashback %] 
        ) 
EVALUATE 
SUMMARIZECOLUMNS ( 
    ROLLUPADDISSUBTOTAL ( Product[Brand], "IsGrandTotalRowTotal" ), 
    "Cashback", 'Sales'[Cashback (fast)] 
)

FIGURE 20-22 Server Timings running the query for Cashback (fast) reported by brand.

The materialization is three orders of magnitude smaller (126 rows instead of 192,000), and the total 
execution time is 9 times faster than the slow version (it was 415 milliseconds and it is 48 milliseconds 
with the fast version). Because these differences depend on the cardinality of the report, you should 
focus on the formula that minimizes the work in the formula engine by computing most of the aggre-
gations in the storage engine. Reducing the number of context transitions is an important step to 
achieve this goal.

  

Note Excessive materialization generated by unnecessary context transitions is the most 
common performance issue in DAX measures. Using table fi lters instead of column fi lters is 
the second most common performance issue. Therefore, making sure that your DAX mea-
sures do not have these two problems should be your priority in an optimization effort. By 
inspecting the server timings, you should be able to quickly see the symptoms by looking at 
the materialization size.

Optimizing IF conditions
An IF function is always executed by the formula engine. When there is an IF function within an itera-
tion, there could be a CallbackDataID involved in the execution. Moreover, the engine might evaluate 
the arguments of the IF regardless of the result of the condition in the fi rst argument. Even though 
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the result is correct, you might pay the full cost of processing all the possible solutions. As usual, there 
could be different behaviors depending on the version of the DAX engine used.

Optimizing IF in measures
Conditional statements in a measure could trigger a dangerous side effect in the query plan, generat-
ing the calculation of every conditional branch regardless of whether it is needed or not. In general, it is 
a good idea to avoid or at least reduce the number of conditional statements in expressions evaluated 
for measures, applying fi lters through the fi lter context whenever possible.

For example, the report in Figure 20-23 displays a Fam. Sales measure that only considers custom-
ers with at least one child at home. Because the goal is to display the value for individual customers, 
the fi rst implementation (slow) does not work for aggregations of two or more customers (Total row is 
blank), whereas the alternative, faster implementation also works at aggregated levels.

FIGURE 20-23 Fam. Sales reported by product brand.

The following query computes the Fam. Sales (slow) measure in a report similar to the one in 
Figure 20-1. For each customer, an IF statement checks the number of children at home to fi lter cus-
tomers classifi ed as a family. The execution of the following DAX query produces the server timings 
results visible in Figure 20-22:

DEFINE 
    MEASURE Sales[Fam. Sales (slow)] = 
        VAR ChildrenAtHome = SELECTEDVALUE ( Customer[Children At Home] ) 
        VAR Result = 
            IF ( 
                ChildrenAtHome > 0, 
                [Sales Amount] 
            ) 
        RETURN Result 
EVALUATE 
CALCULATETABLE ( 
    SUMMARIZECOLUMNS ( 
        ROLLUPADDISSUBTOTAL ( 
            ROLLUPGROUP ( 
                'Customer'[CustomerKey], 
                'Customer'[Name] 
            ), "IsGrandTotalRowTotal" 



680 CHAPTER 20 Optimizing DAX

        ), 
        "Fam__Sales__slow_", 'Sales'[Fam. Sales (slow)] 
    ), 
    'Product Category'[Category] = "Home Appliances", 
    'Product'[Manufacturer] = "Northwind Traders", 
    'Product'[Class] = "Regular", 
    DATESBETWEEN ( 
        'Date'[Date], 
        DATE ( 2007, 5, 10 ), 
        DATE ( 2007, 5, 10 ) 
    ) 
) 
ORDER BY 
    [IsGrandTotalRowTotal] DESC, 
    'Customer'[CustomerKey], 
    'Customer'[Name]

FIGURE 20-24 Server Timings running the query for Fam. Sales (slow) reported by customer.

The query is not that slow, but we wanted a query result with a small number or rows because 
the focus is mainly on the materialization required. We can avoid looking at the query plan, which is 
already 62 lines long, because the information provided in the Server Timings pane already highlights 
several facts:

 ■ Even though the DAX result only has 7 rows, the rows materialized in three xmSQL queries have 
more than 18,000 rows, a number close to the number of customers.

 ■ The materialization produced by the storage engine query at line 4 in Figure 20-24 includes 
information about the number of children at home computed for each customer.

 ■ The materialization produced by the storage engine query at line 9 in Figure 20-24 includes the 
Sales Amount measure computed for each customer.

 ■ The grand total is not computed by any storage engine query, so it is the formula engine that 
aggregates the customers to obtain that number.

This is the storage engine query at line 4 in Figure 20-24. It provides the information required by the 
formula engine to fi lter customers based on the number of children at home:

SELECT 
    'DaxBook Customer'[CustomerKey], 
    SUM (  ( PFDATAID ( 'DaxBook Customer'[Children At Home] ) <> 2 )  ), 
    MIN ( 'DaxBook Customer'[Children At Home] ),  
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    MAX ( 'DaxBook Customer'[Children At Home] ),  
    COUNT (  ) 
FROM 'DaxBook Customer';

This result is used as an argument to the following storage engine query at line 9 in Figure 20-24 in 
order to fi lter an estimate of 7,368 customers that have at least one child at home:

WITH 
    $Expr0 := ( CAST ( PFCAST ( 'DaxBook Sales'[Quantity] AS  INT ) AS  REAL )  
                 * PFCAST ( 'DaxBook Sales'[Net Price] AS  REAL )  ) 
SELECT 
    'DaxBook Customer'[CustomerKey], 
    SUM ( @$Expr0 ) 
FROM 'DaxBook Sales' 
    LEFT OUTER JOIN 'DaxBook Customer'  
        ON 'DaxBook Sales'[CustomerKey]='DaxBook Customer'[CustomerKey] 
    LEFT OUTER JOIN 'DaxBook Date'  
        ON 'DaxBook Sales'[OrderDateKey]='DaxBook Date'[DateKey] 
    LEFT OUTER JOIN 'DaxBook Product'  
        ON 'DaxBook Sales'[ProductKey]='DaxBook Product'[ProductKey]  
    LEFT OUTER JOIN 'DaxBook Product Subcategory'  
        ON 'DaxBook Product'[ProductSubcategoryKey] 
               ='DaxBook Product Subcategory'[ProductSubcategoryKey] 
    LEFT OUTER JOIN 'DaxBook Product Category'  
        ON 'DaxBook Product Subcategory'[ProductCategoryKey] 
               ='DaxBook Product Category'[ProductCategoryKey] 
WHERE 
    'DaxBook Customer'[CustomerKey]  
        IN ( 2241, 13407, 5544, 7787, 11090, 7368, 17055, 16636, 1329, 12914.. 
            [7368 total values, not all displayed] )  
VAND 'DaxBook Date'[Date] = 39212.000000 
VAND 'DaxBook Product'[Manufacturer] = 'Northwind Traders' 
VAND 'DaxBook Product'[Class] = 'Regular' 
VAND 'DaxBook Product Category'[Category] = 'Home Appliances';

The estimated number of rows in this result is wrong, because there are only 7 rows received in the 
previous storage engine query. This is visible in the query plan; however, it might not be trivial to fi nd 
the corresponding xmSQL query for each Cache node in the query plan shown in Figure 20-25.

FIGURE 20-25 Server Timings running the query for the Fam. Sales (slow) measure reported by customer.

The previous storage engine query receives a fi lter over the CustomerKey column. The formula 
engine requires a materialization of such a list of values in CustomerKey in order to provide the cor-
responding fi lter in a storage engine query. However, the materialization of a large number of custom-
ers in the formula engine is likely to be the bigger cost for this query. The size of this materialization 
depends on the number of customers. Therefore, a model with hundreds of thousands or millions of 
customers would make the performance issue evident. In this case you should look at the size of the 
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materialization rather than just the execution time. The latter is still relatively quick. Understanding 
whether the materialization is effi cient is important to create a formula that scales up well with a grow-
ing number of rows in the model.

The IF statement in the measure can only be evaluated by the formula engine. This requires either 
materialization like in this example, or CallbackDataID calls, which we describe later. A better approach 
is to apply a fi lter to the fi lter context using CALCULATE. This removes the need to evaluate an IF condi-
tion for every cell of the query result.

When the test query is using the faster measure, the materialization is much smaller and the query 
response time is also much shorter. The execution of the following DAX query produces the server 
timings results visible in Figure 20-26:

DEFINE 
    MEASURE Sales[Fam. Sales (fast)] = 
        CALCULATE ( 
            [Sales Amount], 
            KEEPFILTERS ( Customer[Children At Home] > 0 ) 
        ) 
EVALUATE 
CALCULATETABLE ( 
    SUMMARIZECOLUMNS ( 
        ROLLUPADDISSUBTOTAL ( 
            ROLLUPGROUP ( 
                'Customer'[CustomerKey], 
                'Customer'[Name] 
            ), "IsGrandTotalRowTotal" 
        ), 
        "Fam__Sales__fast_", 'Sales'[Fam. Sales (fast)] 
    ), 
    'Product Category'[Category] = "Home Appliances", 
    'Product'[Manufacturer] = "Northwind Traders", 
    'Product'[Class] = "Regular", 
    DATESBETWEEN ( 
        'Date'[Date], 
        DATE ( 2007, 5, 10 ), 
        DATE ( 2007, 5, 10 ) 
    ) 
) 
ORDER BY 
    [IsGrandTotalRowTotal] DESC, 
    'Customer'[CustomerKey], 
    'Customer'[Name]

FIGURE 20-26 Server Timings running the query for Fam. Sales (fast) reported by customer.
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Even though there are still four storage engine queries, the query at line 4 in Figure 20-24 is no 
longer used. The query at line 4 in Figure 20-26 corresponds to the query at line 9 in Figure 20-24. It 
includes the fi lter over the number of children, highlighted in the last two lines of the following 
xmSQL query:

WITH 
    $Expr0 := ( CAST ( PFCAST ( 'DaxBook Sales'[Quantity] AS  INT ) AS  REAL )  
                 * PFCAST ( 'DaxBook Sales'[Net Price] AS  REAL )  ) 
SELECT 
    'DaxBook Customer'[CustomerKey], 
    SUM ( @$Expr0 ) 
FROM 'DaxBook Sales' 
    LEFT OUTER JOIN 'DaxBook Customer'  
        ON 'DaxBook Sales'[CustomerKey]='DaxBook Customer'[CustomerKey] 
    LEFT OUTER JOIN 'DaxBook Date'  
        ON 'DaxBook Sales'[OrderDateKey]='DaxBook Date'[DateKey] 
    LEFT OUTER JOIN 'DaxBook Product'  
        ON 'DaxBook Sales'[ProductKey]='DaxBook Product'[ProductKey]  
    LEFT OUTER JOIN 'DaxBook Product Subcategory'  
        ON 'DaxBook Product'[ProductSubcategoryKey] 
               ='DaxBook Product Subcategory'[ProductSubcategoryKey] 
    LEFT OUTER JOIN 'DaxBook Product Category'  
        ON 'DaxBook Product Subcategory'[ProductCategoryKey] 
               ='DaxBook Product Category'[ProductCategoryKey] 
WHERE 
     'DaxBook Date'[Date] = 39212.000000 
VAND 'DaxBook Product'[Manufacturer] = 'Northwind Traders' 
VAND 'DaxBook Product'[Class] = 'Regular' 
VAND 'DaxBook Product Category'[Category] = 'Home Appliances' 
VAND ( PFCASTCOALESCE ( 'DaxBook Customer'[Children At Home] AS  INT )  
           > COALESCE ( 0 )  );

This different query plan has pros and cons. The advantage is that the formula engine bears a lower 
workload, not having to transfer the fi lter of customers back and forth between storage engine queries. 
The price to pay for this is that the execution of the fi lters is applied at the storage engine level, which 
results in an increased cost moving from a former 32 ms of SE CPU time to the current 94 ms of SE 
CPU time.

Another side effect of the new query plan is the additional storage engine query at line 8 in Figure 
20-26; this query computes the aggregation at the grand total without having to perform such aggre-
gation in the formula engine, as was the case in the slower measure. The code is similar to the previous 
xmSQL query, without the aggregation by CustomerKey.

As a rule of thumb, replacing a conditional statement with a fi lter argument in CALCULATE is usually 
a good idea, prioritizing a smaller materialization rather than looking at the execution time for small 
queries. This way, the expression is usually more scalable with larger data models. However, you should 
always evaluate the performance in specifi c conditions, analyzing the metrics provided by DAX Studio 
using different implementations; you might otherwise choose an implementation that, in a particular 
scenario, turns out to be slower and not faster.
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Choosing between IF and DIVIDE
A very common use of the IF statement is to make sure that an expression is only evaluated with valid 
arguments. For example, an IF function can validate the denominator of a division to avoid a division 
by zero. For this specifi c condition, the DIVIDE function provides a faster alternative. It is interesting to 
consider why the code is faster by analyzing the different executions with DAX Studio.

The report in Figure 20-27 displays an Average Price measure by customer and brand.

FIGURE 20-27 Average Price reported by product brand and customer.

The following query computes the Average Price (slow) measure in the report shown in Figure 20-27. 
For each combination of product brand and customer, it divides the sales amount by the sum of 
quantity—only if the latter is not equal to zero. The execution of this DAX query produces the server 
timings results visible in Figure 20-28:

DEFINE 
    MEASURE Sales[Average Price (slow)] = 
        VAR Quantity = SUM ( Sales[Quantity] ) 
        VAR SalesAmount = [Sales Amount] 
        VAR Result = 
            IF ( 
                Quantity <> 0, 
                SalesAmount / Quantity 
            ) 
        RETURN Result 
EVALUATE 
TOPN ( 
    502, 
    SUMMARIZECOLUMNS ( 
        ROLLUPADDISSUBTOTAL ( 
            ROLLUPGROUP ( 
                'Customer'[CustomerKey], 
                'Product'[Brand] 
            ), "IsGrandTotalRowTotal" 
        ), 
        "Average_Price__slow_", 'Sales'[Average Price (slow)] 
    ), 
    [IsGrandTotalRowTotal], 0, 
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    'Customer'[CustomerKey], 1, 
    'Product'[Brand], 1 
) 
ORDER BY 
    [IsGrandTotalRowTotal] DESC, 
    'Customer'[CustomerKey], 
    'Product'[Brand]

FIGURE 20-28 Server Timings running the query for Average Price (slow) reported by product brand and customer.

Though the result of the query is limited to 500 rows, the materialization of the datacaches returned 
by the storage engine queries is much larger. The following xmSQL query is executed at line 2 in 
Figure 20-28, and returns one row for each combination of customer and brand:

WITH 
    $Expr0 := ( CAST ( PFCAST ( 'DaxBook Sales'[Quantity] AS  INT ) AS  REAL )  
                  * PFCAST ( 'DaxBook Sales'[Net Price] AS  REAL )  ) 
SELECT 
    'DaxBook Customer'[CustomerKey], 
    'DaxBook Product'[Brand], 
    SUM ( @$Expr0 ), 
    SUM ( 'DaxBook Sales'[Quantity] ) 
FROM 'DaxBook Sales' 
    LEFT OUTER JOIN 'DaxBook Customer'  
        ON 'DaxBook Sales'[CustomerKey]='DaxBook Customer'[CustomerKey] 
    LEFT OUTER JOIN 'DaxBook Product' 
        ON 'DaxBook Sales'[ProductKey]='DaxBook Product'[ProductKey];

The query does not have any fi lter; therefore, the formula engine evaluates every row returned 
by this datacache, sorting the result and choosing the fi rst 500 rows to return. This is certainly the 
most expensive part of the storage engine execution, which consumes 90% of the query dura-
tion time. The other three storage engine queries return the list of product brands (line 4), the list 
of customers (line 6), and the value of sales amount and quantity at the grand total level (line 8). 
However, these queries are less important in the optimization process. What matters is the formula 
engine cost required to execute the IF condition on more than 190,000 rows. The query plan result-
ing from the slow version of the measure has more than 80 lines (not reported here), and it con-
sumes every datacache multiple times. This is a side effect of having different execution branches in 
an IF statement.
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The optimization of the Average Price measure is based on replacing the IF function with DIVIDE. 
The execution of the following DAX query produces the server timings results visible in Figure 20-29:

DEFINE 
    MEASURE Sales[Average Price (fast)] = 
        VAR Quantity = SUM ( Sales[Quantity] ) 
        VAR SalesAmount = [Sales Amount] 
        VAR Result = 
            DIVIDE ( 
                SalesAmount, 
                Quantity 
            ) 
        RETURN Result 
EVALUATE 
TOPN ( 
    502, 
    SUMMARIZECOLUMNS ( 
        ROLLUPADDISSUBTOTAL ( 
            ROLLUPGROUP ( 
                'Customer'[CustomerKey], 
                'Product'[Brand] 
            ), "IsGrandTotalRowTotal" 
        ), 
        "Average_Price__fast_", 'Sales'[Average Price (fast)] 
    ), 
    [IsGrandTotalRowTotal], 0, 
    'Customer'[CustomerKey], 1, 
    'Product'[Brand], 1 
) 
ORDER BY 
    [IsGrandTotalRowTotal] DESC, 
    'Customer'[CustomerKey], 
    'Product'[Brand]

FIGURE 20-29 Server Timings running the query for Average Price (fast) reported by product brand and customer.

The query now runs in 413 milliseconds, saving more than 80% of the execution time. At fi rst sight, 
there being only two storage engine queries instead of four might seem like a good reason for the 
improved performance. However, this is not really the case. Overall, the SE CPU time did not change 
signifi cantly, and the larger materialization is still there. The optimization is obtained by a shorter and 
more effi cient query plan, which has only 36 lines instead of more than 80 generated by the slower 
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query. In other words, DIVIDE reduces the size and complexity of the query plan, saving time in the 
formula engine execution by almost one order of magnitude.

Optimizing IF in iterators
Using the IF statement within a large iterator might create expensive callbacks to the formula engine. 
For example, consider a Discounted Sales measure that applies a 10% discount to every transaction 
that has a quantity greater than or equal to 3. The report in Figure 20-30 displays the Discounted Sales 
amount for each product brand.

FIGURE 20-30 Discounted Sales reported by product brand.

The following query computes the slower Discounted Sales measure in the previous report, 
generating the server timings results visible in Figure 20-31:

DEFINE 
    MEASURE Sales[Discounted Sales (slow)] = 
        SUMX ( 
            Sales, 
            Sales[Quantity] * Sales[Net Price] * IF ( 
                    Sales[Quantity] >= 3, 
                    .9, 
                    1 
                ) 
        ) 
EVALUATE 
SUMMARIZECOLUMNS ( 
    ROLLUPADDISSUBTOTAL ( 'Product'[Brand], "IsGrandTotalRowTotal" ), 
    "Sales_Amount", 'Sales'[Sales Amount], 
    "Discounted_Sales__slow_", 'Sales'[Discounted Sales (slow)] 
) 
ORDER BY 
    [IsGrandTotalRowTotal] DESC, 
    'Product'[Brand]
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FIGURE 20-31 Server Timings running the query for Discounted Sales (slow) reported by product brand.

The IF statement executed in the SUMX iterator produces two storage engine queries with a 
CallbackDataID call. The following is the xmSQL query at line 2 of Figure 20-31:

WITH 
    $Expr0 := (  ( CAST ( PFCAST ( 'DaxBook Sales'[Quantity] AS  INT ) AS  REAL )  
                     * PFCAST ( 'DaxBook Sales'[Net Price] AS  REAL )  )  
                     * [CallbackDataID ( IF ( Sales[Quantity]] >= 3, .9, 1 )  ) ]  
                         ( PFDATAID ( 'DaxBook Sales'[Quantity] )  )  ) , 
    $Expr1 := ( CAST ( PFCAST ( 'DaxBook Sales'[Quantity] AS  INT ) AS  REAL )  
                  * PFCAST ( 'DaxBook Sales'[Net Price] AS  REAL )  ) 
SELECT 
    'DaxBook Product'[Brand], 
    SUM ( @$Expr0 ),  
    SUM ( @$Expr1 ) 
FROM 'DaxBook Sales' 
    LEFT OUTER JOIN 'DaxBook Product'  
        ON 'DaxBook Sales'[ProductKey]='DaxBook Product'[ProductKey];

The presence of a CallbackDataID comes with two consequences: a slower execution time compared 
to the storage engine performance and the unavailability of the storage engine cache. The datacache 
must be computed every time and cannot be retrieved from the cache in subsequent requests. The 
second issue could be more important than the fi rst one, as is the case for this example.

The CallbackDataID can be removed by rewriting the measure in a different way, summing the value 
of two CALCULATE statements with different fi lters. For example, the Discounted Sales measure can 
be rewritten using two CALCULATE functions, one for each percentage, fi ltering the transactions that 
share the same multiplicator. The following DAX query implements a version of Discounted Sales that 
does not rely on any CallbackDataID. The code is longer and requires KEEPFILTERS to provide the same 
semantic as in the original measure, producing the server timings results visible in Figure 20-32:

DEFINE 
    MEASURE Sales[Discounted Sales (scalable)] = 
        CALCULATE ( 
            SUMX ( 
                Sales, 
                Sales[Quantity] * Sales[Net Price] 
            ) * .9, 
            KEEPFILTERS ( Sales[Quantity] >= 3 ) 
        ) + CALCULATE ( 
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                SUMX ( 
                    Sales, 
                    Sales[Quantity] * Sales[Net Price] 
                ), 
                KEEPFILTERS ( NOT ( Sales[Quantity] >= 3 ) ) 
            ) 
EVALUATE 
SUMMARIZECOLUMNS ( 
    ROLLUPADDISSUBTOTAL ( 'Product'[Brand], "IsGrandTotalRowTotal" ), 
    "Sales_Amount", 'Sales'[Sales Amount], 
    "Discounted_Sales__slow_", 'Sales'[Discounted Sales (scalable)] 
)

FIGURE 20-32 Server Timings running the query for Discounted Sales (scalable) by product brand for the fi rst time.

Actually, in this simple query the result is not faster at all. The query required 159 milliseconds 
instead of the 142 milliseconds of the “slow” version. However, we called this measure “scalable.” 
Indeed, the important advantage is that a second execution of the last query with a warm cache pro-
duces the results visible in Figure 20-33, whereas multiple executions of the query for the “slow” version 
always produce a result similar to the one shown in Figure 20-31.

FIGURE 20-33 Server Timings running the query for Discounted Sales (scalable) by product brand a second time.

The Server Timings in Figure 20-33 show that there is no SE CPU cost after the fi rst execution of the 
query. This is important when a model is published on a server and many users open the same reports: 
Users experience a faster response time, and the memory and CPU workload on the server side is 
reduced. This optimization is particularly relevant in environments with a fi xed reserved capacity, such 
as Power BI Premium and Power BI Report Server.

The rule of thumb is to carefully consider the IF function in the expression of an iterator with a large 
cardinality because of the possible presence of CallbackDataID in the storage engine queries. The next 
section includes a deeper discussion on the impact of CallbackDataID, which might be required by 
many other DAX functions used in iterators.
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Note The SWITCH function in DAX is similar to a series of nested IF functions and can be 
optimized in a similar way.

 

Reducing the impact of CallbackDataID
In Chapter 19, you saw that the CallbackDataID function in a storage engine query can have a huge 
performance impact. This is because it slows down the storage engine execution, and it disables the 
use of the storage engine cache for the datacache produced. Identifying the CallbackDataID is impor-
tant because this is often the reason behind a bottleneck in the storage engine, especially for models 
that only have a few million rows in their largest table (scan time should typically be in the order of 
magnitude of 10–100 milliseconds).

For example, consider the following query where the Rounded Sales measure computes its result 
rounding Unit Price to the nearest integer. The report in Figure 20-34 displays the Rounded Sales 
amount for each product brand.

FIGURE 20-34 Rounded Sales reported by product brand.

The simpler implementation of Rounded Sales applies the ROUND function to every row of the 
Sales table. This results in a CallbackDataID call, which slows down the execution, thus lowering per-
formance. The following query computes the slowest Rounded Sales measure in the previous report, 
generating the server timings results visible in Figure 20-35:

DEFINE 
    MEASURE Sales[Rounded Sales (slow)] = 
        SUMX (  
            Sales,  
            Sales[Quantity] * ROUND ( Sales[Net Price], 0 )  
        ) 
EVALUATE 
TOPN ( 
    502, 
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    SUMMARIZECOLUMNS ( 
        ROLLUPADDISSUBTOTAL ( 'Product'[Brand], "IsGrandTotalRowTotal" ), 
        "Rounded_Sales", 'Sales'[Rounded Sales (slow)] 
    ), 
    [IsGrandTotalRowTotal], 0, 
    'Product'[Brand], 1 
) 
ORDER BY 
    [IsGrandTotalRowTotal] DESC, 
    'Product'[Brand]

FIGURE 20-35 Server Timings running the query for Rounded Sales (slow).

The two storage engine queries at lines 2 and 4 compute the value for each brand and for the grand 
total, respectively. This is the xmSQL query at line 2 of Figure 20-35:

WITH 
    $Expr0 := ( CAST ( PFCAST ( 'DaxBook Sales'[Quantity] AS  INT ) AS  REAL )  
                * [CallbackDataID ( ROUND ( Sales[Net Price]], 0 )  ) ] 
                        ( PFDATAID ( 'DaxBook Sales'[Net Price] )  )  ) 
SELECT 
    'DaxBook Product'[Brand], 
    SUM ( @$Expr0 ) 
FROM 'DaxBook Sales' 
    LEFT OUTER JOIN 'DaxBook Product' 
        ON 'DaxBook Sales'[ProductKey]='DaxBook Product'[ProductKey];

The Sales table contains more than 12 million rows, and each storage engine query computes an 
equivalent amount of CallbackDataID calls to execute the ROUND function. Indeed, the formula 
engine executes the ROUND operation to remove the decimal part of the Unit Price value. Based on the 
Server Timings report, we can estimate that the formula engine executes around 7,000 ROUND func-
tions per millisecond. It is important to keep these numbers in mind, so that you can evaluate whether 
or not the cardinality of an iterator generating CallbackDataID calls would benefi t from some amount 
of optimization. If the table contained 12,000 rows instead of 12 million rows, the priority would be to 
optimize something else. However, optimizing the measure in the current model requires reducing the 
number of CallbackDataID calls.

We aim to reduce the number of CallbackDataID calls by refactoring the measure. By looking at the 
information provided by VertiPaq Analyzer, we know that the Sales table has more than 12 million rows, 
whereas the Net Price column in the Sales table has less than 2,500 unique values. Accordingly, the 
formula can compute the same result by multiplying the rounded value of each unique Unit Price value 
by the sum of Quantity for all the Sales transaction with the same Unit Price.
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Note You should always use the statistics of your data model during DAX optimization. 
A quick way to obtain these numbers for a data model is by using VertiPaq Analyzer 
(http://www.sqlbi.com/tools/vertipaq-analyzer/).

 

The following optimized version of Rounded Sales materializes up to 2,500 rows computing the sum 
of Quantity iterating the unique values of Unit Price:

DEFINE 
    MEASURE Sales[Rounded Sales (fast)] = 
        SUMX ( 
            VALUES ( Sales[Net Price] ), 
            CALCULATE ( SUM ( Sales[Quantity] ) ) * ROUND ( Sales[Net Price], 0 ) 
        ) 
EVALUATE 
TOPN ( 
    502, 
    SUMMARIZECOLUMNS ( 
        ROLLUPADDISSUBTOTAL ( 'Product'[Brand], "IsGrandTotalRowTotal" ), 
        "Rounded_Sales", 'Sales'[Rounded Sales (fast)] 
    ), 
    [IsGrandTotalRowTotal], 0, 
    'Product'[Brand], 1 
) 
ORDER BY 
    [IsGrandTotalRowTotal] DESC, 
    'Product'[Brand]

This way, the formula engine executes the ROUND function using the result of the datacache return-
ing the sum of Quantity for each Net Price. Despite a larger materialization compared to the slow ver-
sion, the time required to obtain the solution is reduced by almost one order of magnitude. Moreover, 
the results provided by the storage engine queries can be reused in following executions because the 
storage engine cache will store the result of xmSQL queries that do not have any CallbackDataID calls.

FIGURE 20-36 Server Timings running the query for Rounded Sales (fast).

The following is the xmSQL query at line 2 of Figure 20-36. This query returns the Net Price and the 
sum of the Quantity for each brand and does not have any CallbackDataID calls:

http://www.sqlbi.com/tools/vertipaq-analyzer/
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SELECT 
    'DaxBook Product'[Brand], 
    'DaxBook Sales'[Net Price], 
    SUM ( 'DaxBook Sales'[Quantity] ) 
FROM 'DaxBook Sales' 
    LEFT OUTER JOIN 'DaxBook Product'  
        ON 'DaxBook Sales'[ProductKey]='DaxBook Product'[ProductKey];

In this latter version, the rounding is executed by the formula engine and not by the storage engine 
through the CallbackDataID. Be mindful that a very large number of unique values in Net Price would 
require a bigger materialization, up to the point where the previous version could be faster with a dif-
ferent data distribution. If Net Price had millions of unique values, a benchmark comparison between 
the two solutions would be required in order to determine the optimal solution. Moreover, the result 
could be different depending on the hardware. Rather than assuming that one technique is better 
than another, you should always evaluate the performance using a real database and not just a sample 
before making a decision.

Finally, remember that most of the scalar DAX functions that do not aggregate data require a Call-
backDataID if executed in an iterator. For example, DATE, VALUE, most of the type conversions, IFER-
ROR, DIVIDE, and all the rounding, mathematical, and date/time functions are only implemented in the 
formula engine. Most of the time, their presence in an iterator generates a CallbackDataID call. How-
ever, you always have to check the xmSQL query to verify whether a CallbackDataID is present or not.

Optimizing nested iterators
Nested iterators in DAX cannot be merged into a single storage engine query. Only the innermost 
iterator can be executed using a storage engine query, whereas the outer iterators typically require 
either a larger materialization or additional storage engine queries.

For example, consider another Cashback measure named “Cashback Sim.” that simulates a cashback 
for each customer using the current price of each product multiplied by the historical quantity and the 
cashback percentage of each customer. The report in Figure 20-37 displays the Cashback Sim. amount 
for each country.

FIGURE 20-37 Cashback Sim. reported by customer country.

The fi rst and slowest implementation iterates the Customer and Product tables in order to retrieve 
the cashback percentage of the customer and the current price of the product, respectively. The inner-
most iterators retrieve the quantity sold for each combination of customer and product, multiplying it 
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by Unit Price and Cashback %. The following query computes the slowest Cashback Sim. measure in the 
previous report, generating the server timings results visible in Figure 20-38:

DEFINE 
    MEASURE Sales[Cashback Sim. (slow)] = 
        SUMX ( 
            Customer, 
            SUMX ( 
                'Product', 
                SUMX ( 
                    RELATEDTABLE ( Sales ), 
                    Sales[Quantity] * 'Product'[Unit Price] * Customer[Cashback %] 
                ) 
            ) 
        ) 
EVALUATE 
TOPN ( 
    502, 
    SUMMARIZECOLUMNS ( 
        ROLLUPADDISSUBTOTAL ( 'Customer'[Country], "IsGrandTotalRowTotal" ), 
        "Cashback Sim. (slow)", 'Sales'[Cashback Sim. (slow)] 
    ), 
    [IsGrandTotalRowTotal], 0, 
    'Customer'[Country], 1 
) 
ORDER BY 
    [IsGrandTotalRowTotal] DESC, 
    'Customer'[Country]

FIGURE 20-38 Server Timings running the query for the Cashback Sim. (slow) measure reported by country.

The execution cost is split between the storage engine and the formula engine. The former pays a 
big price to produce a large materialization, whereas the latter spends time consuming that large set 
of materialized data. The storage engine queries at lines 2 and 10 of Figure 20-38 are identical and 
materialize the following columns for the entire Sales table: CustomerKey, ProductKey, Quantity, and 
RowNumber:

SELECT 
    'DaxBook Customer'[CustomerKey], 
    'DaxBook Product'[ProductKey], 
    'DaxBook Sales'[RowNumber], 
    'DaxBook Sales'[Quantity] 
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FROM 'DaxBook Sales' 
    LEFT OUTER JOIN 'DaxBook Customer'  
        ON 'DaxBook Sales'[CustomerKey]='DaxBook Customer'[CustomerKey] 
    LEFT OUTER JOIN 'DaxBook Product' 
        ON 'DaxBook Sales'[ProductKey]='DaxBook Product'[ProductKey];

The RowNumber is a special column inaccessible to DAX that is used to uniquely identify a row in 
a table. These four columns are used in the formula engine to compute the formula in the innermost 
iterator, which considers the sales for each combination of Customer and Product. The query at line 
2 creates the datacache that is also returned at line 10, hitting the cache. The presence of this second 
storage engine query is caused by the need to compute the grand total in SUMMARIZECOLUMNS. 
Without the two levels of granularity in the result, half the query plan and half the storage engine que-
ries would not be necessary.

The DAX measure iterates two tables (Customer and Product) producing all the possible combina-
tions. For each combination of customer and product, the innermost SUMX function iterates only the 
corresponding rows in Sales. The formula also considers the combinations of Customer and Product 
that do not have any rows in the Sales table, potentially wasting precious CPU time. The query plan 
shows that there are 2,517 products and 18,869 customers; these are the same numbers estimated for 
the storage engine queries at lines 4 and 6 in Figure 20-38, respectively. Therefore, the formula engine 
performs 1,326,280 aggregations of the rows materialized by the Sales table, as shown in the excerpt of 
the query plan in Figure 20-39. The Records column shows the number of rows iterated by consumed 
datacaches returned by storage engine queries (see the Cache nodes at lines 28, 33, and 36) or com-
puted by other formula engine operations (see the CrossApply node at line 23).

FIGURE 20-39 Query Plan pane running the query for the Cashback Sim. (slow) measure reported by country.

Although the DAX code iterates the tables, the xmSQL code only retrieves the columns of the tables 
uniquely representing one row of each table. This reduces the number of columns materialized, even 
though the cardinality of the tables iterated is larger than necessary. At this point, there are two impor-
tant considerations:

 ■ The cardinality of the iterators is larger than required. Thanks to the context transition, it is 
possible to reduce the cardinality of the outer iterators; that way, the query context considers 
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all the rows in Sales for a given combination of Unit Price and Cashback %, instead of each com-
bination of product and customer.

 ■ Removing nested iterators would produce a better query plan, also removing expensive 
materialization.

The fi rst consideration should suggest applying the technique previously described to optimize the 
context transitions. Indeed, the RELATEDTABLE function is like a CALCULATETABLE without fi lter argu-
ments that only performs a context transition. The fi rst variation to the DAX measure is a “medium” version 
that iterates the Cashback % and Unit Price columns, instead of iterating by Customer and Product. The 
semantic of the query is still the same because the innermost expression only depends on these columns:

DEFINE 
    MEASURE Sales[Cashback Sim. (medium)] = 
        SUMX ( 
            VALUES ( Customer[Cashback %] ), 
            SUMX ( 
                VALUES ( 'Product'[Unit Price] ), 
                SUMX ( 
                    RELATEDTABLE ( Sales ), 
                    Sales[Quantity] * 'Product'[Unit Price] * Customer[Cashback %]  
                )  
            ) 
        ) 
EVALUATE 
TOPN ( 
    502, 
    SUMMARIZECOLUMNS ( 
        ROLLUPADDISSUBTOTAL ( 'Customer'[Country], "IsGrandTotalRowTotal" ), 
        "Cashback Sim. (medium)", 'Sales'[Cashback Sim. (medium)] 
    ), 
    [IsGrandTotalRowTotal], 0, 
    'Customer'[Country], 1 
) 
ORDER BY 
    [IsGrandTotalRowTotal] DESC, 
    'Customer'[Country]

Figure 20-40 shows that the execution of the “medium” version is orders of magnitude faster than 
the “slow” version, thanks to a smaller granularity and a simpler dependency between tables iterated 
and columns referenced.

FIGURE 20-40 Server Timings running the query for the Cashback Sim. (medium) measure reported by country.
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The two storage engine queries provide a result for each of the cardinalities of the result. The fol-
lowing is the storage query at line 2, whereas the similar query at line 4 does not include the Country 
column and is used for the grand total:

WITH 
    $Expr0 := (  ( CAST ( PFCAST ( 'DaxBook Sales'[Quantity] AS  INT ) AS  REAL )  
                      * PFCAST ( 'DaxBook Product'[Unit Price] AS  REAL )  )  
                      * PFCAST ( 'DaxBook Customer'[Cashback] AS  REAL )  ) 
SELECT 
    'DaxBook Customer'[Country], 
    'DaxBook Customer'[Cashback], 
    'DaxBook Product'[Unit Price], 
    SUM ( @$Expr0 ) 
FROM 'DaxBook Sales' 
    LEFT OUTER JOIN 'DaxBook Customer'  
        ON 'DaxBook Sales'[CustomerKey]='DaxBook Customer'[CustomerKey] 
    LEFT OUTER JOIN 'DaxBook Product'  
        ON 'DaxBook Sales'[ProductKey]='DaxBook Product'[ProductKey];

The “medium” version of the Cashback Sim. measure still contains the same number of nested itera-
tors, potentially considering all the possible combinations between the values of the Unit Price and 
Cashback % columns. In this simple measure, the query plan is able to establish the dependencies on 
the Sales table, reducing the calculation to the existing combinations. However, there is an alternative 
DAX syntax to explicitly instruct the engine to only consider the existing combinations. Instead of using 
nested iterators, a single iterator over the result of a SUMMARIZE enforces a query plan that does not 
compute calculations over non-existing combinations. The following version named “improved” could 
produce a more effi cient query plan in complex scenarios, even though in this example it generates the 
same result and query plan:

MEASURE Sales[Cashback Sim. (improved)] = 
    SUMX ( 
        SUMMARIZE ( 
            Sales, 
            'Product'[Unit Price], 
            Customer[Cashback %] 
        ), 
        CALCULATE ( SUM ( Sales[Quantity] ) )  
            * 'Product'[Unit Price] * Customer[Cashback %] 
    )

The “medium” and “improved” versions of the Cashback Sim. measure can easily be adapted to 
use existing measures in the innermost calculations. Indeed, the “improved” version uses a CAL-
CULATE function to compute the sum of Sales[Quantity] for a given combination of Unit Price and 
Cashback %, just like a measure reference would. You should consider this approach to write effi cient 
code that is easier to maintain. However, a more effi cient version is possible by removing any nested 
iterators.
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Note A measure defi nition often includes aggregation functions such as SUM. With the 
exception of DISTINCTCOUNT, simple aggregation functions are just a shorter syntax for 
an iterator. For example, SUM internally invokes SUMX. Hence, a measure reference in an 
iterator often implies the execution of another nested iterator with a context transition in 
the middle. When this is required by the nature of the calculation, this is a necessary compu-
tational cost. When the nested iterators are additive like the two nested SUMX/SUM of the 
Cashback Sim. (improved) measure, then a consolidation of the calculation may be consid-
ered to optimize the performance; however, this could affect the readability and reusability 
of the measure.

 

The following “fast” version of the Cashback Sim. measure optimizes the performance, at the cost of 
reducing the ability to reuse the business logic of existing measures:

DEFINE 
    MEASURE Sales[Cashback Sim. (fast)] = 
        SUMX ( 
            Sales, 
            Sales[Quantity]  
                * RELATED ( 'Product'[Unit Price] )  
                * RELATED ( Customer[Cashback %] ) 
        ) 
EVALUATE 
TOPN ( 
    502, 
    SUMMARIZECOLUMNS ( 
        ROLLUPADDISSUBTOTAL ( 'Customer'[Country], "IsGrandTotalRowTotal" ), 
        "Cashback Sim. (fast)", 'Sales'[Cashback Sim. (fast)] 
    ), 
    [IsGrandTotalRowTotal], 0, 
    'Customer'[Country], 1 
) 
ORDER BY 
    [IsGrandTotalRowTotal] DESC, 
    'Customer'[Country]

Figure 20-41 shows the server timings information of the “fast” version, which saves more than 50% 
of the execution time compared to the “medium” and “improved” versions.

FIGURE 20-41 Server Timings running the query for the Cashback Sim. (fast) measure reported by country.
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The measure with a single iterator without context transitions generates the following simple 
storage engine query, reported at line 2 of Figure 20-41:

WITH 
    $Expr0 := (  ( CAST ( PFCAST ( 'DaxBook Sales'[Quantity] AS  INT ) AS  REAL )  
                            * PFCAST ( 'DaxBook Product'[Unit Price] AS  REAL )  )  
                            * PFCAST ( 'DaxBook Customer'[Cashback] AS  REAL )  ) 
SELECT 
    'DaxBook Customer'[Country], 
    SUM ( @$Expr0 ) 
FROM 'DaxBook Sales' 
    LEFT OUTER JOIN 'DaxBook Customer' 
        ON 'DaxBook Sales'[CustomerKey]='DaxBook Customer'[CustomerKey] 
    LEFT OUTER JOIN 'DaxBook Product' 
        ON 'DaxBook Sales'[ProductKey]='DaxBook Product'[ProductKey];

Using the RELATED function does not require any CallbackDataID. Indeed, the only consequence 
of RELATED is that it enforces a join in the storage engine to enable the access to the related column, 
which typically has a smaller performance impact compared to a CallbackDataID. However, the “fast” 
version of the measure is not suggested unless it is critical to obtain the last additional performance 
improvement and to keep the materialization at a minimal level.

Avoiding table fi lters for DISTINCTCOUNT
We already mentioned that fi lter arguments in CALCULATE/CALCULATETABLE functions should be 
applied to columns instead of tables. The goal of this example on the same topic is to show you an 
additional query plan pattern that you might fi nd in server timings. A side effect of a table fi lter is that 
it requires a large materialization to the storage engine, to enable the formula engine to compute the 
result. However, for non-additive expressions, the query plan might generate one storage engine query 
for each element included in the granularity of the result. The DISTINCTCOUNT aggregation is a simple 
and common example of a non-additive expression.

For example, consider the report in Figure 20-42 that shows the number of customers that made 
purchases over $1,000 (Customers 1k) for each product name.

FIGURE 20-42 Customers with purchase amounts over $1,000 for each product.
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The fi lter condition in the Customers 1k measure requires two columns. The less effi cient way to 
implement such a condition is by using a fi lter over the Sales table. The following query computes 
the Customers 1k measure in the previous report, generating the server timings results visible in 
Figure 20-43:

DEFINE 
    MEASURE Sales[Customers 1k (slow)] = 
        CALCULATE ( 
            DISTINCTCOUNT ( Sales[CustomerKey] ), 
            FILTER ( 
                Sales, 
                Sales[Quantity] * Sales[Net Price] > 1000 
            ) 
        ) 
EVALUATE 
TOPN ( 
    502, 
    SUMMARIZECOLUMNS ( 
        ROLLUPADDISSUBTOTAL ( 'Product'[Product Name], "IsGrandTotalRowTotal" ), 
        "Customers_1k__slow_", 'Sales'[Customers 1k (slow)]  
    ), 
    [IsGrandTotalRowTotal], 0, 
    'Product'[Product Name], 1 
) 
ORDER BY 
    [IsGrandTotalRowTotal] DESC, 
    'Product'[Product Name]

FIGURE 20-43 Server Timings running the query for the Customers 1k (slow) measure.

This query generates a large number of storage engine queries—one query for each product 
included in the result. Because each storage engine query requires 100 to 200 milliseconds, there are a 
total of several minutes of CPU cost, and the latency is below one minute just because of the parallelism 
of the storage engine.

The fi rst xmSQL query at line 2 of Figure 20-43 returns the list of product names, including Quan-
tity and Net Price for the sales transactions of that product. Indeed, even though there are only 1,091 
products used at least once in the Sales table in transactions with an amount greater than $1,000, the 
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granularity of the datacache is larger because it also includes additional details other than the product 
name, returning more rows for the same product:

SELECT 
    'DaxBook Product'[Product Name], 
    'DaxBook Sales'[Quantity], 
    'DaxBook Sales'[Net Price] 
FROM 'DaxBook Sales' 
    LEFT OUTER JOIN 'DaxBook Product' 
        ON 'DaxBook Sales'[ProductKey]='DaxBook Product'[ProductKey] 
WHERE 
    ( COALESCE (  ( CAST ( PFCAST ( 'DaxBook Sales'[Quantity] AS  INT ) AS  REAL )  
                             * PFCAST ( 'DaxBook Sales'[Net Price] AS  REAL )  )  )  
      > COALESCE ( 1000.000000 )   
    );

There are 1,091 xmSQL queries that are very similar to the one at line 6 of Figure 20-43 and return 
a single value obtained with a distinct count aggregation. In this case, the fi lter condition has all the 
combinations of Quantity and Net Price that return a value greater than 1,000 for the Adventure Works 
52″ LCD HDTV X790W Silver product:

SELECT 
    DCOUNT ( 'DaxBook Sales'[CustomerKey] ) 
FROM 'DaxBook Sales' 
    LEFT OUTER JOIN 'DaxBook Product'  
        ON 'DaxBook Sales'[ProductKey]='DaxBook Product'[ProductKey] 
WHERE 
    ( COALESCE (  ( CAST ( PFCAST ( 'DaxBook Sales'[Quantity] AS  INT ) AS  REAL )  
                             * PFCAST ( 'DaxBook Sales'[Net Price] AS  REAL )  )  )  
       > COALESCE ( 1000.000000 )   
    )  
VAND (  
        'DaxBook Product'[Product Name],  
        'DaxBook Sales'[Quantity],  
        'DaxBook Sales'[Net Price] )  
    IN {  
        ( 'Adventure Works 52" LCD HDTV X790W Silver', 2, 1592.200000 ) , 
        ( 'Adventure Works 52" LCD HDTV X790W Silver', 4, 1432.980000 ) , 
        ( 'Adventure Works 52" LCD HDTV X790W Silver', 1, 1273.760000 ) , 
        ( 'Adventure Works 52" LCD HDTV X790W Silver', 3, 1480.746000 ) , 
        ( 'Adventure Works 52" LCD HDTV X790W Silver', 4, 1512.590000 ) , 
        ( 'Adventure Works 52" LCD HDTV X790W Silver', 3, 1592.200000 ) , 
        ( 'Adventure Works 52" LCD HDTV X790W Silver', 3, 1353.370000 ) , 
        ( 'Adventure Works 52" LCD HDTV X790W Silver', 4, 1273.760000 ) , 
        ( 'Adventure Works 52" LCD HDTV X790W Silver', 1, 1480.746000 ) ,  
        ( 'Adventure Works 52" LCD HDTV X790W Silver', 1, 1592.200000 )  
    ..[24 total tuples, not all displayed]};



702 CHAPTER 20 Optimizing DAX

Indeed, the following xmSQL query at line 10 of Figure 20-43 only differs from the latter in the fi nal 
fi lter condition, which includes valid combinations of Quantity and Net Price for the Contoso Washer & 
Dryer 21in E210 Blue product:

SELECT 
    DCOUNT ( 'DaxBook Sales'[CustomerKey] ) 
FROM 'DaxBook Sales' 
    LEFT OUTER JOIN 'DaxBook Product'  
        ON 'DaxBook Sales'[ProductKey]='DaxBook Product'[ProductKey] 
WHERE 
    ( COALESCE (  ( CAST ( PFCAST ( 'DaxBook Sales'[Quantity] AS  INT ) AS  REAL )  
                             * PFCAST ( 'DaxBook Sales'[Net Price] AS  REAL )  )  )  
       > COALESCE ( 1000.000000 )   
    )  
VAND (  
        'DaxBook Product'[Product Name],  
        'DaxBook Sales'[Quantity],  
        'DaxBook Sales'[Net Price] )  
    IN {  
         ( 'Contoso Washer & Dryer 21in E210 Blue', 2, 1519.050000 ) , 
         ( 'Contoso Washer & Dryer 21in E210 Blue', 2, 1279.200000 ) , 
         ( 'Contoso Washer & Dryer 21in E210 Blue', 2, 1359.150000 ) , 
         ( 'Contoso Washer & Dryer 21in E210 Blue', 4, 1487.070000 ) , 
         ( 'Contoso Washer & Dryer 21in E210 Blue', 3, 1439.100000 ) , 
         ( 'Contoso Washer & Dryer 21in E210 Blue', 3, 1519.050000 ) , 
         ( 'Contoso Washer & Dryer 21in E210 Blue', 3, 1359.150000 ) , 
         ( 'Contoso Washer & Dryer 21in E210 Blue', 2, 1599.000000 ) , 
         ( 'Contoso Washer & Dryer 21in E210 Blue', 1, 1439.100000 ) , 
         ( 'Contoso Washer & Dryer 21in E210 Blue', 3, 1279.200000 ) 
    ..[24 total tuples, not all displayed]};

The presence of multiple similar storage engine queries is also visible in the Query Plan pane shown 
in Figure 20-44. Each row starting at line 15 corresponds to a single datacache with just one column 
produced by one of the storage engine queries described before.

FIGURE 20-44 Query Plan pane running the query for Customers 1k (slow).

The presence of the table fi lter applied to the fi lter context forces a query plan that is not effi cient. 
In this case, a table fi lter produces multiple storage engine queries instead of a single large materializa-
tion. However, the optimization required is always the same: Column fi lters are better than table fi lters 
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in CALCULATE and CALCULATETABLE. The optimized version of the Customer 1k measure applies a fi lter 
over the two columns Quantity and Net Price, using KEEPFILTERS in order to use the fi lter semantic of 
the original measure. The following query produces the Server Timings results visible in Figure 20-45:

DEFINE 
    MEASURE Sales[Customers 1k (fast)] = 
        CALCULATE ( 
            DISTINCTCOUNT ( Sales[CustomerKey] ), 
            KEEPFILTERS ( 
                FILTER ( 
                    ALL ( 
                        Sales[Quantity], 
                        Sales[Net Price] 
                    ), 
                    Sales[Quantity] * Sales[Net Price] > 1000 
                ) 
            ) 
        ) 
EVALUATE 
TOPN ( 
    502, 
    SUMMARIZECOLUMNS ( 
        ROLLUPADDISSUBTOTAL ( 'Product'[Product Name], "IsGrandTotalRowTotal" ), 
        "Customers_1k__fast_", 'Sales'[Customers 1k (fast)]  
    ), 
    [IsGrandTotalRowTotal], 0, 
    'Product'[Product Name], 1 
) 
ORDER BY 
    [IsGrandTotalRowTotal] DESC, 
    'Product'[Product Name]

FIGURE 20-45 Server Timings running the query for Customers 1k (fast).

The column fi lter in CALCULATE simplifi es the query plan, which now only requires two storage 
engine queries—one for each granularity level of the result (one product versus total of all products). 
The following is the xmSQL query at line 4 in Figure 20-45:

SELECT 
    'DaxBook Product'[Product Name], 
    DCOUNT ( 'DaxBook Sales'[CustomerKey] ) 
FROM 'DaxBook Sales' 
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    LEFT OUTER JOIN 'DaxBook Product' 
        ON 'DaxBook Sales'[ProductKey]='DaxBook Product'[ProductKey] 
WHERE 
    ( COALESCE (  ( CAST ( PFCAST ( 'DaxBook Sales'[Quantity] AS  INT ) AS  REAL )  
                             * PFCAST ( 'DaxBook Sales'[Net Price] AS  REAL )  )  )  
      > COALESCE ( 1000.000000 )   
    );

The datacache obtained corresponds to the result of the DAX query. The formula engine does not 
have to do any further processing. This is an optimal condition for the performance of this query. The 
lesson here is that the number of storage engine queries can also matter. A large number of storage 
engine queries might be the result of a bad query plan. Non-additive measures combined with table 
fi lters or bidirectional fi lters could be one of the reasons for this behavior, impacting performance in a 
negative way.

Avoiding multiple evaluations by using variables
When a DAX expression evaluates the same subexpression multiple times, it is usually a good idea to 
store the result of the subexpression in a variable, referencing the variable name in following parts of the 
original DAX expression. The use of variables is a best practice which improves code readability and can 
provide a better and more effi cient query plan—with just some exceptions described later in this section.

For example, the report in Figure 20-46 shows a Sales YOY % measure computing the percentage 
difference between the value of Sales Amount displayed in the row of the report and the correspond-
ing value in the previous year.

FIGURE 20-46 Difference in sales year over year reported by year and month.

The Sales YOY % measure uses other measures internally. In order to be able to modify each part of 
the calculation, it is useful to include all the underlying measures using the Defi ne Dependent Measure 
feature in DAX Studio. The following query computes the original Sales YOY % (slow) measure in the 
previous report, generating the server timings results visible in Figure 20-47:

DEFINE 
    MEASURE Sales[Sales PY] = 
        CALCULATE ( 
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            [Sales Amount], 
            SAMEPERIODLASTYEAR ( 'Date'[Date] ) 
        ) 
    MEASURE Sales[Sales YOY (slow)] = 
        IF ( 
            NOT ISBLANK ( [Sales Amount] ) && NOT ISBLANK ( [Sales PY] ), 
            [Sales Amount] - [Sales PY] 
        ) 
    MEASURE Sales[Sales Amount] = 
        SUMX ( 
            Sales, 
            Sales[Quantity] * Sales[Net Price] 
        ) 
    MEASURE Sales[Sales YOY % (slow)] = 
        DIVIDE ( 
            [Sales YOY (slow)], 
            [Sales PY] 
        ) 
EVALUATE 
TOPN ( 
    502, 
    SUMMARIZECOLUMNS ( 
        ROLLUPADDISSUBTOTAL ( 
            ROLLUPGROUP ( 
                'Date'[Calendar Year Month], 
                'Date'[Calendar Year Month Number] 
            ), "IsGrandTotalRowTotal" 
        ), 
        "Sales_YOY____slow_", 'Sales'[Sales YOY % (slow)] 
    ), 
    [IsGrandTotalRowTotal], 0, 
    'Date'[Calendar Year Month Number], 1, 
    'Date'[Calendar Year Month], 1 
) 
ORDER BY 
    [IsGrandTotalRowTotal] DESC, 
    'Date'[Calendar Year Month Number], 
    'Date'[Calendar Year Month]

FIGURE 20-47 Server Timings running the query for the Sales YOY % (slow) measure.

The description of the query plan includes 1,819 rows, not reported here. Moreover, there are four 
storage engine queries retrieved by the storage engine cache (SE Cache), even though we executed a 
clear cache command before running the query. This indicates that different parts of the query plan 
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generate different requests for the same storage engine query. Although the cache improves the 
performance of the storage engine request, the presence of such redundancy in the query plan is an 
indicator that there is room for further improvements.

When a query plan is so complex and there are many storage engine queries, it is a good idea to 
review the DAX code and reduce redundant evaluations by using variables. Indeed, redundant evalu-
ations could be responsible for these duplicated requests. In general, the DAX engine should be able 
to locate similar subexpressions executed within the same fi lter context, and reuse their results without 
multiple evaluations. However, the presence of logical conditions such as IF and SWITCH creating 
different branches of execution can easily stop this internal optimization.

For example, consider the Sales YOY (slow) measure implementation: the Sales Amount and Sales 
PY measures are executed in different branches of the evaluation. The fi rst argument of the IF function 
must always be evaluated, whereas the second argument should only be evaluated whenever the fi rst 
argument evaluates to TRUE. A DAX expression that is present in both the fi rst and the second argu-
ment might be evaluated twice in the query plan, which might not consider the result obtained for the 
fi rst argument as something that can be reused when evaluating the second argument. The technical 
reasons why this happens and when it turns out to be preferable are outside the scope of this book.

The following excerpt of the previous query highlights the measure references that might be 
evaluated twice because they are in both the fi rst and the second argument:

MEASURE Sales[Sales YOY (slow)] = 
    IF ( 
        NOT ISBLANK ( [Sales Amount] ) && NOT ISBLANK ( [Sales PY] ), 
        [Sales Amount] - [Sales PY] 
    )

By storing the values returned by the two measures Sales Amount and Sales PY in two variables, it 
is possible to instruct the DAX engine to enforce a single evaluation of the two measures before the IF 
condition, reusing the result in both the fi rst and the second argument. The following excerpt of the 
Sales YOY (fast) measure shows how to implement this technique in the DAX code:

MEASURE Sales[Sales YOY (fast)] = 
    VAR SalesPY = [Sales PY] 
    VAR SalesAmount = [Sales Amount] 
    RETURN 
        IF ( 
            NOT ISBLANK ( SalesAmount ) && NOT ISBLANK ( SalesPY ), 
            SalesAmount - SalesPY 
        )

The following query includes a full implementation of the Sales YOY (fast) % measure, which inter-
nally relies on Sales YOY (fast) instead of Sales YOY (slow). The execution of the query produces the 
server timings results visible in Figure 20-48:

DEFINE 
    MEASURE Sales[Sales PY] = 
        CALCULATE ( 
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            [Sales Amount], 
            SAMEPERIODLASTYEAR ( 'Date'[Date] ) 
        ) 
    MEASURE Sales[Sales YOY (fast)] = 
        VAR SalesPY = [Sales PY] 
        VAR SalesAmount = [Sales Amount] 
        RETURN 
            IF ( 
                NOT ISBLANK ( SalesAmount ) && NOT ISBLANK ( SalesPY ), 
                SalesAmount - SalesPY 
            ) 
    MEASURE Sales[Sales Amount] = 
        SUMX ( 
            Sales, 
            Sales[Quantity] * Sales[Net Price] 
        ) 
    MEASURE Sales[Sales YOY % (fast)] = 
        DIVIDE ( 
            [Sales YOY (fast)], 
            [Sales PY] 
        ) 
EVALUATE 
TOPN ( 
    502, 
    SUMMARIZECOLUMNS ( 
        ROLLUPADDISSUBTOTAL ( 
            ROLLUPGROUP ( 
                'Date'[Calendar Year Month], 
                'Date'[Calendar Year Month Number] 
            ), "IsGrandTotalRowTotal" 
        ), 
        "Sales_YOY____fast_", 'Sales'[Sales YOY % (fast)] 
    ), 
    [IsGrandTotalRowTotal], 0, 
    'Date'[Calendar Year Month Number], 1, 
    'Date'[Calendar Year Month], 1 
) 
ORDER BY 
    [IsGrandTotalRowTotal] DESC, 
    'Date'[Calendar Year Month Number], 
    'Date'[Calendar Year Month]

FIGURE 20-48 Server Timings running the query for Sales YOY % (fast).
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The description of the query plan includes 488 rows (not reported here), reducing the complexity 
of the query plan by 73%; the previous query plan was 1,819 rows long. The new query plan reduces 
the cost for the storage engine in terms of both execution time and number of queries, and it also 
reduces the execution time in the formula engine. Overall, the optimized measure reduces the execu-
tion time by about 50%, but the optimization could be even bigger in more complex models and 
expressions. If the same optimization were applied to nested measures, the improvement might be 
exponential.

However, pay attention to possible side effects of assigning variables before conditional statements. 
Only the subexpressions used in the fi rst argument can be assigned to variables defi ned before an IF 
or SWITCH statement; otherwise, the effect could be the opposite, enforcing the evaluation of expres-
sions that would otherwise be ignored. You should follow these guidelines:

 ■ When the same DAX expression is evaluated multiple times within the same fi lter context, 
assign it to a variable and reference the variable instead of the DAX expression.

 ■ When a DAX expression is evaluated within the branches of an IF or SWITCH, whenever neces-
sary assign the expression to a variable within the conditional branch.

 ■ Do not assign a variable outside an IF or SWITCH statement if the variable is only used within 
the conditional branch.

 ■ The fi rst argument of IF and SWITCH can use variables defi ned before IF and SWITCH without it 
affecting performance.

More examples about these guidelines are included in this article: https://www.sqlbi.com/articles/
optimizing-if-and-switch-expressions-using-variables/

  

Implementing alternative conditional statements

In the last example we used a simple IF statement to show a possible optimization using 
variables. While using variables is a best practice, it is worth mentioning that there are 
alternative ways to express the same conditional logic in DAX. For example, whenever an 
IF function returns a numeric value and the expression of the second argument does not 
raise an execution error when the condition of the fi rst argument is TRUE, it is possible to 
convert this code:

IF ( <condition>, <expression> )

Into:

<expression> * <condition>

For example, the Sales YOY (fast) measure can be implemented using this expression:

MEASURE Sales[Sales YOY (fast)] = 
    ( [Sales Amount] - [Sales PY] ) 
        * ( NOT ISBLANK ( [Sales Amount] ) && NOT ISBLANK ( [Sales PY] ) )

https://www.sqlbi.com/articles/optimizing-if-and-switch-expressions-using-variables/
https://www.sqlbi.com/articles/optimizing-if-and-switch-expressions-using-variables/
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The result produces only 208 rows in the query plan, despite a very similar query 
duration. Nevertheless, in more complex models the reduction of the query plan might 
have more visible benefi ts. However, different versions of the engine will tend to produce 
different results. Consider this alternative coding style one of the options available in case 
you need to further optimize your code. Do not apply such techniques without checking 
the effects on performance and query plans, verifying whether they improve perfor-
mance and whether they are worth reducing the readability of your code.

Conclusions

The lesson in this last chapter (to be honest, in the entire book) is that you must consider all the factors 
that affect a query plan in order to fi nd the real bottleneck. Looking at the percentages of FE and SE 
shown in server timings is a good starting point, but you should always investigate the reason behind 
the numbers. Tools like DAX Studio and VertiPaq Analyzer provide you with the ability to measure the 
effects of a bad query plan, but these are only clues and pieces of evidence pointing to the reasons for 
a slow query.

Welcome to the DAX world!
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SUMMARIZECOLUMNS function, 403–409, 

429–434
TOPN function, 409–414
TOPNSKIP function, 420
VAR in DEFINE sections, 397–399

Auto Date/Time (Power BI), 218–219
auto-exists feature (queries), 428–434
automatic date columns (Power Pivot for Excel), 219
AVERAGE function, 43–44, 199
AVERAGEA function, returning averages, 199
averages (means)

computing averages, AVERAGEX function, 
199–201

moving averages, 201–202
returning averages

AVERAGE function, 199
AVERAGEA function, 199

AVERAGEX function, 44
computing averages, 199–201
fi lter contexts, 111–112

AVERAGEX iterators, 188

B
batch events (xmSQL queries), 630–632
bidirectional cross-fi lter direction (physical 

relationships), 490, 491–493, 507
bidirectional fi ltering (relationships), 3–4
bidirectional relationships, 106, 109
Binary data type, 23
BLANK function, 36
blank rows, invalid relationships, 68–71
Boolean calculated columns, data model optimization, 

597–598
Boolean conditions, CALCULATE function, 119–120, 

123–124
Boolean data type, 22
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Boolean logic, 23
bottlenecks, DAX optimization, 667–668

identifying SE/FE bottlenecks, 667–668
optimizing bottlenecks, 668

bridge tables, MMR (Many-Many Relationships), 
494–499

budget/sales information (calculations), showing 
together, 527–530

C
CALCULATE function, 115

ALL function, 125–132, 164, 169–172
ALLSELECTED function, 171–172
Boolean conditions, 119–120, 123–124
calculated physical relationships, circular 

dependencies, 478–480
calculation items, applying to expressions, 

291–299
circular dependencies, 161–164
computing percentages, 124, 135

ALL function, 125–132
ALLEXCEPT function, 135
VALUES function, 133–134

context transitions, 148, 151–154
calculated columns, 154–157
measures, 157–160

CROSSFILTER function, 168
evaluation contexts, 79
evaluation order, 144–148
fi lter arguments, 118–119, 122, 123, 445–447
fi lter contexts, 148–151
fi ltering

multiple columns, 140–143
a single column, 138–140

KEEPFILTERS function, 135–138, 139–143, 164, 
168–169
evaluation order, 146–148
fi ltering multiple columns, 142–143

moving averages, 201–202
numbering sequences of events (calculations), 

537–538
overwriting fi lters, 120–122, 136
Precedence calculation group, 299–304
range-based relationships (calculated physical 

relationships), 474–476
RELATED function and, 443–444
row contexts, 148–151
rules for, 172–173

semantics of, 122–123
syntax of, 118, 119–120
table fi lters, 382–384, 445–447
time intelligence calculations, 228–232
transferring fi lters, 482–483, 484–485
UNION function and, 376–378
USERELATIONSHIP function, 164–168

calculated columns, 25–26
Boolean calculated columns, data model 

optimization, 597–598
context transitions, 154–157
data model optimization, 595–599
DISTINCT function, 68
expressions, 29
measures, 42

choosing between calculated columns and 
measures, 29–30

differences between calculated columns and 
measures, 29

using measures in calculated columns, 30
processing, 599
RELATED function, 443–444
SUM function, evaluation contexts, 88–89
table functions, 59
VALUES function, 68

calculated physical relationships, 471
circular dependencies, 476–480
multiple-column relationships, 471–473
range-based relationships, 474–476

calculated tables, 59
creating, 390–391
DISTINCT function, 68
SELECTCOLUMNS function, 390–391
VALUES function, 68

CALCULATETABLE function, 115, 363
active relationships, 451–453
FILTER function versus, 363–365
time intelligence functions, 259, 260–261

calculation granularity and iterators, 211–214
calculation groups, 279–281

calculation items and, 288
creating, 281–288
defi ned, 288
Name calculation group, 288
Precedence calculation group, 288, 299–304

calculation items
applying to expressions, 291

CALCULATE function, 291–299
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DATESYTD function, 293–296
YTD calculations, 294

best practices, 311
calculation groups and, 288
Expression calculation item, 289
format strings, 289–291
including/excluding measures from calculation 

items, 304–306
Name calculation item, 288
Ordinal values, 289
properties of, 288–289
sideways recursion, 306–311
YOY calculation item, 289–290
YOY% calculation item, 289–290

calculations
budget/sales information (calculations), showing 

together, 527–530
nonworking days between two dates, computing, 

523–525
precomputing values (calculations), computing work 

days between two dates, 525–527
sales

computing previous year sales up to last day sales 
(calculations), 539–544

computing same-store sales, 530–536
showing budget/sales information together, 

527–530
syntax of, 17–18
work days between two dates, computing, 

519–523
nonworking days, 523–525
precomputing values (calculations), 525–527

CALENDAR function, building date tables, 222
CALENDARAUTO function, building date tables, 

222–224
calendars (custom), time intelligence calculations, 

272
DATESYTD function, 276–277
weeks, 272–275

CallbackDataID function
Analysis Services 2012/2014 and, 644
DAX optimization, 690–693
parallelism and, 641
VertiPaq and, 640–644

capturing DAX queries, 609–611
cardinality

columns (tables)
data model optimization, 591–592
optimizing high-cardinality columns, 603

iterators, 188–190
relationships (data models), 489–490, 586–587, 

590–591
Cardinality column (VertiPaq Analyzer), 581, 583
categories/subcategories example, ALL function and, 

66–67
cells (Excel), 5
chains (relationships), 3
circular dependencies

CALCULATE function and, 161–164
calculated physical relationships, 476–480

code documentation, variables, 183–184
code maintenance/readability, FILTER function, 62–63
column fi lters

arbitrarily shaped fi lters versus, 336
defi ned, 336

columnar databases, 550–553
columns (tables), 5–7

ADDCOLUMNS function, 223–224, 366–369, 
371–372

ADDCOLUMNS iterators, 196–199
ALL function and, 64–65
ALLEXCEPT function and, 65–66
automatic date columns (Power Pivot for Excel), 219
Boolean calculated columns, data model 

optimization, 597–598
calculated columns, 25–26, 42, 443–444

Boolean calculated columns, 597–598
choosing between calculated columns and 

measures, 29–30
context transitions, 154–157
data model optimization, 595–599
differences between calculated columns and 

measures, 29
DISTINCT function, 68
expressions, 29
processing, 599
SUM function, 88–89
table functions, 59
using measures in calculated columns, 30
VALUES function, 68

cardinality
data model optimization, 591–592
optimizing high-cardinality columns, 603

Date column, data model optimization, 592–595
defi ned, 2
descriptive attributes column (tables), 600, 

601–602
fi ltering
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CALCULATE function, 138–140
multiple columns, 140–143
a single column, 138–140
table fi lters versus, 444–447

measures, evaluation contexts, 89–90
multiple columns

DISTINCT function and, 71
VALUES function and, 71

primary/alternate keys column (tables), 
599, 600

qualitative attributes column (tables), 
599, 600

quantitative attributes column (tables), 599, 
600–601

referencing, 17–18
relationships, 3
row contexts, 87
SELECTCOLUMNS function, 390–391, 393–394
SELECTCOLUMNS iterators, 196, 197–199
split optimization, 602–603
storage optimization, 602

column split optimization, 602–603
high-cardinality columns, 603

storing, 601–602
SUBSTITUTEWITHINDEX function, 425–427
SUMMARIZE function and, 401
SUMMARIZECOLUMNS function, 403–409, 

429–434
technical attributes column (tables), 600, 602
Time column, data model optimization, 592–595
VertiPaq Analyzer, 580–583

Columns # column (VertiPaq Analyzer), 582
Columns Hierarchies Size column (VertiPaq 

Analyzer), 582
Columns Total Size column (VertiPaq Analyzer), 581
COMBINEVALUES function, multiple-column 

relationships (calculated physical relationships), 
472–473

comments
at the end of expressions, 18
expressions, comment placement in expressions, 18
multi-line comments, 18
single-line comments, 18

comparison operators, 23
composite data models, 646–647

DirectQuery mode, 488
VertiPaq mode, 488

compression (VertiPaq), 553–554
hash encoding, 555–556
re-encoding, 559

RLE, 556–559
value encoding, 554–555

CONCATENATEX function
iterators and, 194–196
tables as scalar values, 74

conditional statements, 24–25, 708–709
conditions

DAX, 11
SQL, 11

CONTAINS function
tables and, 387–388
transferring fi lters, 481–482, 484–485

CONTAINSROW function and tables, 387–388
context transitions, 148

ALL function and, 328–330
CALCULATE function and, 151–154
calculated columns, 154–157
DAX optimization, 672–678
expanded tables, 454–455
iterators, leveraging context transitions, 190–194
measures, 157–160
time intelligence functions, 260

conversion functions, 51
CURRENCY function, 51
DATE function, 51, 52
DATEVALUE function, 51
FORMAT function, 51
INT function, 51
TIME function, 51, 52
VALUE function, 51

conversions, error-handling, 31–32
cores (number of), VertiPaq hardware selection, 

574, 576
COUNT function, 46
COUNTA function, 46
COUNTBLANK function, 46
COUNTROWS function, 46

fi lter contexts and relationships, 109
nested row contexts on the same table, 92–95
tables as scalar values, 73

CPU model, VertiPaq hardware selection, 574–575
cross-fi lter directions (physical relationships), 3, 490

bidirectional cross-fi lter direction, 490, 491–493, 507
single cross-fi lter direction, 490

cross-fi ltering, data model optimization, 590
cross-island relationships, 489
CROSSFILTER function

bidirectional relationships, 109
CALCULATE function and, 168
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CROSSJOIN function and tables

CROSSJOIN function and tables, 372–374, 383–384
Currency data type, 21
CURRENCY function, 51
custom calendars, time intelligence calculations, 272

DATESYTD function, 276–277
weeks, 272–275

customers (new), computing (tables), 380–381, 
386–387

D
Daily AVG

calculation group precedence, 299–303
calculation items, including/excluding measures, 

304–306
data lineage, 332–336, 465–468
data models

aggregations, 647–648
composite data models, 646–647

DirectQuery mode, 488
VertiPaq mode, 488

defi ned, 1–2
optimizing with VertiPaq, 579

aggregations, 587–588, 604–607
calculated columns, 595–599
choosing columns for storage, 599–602
column cardinality, 591–592
cross-fi ltering, 590
Date column, 592–595
denormalizing data, 584–591
disabling attribute hierarchies, 604
gathering data model information, 

579–584
optimizing column storage, 602–603
optimizing drill-through attributes, 604
relationship cardinality, 586–587, 590–591
Time column, 592–595

relationships, 2
1:1 relationships, 2
active relationships, 450–453
bidirectional fi ltering, 3–4
cardinality, 586–587, 590–591
chains, 3
columns, 3
cross fi lter direction, 3
DAX and SQL, 9
directions of, 3–4
many-sided relationships, 2, 3

one-sided relationships, 2, 3
Relationship reports (VertiPaq Analyzer), 584
unidirectional fi ltering, 4
weak relationships, 2

single data models
DirectQuery mode, 488
VertiPaq mode, 488

tables, defi ned, 2
weak relationships, 439

data refreshes, SSAS (SQL Server Analysis Services), 
549–550

Data Size column (VertiPaq Analyzer), 581
data types, 19

Binary data type, 23
Boolean data type, 22
Currency data type, 21
DateTime data type, 21–22
Decimal data type, 21
Integer data type, 21
operators, 23

arithmetic operators, 23
comparison operators, 23
logical operators, 23
overloading, 19–20
parenthesis operators, 23
text concatenation operators, 23

string/number conversions, 19–21
strings, 22
Variant data type, 22

Database Size % column (VertiPaq Analyzer), 582
databases (columnar), 550–553
datacaches

FE, 547
SE, 547
VertiPaq, 549, 635–637

DATATABLE function, creating static tables, 
392–393

Date column, data model optimization, 592–595
DATE function, 51, 52
date table templates (Power Pivot for Excel), 220
date tables

building, 220–221
ADDCOLUMNS function, 223–224
CALENDAR function, 222
CALENDARAUTO function, 222–224
date templates, 224

duplicating, 227
loading from other data sources, 221
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Mark as Date Table, 232–233
multiple dates, managing, 224

multiple date tables, 226–228
multiple relationships to date tables, 

224–226
naming, 221

date templates, 224
date/time-related calculations, 217

Auto Date/Time (Power BI), 218–219
automatic date columns (Power Pivot for 

Excel), 219
basic calculations, 228–232
basic functions, 233–235
CALCULATE function, 228–232
CALCULATETABLE function, 259, 260–261
context transitions, 260
custom calendars, 272

DATESYTD function, 276–277
weeks, 272–275

date tables
ADDCOLUMNS function, 223–224
building, 220–224
CALENDAR function, 222
CALENDARAUTO function, 222–224
date table templates (Power Pivot for 

Excel), 220
date templates, 224
duplicating, 227
loading from other data sources, 221
managing multiple dates, 224–228
Mark as Date Table, 232–233
multiple date tables, 226–228
multiple relationships to date tables, 224–226
naming, 221

DATEADD function, 237–238, 262–269
DATESINPERIOD function, 243–244
DATESMTD function, 259, 276–277
DATESQTD function, 259, 276–277
DATESYTD function, 259, 260, 261–262, 276–277
differences over previous periods, computing, 

241–243
drillthrough operations, 271
FILTER function, 228–232
FIRSTDATE function, 269, 270
FIRSTNONBLANK function, 256–257, 270–271
LASTDATE function, 248–249, 254, 255, 269–270
LASTNONBLANK function, 250–254, 255, 270–271
mixing functions, 239–241

moving annual totals, computing, 243–244
MTD calculations, 235–236, 259–262, 276–277
nested functions, call order of, 245–246
NEXTDAY function, 245–246
nonworking days between two dates, computing, 

523–525
opening/closing balances, 254–258
PARALLELPERIOD function, 238–239
periods to date, 259–262
PREVIOUSMONTH function, 239
QTD calculations, 235–236, 259–262, 276–277
SAMEPERIODLASTYEAR function, 237, 245–246
semi-additive calculations, 246–248
STARTOFQUARTER function, 256–257
time periods, computing from prior periods, 

237–239
work days between two dates, computing, 

519–523
nonworking days, 523–525
precomputing values (calculations), 

525–527
YTD calculations, 235–236, 259–262, 276–277

DATEADD function, time intelligence calculations, 
237–238, 262–269

DATESINPERIOD function, computing moving annual 
totals, 243–244

DATESMTD function, time intelligence calculations, 
259, 276–277

DATESQTD function, time intelligence calculations, 
259, 276–277

DATESYTD function
calculation items, applying to expressions, 

293–296
time intelligence calculations, 259, 260, 261–262, 

276–277
DateTime data type, 21–22
DATEVALUE function, 51
DAX (Data Analysis eXpressions), 1

conditions, 11
data models

defi ned, 1–2
relationships, 2–4
tables, 2

date templates, 224
DAX and, cells and tables, 5–7
Excel and

functional languages, 7
theories, 8–9

expressions
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identifying a single DAX expression for 
optimization, 658–661

optimizing bottlenecks, 668
as functional language, 10
functions, 6–7
iterators, 8
MDX, 12

hierarchies, 13–14
leaf-level calculations, 14
multidimensional versus tabular space, 12
as programming language, 12–13
as querying language, 12–13
queries, 613

optimizing, 657
bottlenecks, 668
CallbackDataID function, 690–693
change implementation, 668
conditional statements, 708–709
context transitions, 672–678
creating reproduction queries, 661–664
DISTINCTCOUNT function, 699–704
to-do list, 658
fi lter conditions, 668–672
identifying a single DAX expression for 

optimization, 658–661
identifying SE/FE bottlenecks, 667–668
IF conditions, 678–690
multiple evaluations, avoiding with variables, 

704–708
nested iterators, 693–699
query plans, 664–667
rerunning test queries, 668
server timings, 664–667
variables, 704–708

Power BI and, 14–15
as programming language, 10–11
queries

capturing, 609–611
creating reproduction queries, 661–662
DISTINCTCOUNT function, 634–635
executing, 546

query plans, 612–613
collecting, 613–614
DAX Studio, 617–620
logical query plans, 612, 614
physical query plans, 612–613, 614–616
SQL Server Profi ler, 620–623

as querying language, 10–11

SQL and, 9
subqueries, 11

DAX engines
DirectQuery, 546, 548, 549
FE, 546, 547

datacaches, 547
operators of, 547
single-threaded implementation, 547

SE, 546
aggregations, 548
datacaches, 547
DirectQuery, 548, 549
operators of, 547
parallel implementations, 548
VertiPaq, 547–549, 550–577

Tabular model and, 545–546
VertiPaq, 546, 547–548, 550. See also data models, 

optimizing with VertiPaq
aggregations, 571–573
columnar databases, 550–553
compression, 553–562
datacaches, 549
DMV, 563–565
hardware selection, 573–577
hash encoding, 555–556
hierarchies, 561–562
materialization, 568–571
multithreaded implementations, 548
partitioning, 562–563
processing tables, 550
re-encoding, 559
relationships (data models), 561–562, 

565–568
RLE, 556–559
scan operations, 549
segmentation, 562–563
sort orders, 560–561
value encoding, 554–555

DAX Studio, 395
capturing DAX queries, 609–611
Power BI and, 609–611
query measures, creating, 662–663
query plans, capturing profi ling information, 

617–620
VertiPaq caches, 639–640

DAXFormatter.com, 41
Decimal data type, 21
DEFINE MEASURE clauses in EVALUATE statements, 59

http://DAXFormatter.com
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DEFINE sections (authoring queries)
MEASURE keyword in, 399
VAR keyword in, 397–399

denormalizing data and data model optimization, 
584–591

descriptive attributes column (tables), 600, 601–602
DETAILROWS function, reusing table expressions, 

388–389
dictionary encoding. See hash encoding
Dictionary Size column (VertiPaq Analyzer), 581
DirectQuery, 488–489, 546, 548, 549, 617

calculated columns, 25–26
composite data models, 488
End events (SQL Server Profi ler), 621
SE, 549

composite data models, 646–647
reading, 645–646

single data models, 488
Disk I/O performance, VertiPaq hardware selection, 

574, 576–577
DISTINCT function, 71

blank rows and invalid relataionships, 68, 70–71
calculated columns, 68
calculated physical relationships

circular dependencies, 477–478
range-based relationships, 476

fi lter contexts, 111–112
multiple columns, 71
UNION function and, 375–378
VALUES function versus, 68

DISTINCTCOUNT function, 46
DAX optimization, 699–704
same-store sales (calculations), computing, 

535–536
table fi lters, avoiding, 699–704
VertiPaq SE queries, 634–635

DISTINCTCOUNTNOBLANK function, 46
DIVIDE function, DAX optimization, 684–687
division by zero, arithmetic operators, 32–33
DMV (Dynamic Management Views) and SSAS, 

563–565
documenting code, variables, 183–184
drill-through attributes, optimizing, 604
drillthrough operations, time intelligence calculations, 

271
duplicating, date tables, 227
duration of an order example, 26
dynamic segmentation, virtual relationships and, 

485–488

E
EARLIER function, evaluation contexts, 97–98
editing text, formatting DAX code, 42
empty/missing values, error-handling, 33–35
Encoding column (VertiPaq Analyzer), 582, 583
error-handling

BLANK function, 36
Excel, empty/missing values, 35
expressions, 31

arithmetic operator errors, 32–35
conversion errors, 31–32

generating errors, 38–39
IF function, 36, 37
IFERROR function, 35–36, 37–38
ISBLANK function, 36
ISERROR function, 36, 38
SQRT function, 36
variables, 37

EVALUATE statements
ADDMISSINGITEMS function, 419–420, 

432–433
DEFINE MEASURE clauses, 59
example of, 396
expression variables and, 398
GENERATE function, 414–417
GENERATEALL function, 417
GROUPBY function, 420–423
ISONORAFTER function, 417–419
NATURALINNERJOIN function, 423–425
NATURALLEFTOUTERJOIN function, 423–425
ORDER BY clauses, 60
query variables and, 398
ROW function, 400–401
SAMPLE function, 427–428
SUBSTITUTEWITHINDEX function, 425–427
SUMMARIZE function, 401–403, 433–434
SUMMARIZECOLUMNS function, 403–409, 

429–434
syntax of, 59–60, 396–399
TOPN function, 409–414
TOPNSKIP function, 420

evaluation contexts, 79
ALL function, 100–101
AVERAGEX function, fi lter contexts, 111–112
CALCULATE function, 79
columns in measures, 89–90
COUNTROWS function, fi lter contexts and 

relationships, 107–108
defi ned, 80
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DISTINCT function, fi lter contexts, 111–112
EARLIER function, 97–98
fi lter contexts, 80, 109–110

AVERAGEX function, 111–112
CALCULATE function, 118–119
CALCULATE function and, 148–151
creating, 115–119
DISTINCT function, 111–112
examples of, 80–85
fi lter arguments, 118–119
relationships and, 106–109
row contexts versus, 85
SUMMARIZE function, 112

FILTER function, 92–93, 94–95, 98–101
multiple tables, working with, 101–102

fi lter contexts and relationships, 106–109
row contexts and relationships, 102–105

RELATED function
fi lter contexts and relationships, 109
nested row contexts on different tables, 92
row contexts and relationships, 103–105

RELATEDTABLE function
fi lter contexts and relationships, 109
nested row contexts on different tables, 

91–92
row contexts and relationships, 103–105

relationships and, 101–102
fi lter contexts, 106–109
row contexts, 102–105

row contexts, 80
CALCULATE function and, 148–151
column references, 87
examples of, 86–87
fi lter contexts versus, 85
iterators and, 90–91
nested row contexts on different tables, 

91–92
nested row contexts on the same table, 92–97
relationships and, 102–105

SUM function, in calculated columns, 88–89
SUMMARIZE function, fi lter contexts, 112

evaluations (multiple), avoiding with variables, 
704–708

events (calculations), numbering sequences of, 536–539
Excel

calculations, 8
cells, 5
columns, 5–7

DAX and
cells and tables, 5–7
functional languages, 7
theories, 8–9

error-handling, empty/missing values, 35
formulas, 6
functions, 6–7
Power Pivot for Excel

automatic date columns, 219
date table templates, 220

EXCEPT function, tables and, 379–381
expanded tables

active relationships, 450–453
column fi lters versus table fi lters, 444–447
context transitions, 454–455
fi lter contexts, 439–441
fi ltering, 444–447

active relationships and, 450–453
differences between table fi lters and expanded 

tables, 453–454
RELATED function, 441–444
relationships, 437–441
table fi lters

column fi lters versus, 444–447
in measures, 447–450

Expression calculation item, 289
Expression Trees, 612
expressions

calculated columns, 29
calculation items, applying to expressions, 291

CALCULATE function, 291–299
DATESYTD function, 293–296
YTD calculations, 294

comments, placement in expressions, 18
DAX optimization, 658–661, 668
error-handling, 31

arithmetic operator errors, 32–35
conversion errors, 31–32

formatting, 39–40, 42
MDX

DAX and, 12–13, 14
queries, 546, 604, 613, 663–664

query measures, 399
scalar expressions, 57–58
table expressions

EVALUATE statements, 59–60
reusing, 388–389

variables, 30–31, 397–399
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F
FE (Formula Engines), 546, 547

bottlenecks, identifying, 667–668
datacaches, 547
operators of, 547
query plans, reading, 652–653, 654–655
single-threaded implementation, 547, 642

fi lter arguments
CALCULATE function, 118–119, 122, 123, 

445–447
defi ned, 120
multiple column references, 140
SUMMARIZECOLUMNS function, 406–409

fi lter contexts, 80, 109–110, 313, 343–344
ALL function, 324–326, 327–330
ALLEXCEPT function, 326–328
arbitrarily shaped fi lters, 336

best practices, 343
building, 338–343
column fi lters versus, 336
defi ned, 337–338
simple fi lters versus, 337
uses of, 343

AVERAGEX function, 111–112
CALCULATE function, 148–151

fi lter arguments, 118–119
overwriting fi lters, 120–122

column fi lters
arbitrarily shaped fi lters versus, 336
defi ned, 336

creating, 115–119
data lineage, 332–336
DISTINCT function, 111–112
examples of, 80–85
expanded tables, 439–441
FILTERS function, 322–324
HASONVALUE function, 314–318
ISCROSSFILTERED function, 319–322
ISEMPTY function, 330–332
ISFILTERED function, 319, 320–322
nesting in variables, 184–185
relationships and, 106–109
row contexts versus, 85
SELECTEDVALUE function, 318–319
simple fi lters

arbitrarily shaped fi lters versus, 337

defi ned, 337
SUMMARIZE function, 112
TREATAS function, 334–336
VALUES function, 322–324, 327–328

FILTER function, 57–58
CALCULATETABLE function versus, 363–365
code maintenance/readability, 62–63
evaluation contexts, 98–101
as iterator, 60–61
nested row contexts on the same table, 

92–93, 94–95
nesting, 61–62
range-based relationships (calculated physical 

relationships), 474–476
syntax of, 60
time intelligence calculations, 228–232
transferring fi lters, 481–482, 484–485

fi lter operations, xmSQL queries, 628–630
fi ltering

ALLCROSSFILTERED function, 464, 465
columns (tables) versus table fi lters, 444–447
DAX optimization, fi lter conditions, 668–672
expanded tables

differences between table fi lters and expanded 
tables, 453–454

table fi lters and active relationships, 
450–453

FILTER function
range-based relationships (calculated physical 

relationships), 474–476
transferring fi lters, 484–485

KEEPFILTERS function, 461–462, 482–483, 484
relationships

bidirectional fi ltering, 3–4
unidirectional fi ltering, 4

shadow fi lter contexts, 457–462
tables, 381

CALCULATE function and, 445–447
column fi lters versus, 444–447
differences between table fi lters and expanded 

tables, 453–454
DISTINCTCOUNT function, 699–704
in measures, 447–450
OR conditions, 381–384
table fi lters and active relationships, 

450–453
transferring fi lters, 480–481

CALCULATE function, 482
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CONTAINS function, 481–482
FILTER function, 481–482, 484–485
INTERSECT function, 483–484
TREATAS function, 482–483, 484

FILTERS function
fi lter contexts, 322–324
VALUES function versus, 322–324

FIRSTDATE function, time intelligence calculations, 
269, 270

FIRSTNONBLANK function, time intelligence calculations, 
256–257, 270–271

FORMAT function, 51
format strings

calculation items and, 289–291
defi ned, 291
SELECTEDMEASUREFORMATSTRING function, 

291
formatting DAX code, 39, 41–42

DAXFormatter.com, 41
editing text, 42
expressions, 39–40, 42
formulas, 42
help, 42
variables, 40–41

formulas
Excel, 6

formatting, 42
IN function, tables and, 387–388
functions

ADDCOLUMNS function, 223–224, 366–369, 
371–372

ADDMISSINGITEMS function
authoring queries, 419–420, 432–433
auto-exists feature (queries), 432–433

aggregation functions, xmSQL queries, 
625–627

aggregators, 42, 44, 45–46
AVERAGE function, 43–44
AVERAGEX function, 44
COUNT function, 46
COUNTA function, 46
COUNTBLANK function, 46
COUNTROWS function, 46
DISTINCTCOUNT function, 46
DISTINCTCOUNTNOBLANK function, 46
MAX function, 43
MIN function, 43

SUM function, 42–43, 44–45
SUMX function, 45

ALL function, 464–465
ALLEXCEPT function versus, 326–328
CALCULATE function and, 164, 169–172
calculated physical relationships and circular 

dependencies, 478
computing nonworking days between two dates, 

523–525
computing percentages, 125–132
context transitions, 328–330
evaluation contexts, 100–101
fi lter contexts, 324–326, 327–330
VALUES function and, 327–328

ALL* functions, 462–464
ALLCROSSFILTERED function, 464, 465
ALLEXCEPT function, 464, 465

ALL function versus, 326–328
computing percentages, 135
fi lter contexts, 326–328
VALUES function versus, 326–328

ALLNOBLANKROW function, 464, 465, 478
ALLSELECTED function, 455–457, 464, 465

CALCULATE function and, 171–172
returning iterated rows, 460–462
shadow fi lter contexts, 459–462

AVERAGE function, returning averages, 
199

AVERAGEA function, returning averages, 199
AVERAGEX function

computing averages, 199–201
fi lter contexts, 111–112

Boolean conditions, 123–124
CALCULATE function, 115

ALL function, 125–132, 164, 169–172
ALLSELECTED function, 171–172
Boolean conditions, 119–120
calculated physical relationships and circular 

dependencies, 478–480
calculation items, applying to expressions, 

291–299
circular dependencies, 161–164
computing percentages, 124–135
context transitions, 148, 151–160
CROSSFILTER function, 168
evaluation contexts, 79
evaluation order, 144–148

http://DAXFormatter.com
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fi lter arguments, 118–119, 122, 123, 
445–447

fi lter contexts, 148–151
fi ltering a single column, 138–140
fi ltering multiple columns, 140–143
KEEPFILTERS function, 135–138, 

139–143, 164, 168–169
KEEPFILTERS function and, 146–148
moving averages, 201–202
numbering sequences of events (calculations), 

537–538
overwriting fi lters, 120–122
Precedence calculation group, 299–304
range-based relationships (calculated physical 

relationships), 474–476
RELATED function and, 443–444
row contexts, 148–151
rules for, 172–173
semantics of, 122–123
syntax of, 118, 119–120
table fi lters, 445–447
tables as fi lters, 382–384
time intelligence calculations, 228–232
transferring fi lters, 482–483, 484–485
UNION function and, 376–378
USERELATIONSHIP function, 164–168

CALCULATETABLE function, 115, 363
active relationships, 451–453
FILTER function versus, 363–365
time intelligence functions, 259, 260–261

CALENDAR function, date tables, 222
CALENDARAUTO function, date tables, 222–224
CallbackDataID function

Analysis Services 2012/2014 and, 644
DAX optimization, 690–693
parallelism and, 641
VertiPaq and, 640–644

COMBINEVALUES function, multiple-column 
relationships (calculated physical relationships), 
472–473

CONCATENATEX function
iterators and, 194–196
tables as scalar values, 74

CONTAINS function
tables and, 387–388
transferring fi lters, 481–482, 484–485

CONTAINSROW function, tables and, 387–388
conversion functions, 51

COUNTROWS function
fi lter contexts and relationships, 107–108
nested row contexts on the same table, 

92–95
tables as scalar values, 73

CROSSFILTER function
bidirectional relationships, 109
CALCULATE function and, 168

CROSSJOIN function, tables and, 372–374, 
383–384

CURRENCY function, 51
DATATABLE function, creating static tables, 

392–393
DATE function, 51, 52
DATEADD function, time intelligence calculations, 

237–238, 262–269
DATESINPERIOD function, moving annual totals, 

243–244
DATESMTD function, time intelligence calculations, 

259, 276–277
DATESQTD function, time intelligence calculations, 

259, 276–277
DATESYTD function

calculation items, applying to expressions, 
293–296

time intelligence calculations, 259, 260, 261–262, 
276–277

DATEVALUE function, 51
DETAILROWS function, reusing table expressions, 

388–389
DISTINCT function

calculated physical relationships and circular 
dependencies, 477–478

fi lter contexts, 111–112
range-based relationships (calculated physical 

relationships), 476
UNION function and, 375–378

DISTINCTCOUNT function
avoiding table fi lters, 699–704
computing same-store sales, 535–536
DAX optimization, 699–704

DIVIDE function, DAX optimization, 684–687
EARLIER function, evaluation contexts, 97–98
Excel, 6–7
EXCEPT function, tables and, 379–381
FILTER function

CALCULATETABLE function versus, 
363–365

evaluation contexts, 98–101
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nested row contexts on the same table, 92–93, 
94–95

range-based relationships (calculated physical 
relationships), 474–476

time intelligence calculations, 228–232
transferring fi lters, 481–482, 484–485

FILTERS function
fi lter contexts, 322–324
VALUES function versus, 322–324

FIRSTDATE function, time intelligence calculations, 
269, 270

FIRSTNONBLANK function, time intelligence 
calculations, 256–257, 270–271

FORMAT function, 51
IN function, tables and, 387–388
GENERATE function, authoring queries, 414–417
GENERATEALL function, authoring queries, 417
GENERATESERIES function, tables and, 393–394
GROUPBY function

authoring queries, 420–423
SUMMARIZE function and, 420–423

HASONEVALUE function
fi lter contexts, 314–318
tables as scalar values, 73

information functions, 48–49
INT function, 51
INTERSECT function

tables and, 378–379
transferring fi lters, 483–484

ISCROSSFILTERED function, fi lter contexts, 
319–322

ISEMPTY function, fi lter contexts, 330–332
ISFILTERED function

fi lter contexts, 319, 320–322
time intelligence calculations, 268–269

ISNUMBER function, 48–49
ISONORAFTER function

authoring queries, 417–419
TOPN function and, 417–419

ISSELECTEDMEASURE function, including/excluding 
measures from calculation items, 304–306

ISSUBTOTAL function and SUMMARIZE function, 
402–403

KEEPFILTERS function, 461–462
CALCULATE function and, 135–138, 142–143, 

146–148, 164, 168–169
evaluation order, 146–148
transferring fi lters, 482–483, 484

LASTDATE function, time intelligence calculations, 
248–249, 254, 255, 269–270

LASTNONBLANK function, 250–254, 255, 270–271
logical functions

IF function, 46–47
IFERROR function, 47
SWITCH function, 47–48

LOOKUPVALUE function, 444, 473
mathematical functions, 49
NATURALINNERJOIN function, authoring queries, 

423–425
NATURALLEFTOUTERJOIN function, authoring 

queries, 423–425
nested functions, call order of time intelligence 

functions, 245–246
NEXTDAY function, call order of nested time 

intelligence functions, 245–246
PARALLELPERIOD function, time intelligence 

calculations, 238–239
PREVIOUSMONTH function, time intelligence 

calculations, 239
RANK.EQ function, 210
RANKX function, numbering sequences of events 

(calculations), 538–539
RELATED function

CALCULATE function and, 443–444
calculated columns, 443–444
context transitions in expanded tables, 455
expanded tables, 441–444
fi lter contexts and relationships, 109
nested row contexts on different tables, 92
row contexts and relationships, 103–105
table fi lters and expanded tables, 454

RELATEDTABLE function
fi lter contexts and relationships, 109
nested row contexts on different tables, 

91–92
row contexts and relationships, 103–105

relational functions, 53–54
ROLLUP function, 401–402, 403
ROW function

creating static tables, 391–392
testing measures, 400–401

SAMEPERIODLASTYEAR function
call order of nested time intelligence functions, 

245–246
computing previous year sales up to last day sales 

(calculations), 540–544
time intelligence calculations, 237
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SAMPLE function, authoring queries, 
427–428

SELECTCOLUMNS function, 390–391, 393–394
SELECTEDMEASURE function, including/excluding 

measures from calculation items, 304–306
SELECTEDMEASUREFORMATSTRING function, 291
SELECTEDVALUE function

calculated physical relationships and circular 
dependencies, 479–480

computing same-store sales, 533–534
context transitions in expanded tables, 

454–455
fi lter contexts, 318–319
tables as scalar values, 73–74

STARTOFQUARTER function, time intelligence 
calculations, 256–257

SUBSTITUTEWITHINDEX function, authoring queries, 
425–427

SUM function in calculated columns, 88–89
SUMMARIZE function

authoring queries, 401–403, 433–434
auto-exists feature (queries), 433–434
columns (tables) and, 401
fi lter contexts, 112
GROUPBY function and, 420–423
ISSUBTOTAL function and, 402–403
ROLLUP function and, 401–402, 403
table fi lters and expanded tables, 453–454
tables and, 369–372, 373–374, 383–384
transferring fi lters, 484–485

SUMMARIZECOLUMNS function
authoring queries, 403–409, 429–434
auto-exists feature (queries), 429–434
fi lter arguments, 406–409
IGNORE modifi er, 403–404
ROLLUPADDISSUBTOTAL modifi er, 404–406
ROLLUPGROUP modifi er, 406
TREATAS function and, 407–408

table functions, 57
ALL function, 63–65, 66–67
ALLEXCEPT function, 65–66
ALLSELECTED function, 74–76
calculated columns and, 59
calculated tables, 59
DISTINCT function, 68, 70–71
FILTER function, 57–58, 60–63
measures and, 59
nesting, 58–59

RELATEDTABLE function, 58–59
VALUES function, 67–74

text functions, 50–51
TIME function, 51, 52
time intelligence functions (nested), call order of, 

245–246
TOPN function

authoring queries, 409–414
ISONORAFTER function and, 417–419
sort order, 410

TOPNSKIP function, authoring queries, 420
TREATAS function, 378

data lineage, 467–468
fi lter contexts and data lineage, 334–336
SUMMARIZECOLUMNS function and, 407–408
transferring fi lters, 482–483, 484
UNION function and, 377–378

trigonometric functions, 50
UNION function

CALCULATE function and, 376–378
DISTINCT function and, 375–378
tables and, 374–378
TREATAS function and, 377–378

USERELATIONSHIP function
active relationships, 450–451
CALCULATE function and, 164–168
non-active relationships and ambiguity, 516–517

VALUE function, 51
VALUES function

ALL function and, 327–328
ALLEXCEPT function versus, 326–328
calculated physical relationships and circular 

dependencies, 477–480
computing percentages, 133–134
fi lter contexts, 322–324, 327–328
FILTERS function versus, 322–324
range-based relationships (calculated physical 

relationships), 474–476

G
GENERATE function, authoring queries, 414–417
GENERATEALL function, authoring queries, 417
GENERATESERIES function, tables and, 393–394
generating errors (error-handling), 38–39
granularity

calculations and iterators, 211–214
relationships (data models), 507–512
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GROUPBY function
authoring queries, 420–423
SUMMARIZE function and, 420–423

H
hash encoding (VertiPaq compression), 

555–556
HASONEVALUE function

fi lter contexts, 314–318
tables as scalar values, 73

help, formatting DAX code, 42
hierarchies, 345, 362

attribute hierarchies (data model optimization), 
disabling, 604

Columns Hierarchies Size column (VertiPaq 
Analyzer), 582

DAX, 13–14
MDX, 13–14
P/C (Parent/Child) hierarchies, 350–361, 362
percentages, computing, 345

IF conditions, 349
PercOnCategory measures, 348
PercOnParent measures, 346–349
ratio to parent calculations, 345

SSAS and, 561–562
Use Hierarchies Size column (VertiPaq Analyzer), 

582

I
IF conditions

computing percentages over hierarchies, 349
DAX optimization, 678–679

DIVIDE function and, 684–687
iterators, 687–690
in measures, 679–683

IF function, 36, 37, 46–47
IFERROR function, 35–36, 37–38, 47
IGNORE modifi er, SUMMARIZECOLUMNS function, 

403–404
information functions, 48–49
INT function, 51
Integer data type, 21
INTERSECT function

tables and, 378–379
transferring fi lters, 483–484

intra-island relationships, 489
invalid relationships, blank rows and, 68–71

ISBLANK function, 36
ISCROSSFILTERED function, fi lter contexts, 

319–322
ISEMPTY function, fi lter contexts, 330–332
ISERROR function, 36, 38
ISFILTERED function

fi lter contexts, 319, 320–322
time intelligence calculations, 268–269

ISNUMBER function, 48–49
ISONORAFTER function

authoring queries, 417–419
TOPN function and, 417–419

ISSELECTEDMEASURE function, including/excluding 
measures from calculation items, 304–306

ISSUBTOTAL function, 402–403
iterators, 8, 43, 44, 209–215

ADDCOLUMNS iterators, 196–199
averages (means)

computing with AVERAGEX function, 
199–201

moving averages, 201–202
returning with AVERAGE function, 199
returning with AVERAGEA function, 199

AVERAGEX iterators, 188
behavior of, 91
calculation granularity, 211–214
cardinality, 188–190
CONCATENATEX function and, 194–196
context transitions, leveraging, 190–194
DAX optimization

IF conditions, 687–690
nested iterators, 693–699

FILTER function as, 60–61
nested iterators

DAX optimization, 693–699
leveraging context transitions, 190–194

parameters of, 187–188
RANK.EQ function, 210
RANKX iterators, 188, 202–210
ROW CONTEXT iterators, 187–188
row contexts and, 90–91
SELECTCOLUMNS iterators, 196, 197–199
SUMX iterators, 187–188
tables, returning, 196–199

J
join operators, xmSQL queries, 628–630
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K
KEEPFILTERS function, 461–462

CALCULATE function and, 135–138, 139–143, 164, 
168–169
evaluation order, 146–148
fi ltering multiple columns, 142–143

transferring fi lters, 482–483, 484

L
last day sales (calculations), computing previous year 

sales up to, 539–544
LASTDATE function, time intelligence calculations, 

248–249, 254, 255, 269–270
LASTNONBLANK function, time intelligence calculations, 

250–254, 255, 270–271
lazy evaluations, variables, 181–183
leaf-level calculations

DAX, 14
MDX, 14

leap year bug, 22
list of values. See fi lter arguments
logical functions

IF function, 46–47
IFERROR function, 47
SWITCH function, 47–48

logical operators, 23
logical query plans, 612, 614, 650–651
LOOKUPVALUE function, 444, 473

M
maintenance (code), FILTER function, 62–63
many-sided relationships (data models), 2, 3
many-to-many relationships. See MMR
Mark as Date Table, 232–233
materialization (queries), 568–571
mathematical functions, 49
MAX function, 43
MDX (Multidimensional Expressions)

DAX and, 12
hierarchies, 13–14
leaf-level calculations, 14
multidimensional versus tabular space, 12
as programming language, 12–13
as querying language, 12–13

queries, 546

attribute hierarchies (data model optimization), 
disabling, 604

DAX and, 613
executing, 546
reproduction queries, creating, 663–664

means (averages)
computing averages, AVERAGEX function, 

199–201
moving averages, 201–202
returning averages

AVERAGE function, 199
AVERAGEA function, 199

MEASURE keyword, DEFINE sections (authoring 
queries), 399

measures, 26–28
ALL function and, 63–64
calculated columns, 42

choosing between calculated columns and 
measures, 29–30

differences between calculated columns and 
measures, 29

using measures in calculated columns, 30
calculation items, including/excluding measures from, 

304–306
columns in, evaluation contexts, 89–90
context transitions, 157–160
DEFINE MEASURE clauses in EVALUATE 

statements, 59
defi ning in tables, 29
expressions, 29
IF conditions, DAX optimization, 679–683
ISSELECTEDMEASURE function, including/excluding 

measures from calculation items, 304–306
PercOnCategory measures, computing percentages 

over hierarchies, 348
PercOnParent measures, computing percentages 

over hierarchies, 346–349
query measures, 399, 662–663
SELECTEDMEASURE function, including/excluding 

measures from calculation items, 304–306
table fi lters in, 447–450
table functions, 59
testing, 399–401
VALUES function and, 67–68

memory size, VertiPaq hardware selection, 
574, 576

memory speed, VertiPaq hardware selection, 574, 
575–576

MIN function, 43
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MMR (Many-Many Relationships), 489, 490, 494, 507
bridge tables, 494–499
common dimensionality, 500–504
weak relationships, 504–506

moving annual totals, computing, 243–244
moving averages, CALCULATE function, 201–202
MTD (Month-to-Date) calculations, time intelligence 

calculations, 235–236, 259–262, 276–277
multi-line comments, 18
multiple columns

DISTINCT function and, 71
multiple-column relationships (calculated physical 

relationships), 471–473
VALUES function and, 71

MultipleItemSales variable, 58

N
Name calculation group, 288
Name calculation item, 288
naming variables, 182
narrowing table computations, 384–386
NATURALINNERJOIN function, authoring queries, 

423–425
NATURALLEFTOUTERJOIN function, authoring queries, 

424–425
nested functions, call order of time intelligence 

functions, 245–246
nested iterators

DAX optimization, 693–699
leveraging context transitions, 190–194

nesting
fi lter contexts, in variables, 184–185
FILTER functions, 61–62
multiple rows, in variables, 184
row contexts

on different tables, 91–92
on the same table, 92–97

table functions, 58–59
VAR/RETURN statements, 179–180

new customers, computing (tables), 380–381, 
386–387

NEXTDAY function, call order of nested time intelligence 
functions, 245–246

non-active relationships, ambiguity, 515–517
nonworking days between two dates, computing, 

523–525
numbering sequences of events (calculations), 536–539
numbers, conversions, 19–21

O
one-sided relationships (data models), 2, 3
one-to-many relationships. See SMR
one-to-one relationships. See SSR
opening/closing balances (time intelligence 

calculations), 254–258
operators, 23

arithmetic operators, 23
division by zero, 32–33
empty/missing values, 33–35
error-handling, 32–35

comparison operators, 23
logical operators, 23
overloading, 19–20
parenthesis operators, 23
text concatenation operators, 23

optimizing
columns

high-cardinality columns, 603
split optimization, 602–603
storage optimization, 602–603

data models with VertiPac, 579
aggregations, 587–588
cross-fi ltering, 590
denormalizing data, 584–591
gathering data model information, 

579–584
relationship cardinality, 586–587

DAX, 657
bottlenecks, 668
CallbackDataID function, 690–693
change implementation, 668
conditional statements, 708–709
context transitions, 672–678
DISTINCTCOUNT function, 699–704
expressions, identifying a single DAX expression 

for optimization, 658–661
fi lter conditions, 668–672
IF conditions, 678–683, 684–690
multiple evaluations, avoiding with variables, 

704–708
nested iterators, 693–699
query plans, 664–667
reproduction queries, creating, 

661–664
SE/FE bottlenecks, identifying, 667–668
server timings, 664–667
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test queries, rerunning, 668
to-do list, 658
variables, 704–708

OR conditions, tables as fi lters, 381–384
ORDER BY clauses in EVALUATE statements, 60
orders (example), computing duration of, 26
Ordinal values, calculated items, 289
overwriting fi lters, CALCULATE function, 120–122, 136

P
P/C (Parent/Child) hierarchies, 350–361, 362
paging, VertiPaq hardware selection, 576–577
parallelism

CallbackDataID function, 641
VertiPaq SE queries, 641

PARALLELPERIOD function, time intelligence calculations, 
238–239

parenthesis operators, 23
partitioning and SSAS, 562–563
Partitions # column (VertiPaq Analyzer), 582
percentages, computing, 135

ALL function, 63–64
ALLSELECTED function, 75–76
CALCULATE function, 124

ALL function, 125–132
ALLEXCEPT function, 135
VALUES function, 133–134

hierarchies, 345
IF conditions, 349
PercOnCategory measures, 348
PercOnParent measures, 346–349
ratio to parent calculations, 345

PercOnCategory measures, computing percentages 
over hierarchies, 348

PercOnParent measures, computing percentages over 
hierarchies, 346, 348–349

PercOnSubcategory measures, computing percentages 
over hierarchies, 346–348

physical query plans, 612–613, 614–616, 651–652
physical relationships

calculated physical relationships, 471–473
circular dependencies, 476–480
range-based relationships, 474–476

cardinality, 489–490
choosing, 506–507
cross-fi lter directions, 490

bidirectional cross-fi lter direction, 490, 
491–493, 507

single cross-fi lter direction, 490
cross-island relationships, 489
intra-island relationships, 489
MMR, 489, 490, 494, 507

bridge tables, 494–499
common dimensionality, 500–504
weak relationships, 504–506

SMR, 489, 490, 493, 507
SSR, 489, 490, 493–494
strong relationships, 488
virtual relationships versus, 506–507
weak relationships, 488, 489, 504–506

Power BI
Auto Date/Time, 218–219
DAX and, 14–15
DAX Studio and, 609–611
fi lter contexts, 84–85
Power BI reports and DAX queries, 609–610

Power Pivot for Excel
automatic date columns, 219
date table templates, 220

Precedence calculation group, 288, 299–304
precomputing values (calculations), computing work days 

between two dates, 525–527
previous year sales up to last day sales (calculations), 

computing, 539–544
PREVIOUSMONTH function, time intelligence calcula-

tions, 239
Primary/Alternate Keys column (tables), 599
primary/alternate keys column (tables), 600
processing tables, 550
PYTD (Previous Year-To-Date) calculations, calculation 

items and sideways recursion, 307–308

Q
QTD (Quarter-to-Date) calculations, time intelligence 

calculations, 235–236, 259–262, 276–277
qualitative attributes column (tables), 599, 600
quantitative attributes column (tables), 599, 600–601
queries

DAX queries
capturing, 609–611
DISTINCTCOUNT function, 634–635
executing, 546

DAX query plans, 612–613
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DirectQuery, 546, 548, 549, 617
DirectQuery SE queries

composite data models, 646–647
reading, 645–646

Expression Trees, 612
FE, 546, 547

datacaches, 547
operators of, 547
single-threaded implementation, 547

materialization, 568–571
MDX queries, 546

DAX and, 613
disabling attribute hierarchies (data model 

optimization), 604
executing, 546

query measures, creating with DAX Studio, 
662–663

reproduction queries, creating
creating query measures with DAX Studio, 

662–663
in DAX, 661–662
in MDX, 663–664

SE, 546, 616–617
aggregations, 548
datacaches, 547
DirectQuery, 548
operators of, 547
parallel implementations, 548
VertiPaq, 547–549, 550–577

test queries, rerunning (DAX optimization), 668
VertiPaq, 546, 547–548, 550. See also data models, 

optimizing with VertiPaq
aggregations, 571–573
columnar databases, 550–553
compression, 553–562
datacaches, 549
DMV, 563–565
hardware selection, 573–577
hash encoding, 555–556
hierarchies, 561–562
materialization, 568–571
multithreaded implementations, 548
partitioning, 562–563
processing tables, 550
re-encoding, 559
relationships (data models), 561–562, 

565–568
RLE, 556–559

scan operations, 549
segmentation, 562–563
sort orders, 560–561
value encoding, 554–555

VertiPaq SE queries, 624
composite data models, 646–647
datacaches and parallelism, 635–637
DISTINCTCOUNT function, 634–635
scan time, 632–634
xmSQL queries and, 624–632

xmSQL queries, 624
aggregation functions, 625–627
arithmetical operations, 627
batch events, 630–632
fi lter operations, 628–630
join operators, 630

queries, authoring, 395
ADDMISSINGITEMS function, 419–420, 

432–433
auto-exists feature, 428–434
DAX Studio, 395
DEFINE sections

MEASURE keyword in, 399
VAR keyword in, 397–399

EVALUATE statements
ADDMISSINGITEMS function, 419–420, 

432–433
example of, 396
expression variables and, 398
GENERATE function, 414–417
GENERATEALL function, 417
GROUPBY function, 420–423
ISONORAFTER function, 417–419
NATURALINNERJOIN function, 423–425
NATURALLEFTOUTERJOIN function, 423–425
query variables and, 398
ROW function, 400–401
SAMPLE function, 427–428
SUBSTITUTEWITHINDEX function, 425–427
SUMMARIZE function, 401–403, 433–434
SUMMARIZECOLUMNS function, 403–409, 

429–434
syntax of, 396–399
TOPN function, 409–414
TOPNSKIP function, 420

expression variables, 397–399
GENERATE function, 414–417
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GENERATEALL function, 417
GROUPBY function, 420–423
ISONORAFTER function, 417–419
MEASURE in DEFINE sections, 399
measures

query measures, 399
testing, 399–401

NATURALINNERJOIN function, 423–425
NATURALLEFTOUTERJOIN function, 423–425
query variables, 397–399
ROW function, testing measures, 400–401
SAMPLE function, 427–428
shadow fi lter contexts, 457–462
SUBSTITUTEWITHINDEX function, 425–427
SUMMARIZE function, 401–403, 433–434
SUMMARIZECOLUMNS function, 403–409, 

429–434
TOPN function, 409–414
TOPNSKIP function, 420
VAR in DEFINE sections, 397–399

Query End events (SQL Server Profi ler), 621
query plans

capturing queries
DAX Studio, 617–620
SQL Server Profi ler, 620–623

collecting, 613–614
DAX optimization, 664–667
logical query plans, 612, -614, 650–651
physical query plans, 612–613, 614–616, 651–652
reading, 649–655

query variables, 397–399

R
range-based relationships (calculated physical 

relationships), 474–476
RANK.EQ function, 210
RANKX function, numbering sequences of events 

(calculations), 538–539
RANKX iterators, 188, 202–210
ratio to parent calculations, computing percentages over 

hierarchies, 345
readability (code), FILTER function, 62–63
recursion (sideways), calculation items, 306–311
re-encoding

SSAS and, 559
VertiPaq, 559

referencing columns in tables, 17–18
refreshing data, SSAS (SQL Server Analysis Services), 

549–550
RELATED function

CALCULATE function and, 443–444
calculated columns, 443–444
context transitions in expanded tables, 455
expanded tables, 441–444
fi lter contexts, relationships and, 109
nested row contexts on different tables, 92
row contexts and relationships, 103–105
table fi lters and expanded tables, 454

RELATEDTABLE function, 58–59
fi lter contexts, relationships and, 109
nested row contexts on different tables, 91–92
row contexts and relationships, 103–105

relational functions, 53–54
relationships (data models), 2

1:1 relationships, 2
active relationships

ambiguity, 514–515
CALCULATETABLE function, 451–453
expanded tables and, 450–453
USERELATIONSHIP function, 450–451

ambiguity, 512–513
active relationships, 514–515
non-active relationships, 515–517

bidirectional fi ltering, 3–4
bidirectional relationships, 106, 109
calculated physical relationships, 471

circular dependencies, 476–480
multiple-column relationships, 471–473
range-based relationships, 474–476

cardinality, 489–490, 586–587, 590–591
chains, 3
columns, 3
cross-fi lter directions, 3, 490

bidirectional cross-fi lter direction, 490, 
491–493, 507

single cross-fi lter direction, 490
cross-island relationships, 489
DAX and SQL, 9
directions of, 3–4
evaluation contexts and, 101–102

fi lter contexts, 106–109
row contexts, 102–105

expanded tables, 437–441
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relationships (data models)

granularity, 507–512
intra-island relationships, 489
invalid relationships and blank rows, 68–71
many-sided relationships, 2, 3
MMR, 489, 490, 494, 507

bridge tables, 494–499
common dimensionality, 500–504
weak relationships, 504–506

non-active relationships, ambiguity, 515–517
one-sided relationships, 2, 3
performance, 507
physical relationships

calculated physical relationships, 
471–480

cardinality, 489–490
choosing, 506–507
cross-fi lter directions, 490–493
cross-island relationships, 489
intra-island relationships, 489
MMR, 489, 490, 494–506, 507
SMR, 489, 490, 493, 507
SSR, 489, 490, 493–494
strong relationships, 488
virtual relationships versus, 506–507
weak relationships, 488, 489, 504–506

Relationship reports (VertiPaq Analyzer), 584
Relationship Size column (VertiPaq Analyzer), 582
relationships, expanded tables, 437–441
shallow relationships in batch events (xmSQL queries), 

630–632
SMR, 489, 490, 493, 507
SSAS and, 561–562
SSR, 489, 490, 493–494
strong relationships, 488
transferring fi lters, 480–481

CALCULATE function, 482
CONTAINS function, 481–482
FILTER function, 481–482, 484–485
INTERSECT function, 483–484
TREATAS function, 482–483, 484

unidirectional fi ltering, 4
USERELATIONSHIP function, non-active relationships 

and ambiguity, 516–517
VertiPaq and, 565–568
virtual relationships, 480, 507

dynamic segmentation, 485–488
physical relationships versus, 506–507

transferring fi lters, 480–485
weak relationships, 2, 439, 488, 489, 504–506

reproduction queries, creating
in DAX, 661–662
in MDX, 663–664
query measures, creating with DAX Studio, 

662–663
reusing table expressions, 388–389
RLE (Run Length Encoding), VertiPaq, 556–559
ROLLUP function, 401–402, 403
ROLLUPADDISSUBTOTAL modifi er, SUMMARIZECOL-

UMNS function, 404–406
ROLLUPGROUP modifi er, SUMMARIZECOLUMNS func-

tion, 406
ROW CONTEXT iterators, 187–188
row contexts, 80

CALCULATE function and, 148–151
column references, 87
examples of, 86–87
fi lter contexts versus, 85
iterators and, 90–91
nested row contexts

on different tables, 91–92
on the same table, 92–97

relationships and, 102–105
ROW function

static tables, creating, 391–392
testing measures, 400–401

rows (tables)
ALLNOBLANKROW function, 464, 465
blank rows, invalid relationships, 68–71
CONTAINSROW function, 387–388
DETAILROWS function, 388–389
nesting in variables, 184
SAMPLE function, 427–428
TOPN function, 409–414

Rows column (VertiPaq Analyzer), 581, 583

S
sales

budget/sales information (calculations), showing 
together, 527–530

previous year sales up to last day sales (calculations), 
computing, 539–544

same-store sales (calculations), computing, 530–536
same-store sales (calculations), computing, 530–536
SAMEPERIODLASTYEAR function
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computing previous year sales up to last day sales 
(calculations), 540–544

nested time intelligence functions, call order of, 
245–246

time intelligence calculations, 237
SAMPLE function, authoring queries, 427–428
scalar expressions, 57–58
scalar values

storing in variables, 176, 181
tables as, 71–74

SE (Storage Engines), 546
aggregations, 548
bottlenecks, identifying, 667–668
datacaches, 547
DirectQuery, 548, 549
operators of, 547
parallel implementations, 548
queries, 616–617
SE queries, copy VertiPaq SE queries entries
VertiPaq, 547–548, 550. See also data models, 

optimizing with VertiPaq
aggregations, 571–573
columnar databases, 550–553
compression, 553–562
datacaches, 549
DMV, 563–565
hardware selection, 573–577
hash encoding, 555–556
hierarchies, 561–562
materialization, 568–571
multithreaded implementations, 548
partitioning, 562–563
processing tables, 550
re-encoding, 559
relationships (data models), 561–562, 

565–568
RLE, 556–559
scan operations, 549
segmentation, 562–563
sort orders, 560–561
value encoding, 554–555

VertiPaq SE queries, 624–632
segmentation

dynamic segmentation and virtual relationships, 
485–488

SSAS and, 562–563
Segments # column (VertiPaq Analyzer), 582
SELECTCOLUMNS function, 390–391, 393–394

SELECTCOLUMNS iterators, 196, 197–199
SELECTEDMEASURE function, including/excluding 

measures from calculation items, 304–306
SELECTEDMEASUREFORMATSTRING function, 291
SELECTEDVALUE function

calculated physical relationships, circular 
dependencies, 479–480

context transitions in expanded tables, 
454–455

fi lter contexts, 318–319
same-store sales (calculations), computing, 

533–534
tables as scalar values, 73–74

semi-additive calculations, time intelligence calculations, 
246–248

sequences of events (calculations), numbering, 536–539
server timings, DAX optimization, 664–667
shadow fi lter contexts, 457–462
shallow relationships in batch events (xmSQL queries), 

630–632
sideways recursion, calculation items, 306–311
simple fi lters

arbitrarily shaped fi lters versus, 337
defi ned, 337

single cross-fi lter direction (physical relationships), 490
single data models

DirectQuery mode, 488
VertiPaq mode, 488

single-line comments, 18
SMR (Single-Many Relationships), 489, 490, 

493, 507
sort order, determining, ORDER BY clauses, 60
sort orders

SSAS and, 560–561
VertiPaq, 560–561

SQL (Structured Query Language)
conditions, 11
DAX and, 9
as declarative language, 10
error-handling, empty/missing values, 35
subqueries, 11

SQL Server Profi ler
DirectQuery End events, 621
Query End events, 621
query plans, capturing profi ling information, 

620–623
VertiPaq SE Query Cache Match events, 621
VertiPaq SE Query End events, 621
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SQRT function

SQRT function, 36
SSAS (SQL Server Analysis Services)

data refreshes, 549–550
DMV, 563–565
hierarchies, 561–562
partitioning, 562–563
processing tables, 550
re-encoding, 559
relationships (data models), 561–562
segmentation, 562–563
sort orders, 560–561

SSR (Single-Single Relationships), 489, 490, 493–494
star schemas, denormalizing data and data model opti-

mization, 586
STARTOFQUARTER function, time intelligence calcula-

tions, 256–257
static tables, creating

DATATABLE function, 392–393
ROW function, 391–392

storing
blockz, in variables, 176, 181
columns (tables), 601–602
partial results of calculations, in variables, 176–177
scalar values, in variables, 176, 181
tables, in variables, 58

string conversions, 19–21
strong relationships, 488
subcategories/categories example, ALL function and, 

66–67
subqueries

DAX, 11
SQL, 11

SUBSTITUTEWITHINDEX function, authoring queries, 
425–427

SUM function, 42–43, 44–45, 88–89
SUMMARIZE function

authoring queries, 401–403, 433–434
auto-exists feature (queries), 433–434
columns (tables) and, 401
fi lter contexts, 112
GROUPBY function and, 420–423
ISSUBTOTAL function and, 402–403
ROLLUP function and, 401–402, 403
table fi lters and expanded tables, 453–454
tables and, 369–372, 373–374, 383–384
transferring fi lters, 484–485

SUMMARIZECOLUMNS function

authoring queries, 403–409, 429–434
auto-exists feature (queries), 429–434
fi lter arguments, 406–409
IGNORE modifi er, 403–404
ROLLUPADDISSUBTOTAL modifi er, 404–406
ROLLUPGROUP modifi er, 406
TREATAS function and, 407–408

SUMX function, 45
SUMX iterators, 187–188
SWITCH function, 47–48

T
table constructors, 24
table expressions, EVALUATE statements, 

59–60
table fi lters, DISTINCTCOUNT function, 

699–704
table functions, 57

ALL function
columns and, 64–65
computing percentages, 63–64
measures and, 63–64
syntax of, 63
top categories/subcategories example, 

66–67
VALUES function versus, 67

ALLEXCEPT function, 65–66
ALLSELECTED function, 74–76
calculated columns and, 59
calculated tables, 59
DISTINCT function, 71

blank rows and invalid relationships, 68, 70–71
calculated columns, 68
multiple columns, 71
VALUES function versus, 68

FILTER function, 57–58
code maintenance/readability, 62–63
as iterator, 60–61
nesting, 61–62
syntax of, 60

measures and, 59
nesting, 58–59
RELATEDTABLE function, 58–59
VALUES function, 71

ALL function versus, 67
blank rows and invalid relationships, 68–71
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calculated columns, 68
calculated tables, 68
DISTINCT function versus, 68
measures and, 67–68
multiple columns, 71
tables as scalar values, 71–74

Table Size % column (VertiPaq Analyzer), 582
Table Size column (VertiPaq Analyzer), 581
table variables, 181–182
tables, 363

ADDCOLUMNS function, 366–369, 371–372
blank rows, invalid relationships, 68–71
bridge tables, MMR, 494–499
CALCULATE function, tables as fi lters, 382–384
calculated columns, 25–26, 42

choosing between calculated columns and 
measures, 29–30

differences between calculated columns and 
measures, 29

expressions, 29
using measures in calculated columns, 30

calculated tables, 59
creating, 390–391
DISTINCT function, 68
SELECTCOLUMNS function, 390–391
VALUES function, 68

CALCULATETABLE function, 363–365
columns

ADDCOLUMNS function, 366–369, 371–372
Boolean calculated columns, 597–598
calculated columns and data model optimization, 

595–599
calculated columns, RELATED function, 443–444
cardinality, 603
cardinality and data model optimization, 591–592
Date column, 592–595
defi ned, 2
descriptive attributes column (tables), 600, 

601–602
fi ltering, 444–447
optimizing high-cardinality columns, 603
Primary/Alternate Keys column (tables), 599
primary/alternate keys column (tables), 600
qualitative attributes column (tables), 599, 600
quantitative attributes column (tables), 599, 

600–601
referencing, 17–18

relationships, 3
SELECTCOLUMNS function, 390–391, 

393–394
storage optimization, 602–603
storing, 601–602
SUBSTITUTEWITHINDEX function, 425–427
SUMMARIZE function and, 401
SUMMARIZECOLUMNS function, 403–409, 

429–434
technical attributes column (tables), 600, 602
Time column, 592–595
VertiPaq Analyzer, 580–583

computing new customers, 380–381, 386–387
CONTAINS function, 387–388
CONTAINSROW function, 387–388
CROSSJOIN function, 372–374, 383–384
date tables

ADDCOLUMNS function, 223–224
building, 220–224
CALENDAR function, 222
CALENDARAUTO function, 222–224
date table templates (Power Pivot for Excel), 

220
date templates, 224
duplicating, 227
loading from other data sources, 221
managing multiple dates, 224–228
Mark as Date Table, 232–233
multiple date tables, 226–228
multiple relationships to date tables, 

224–226
naming, 221

defi ned, 2
DETAILROWS function, 388–389
EXCEPT function, 379–381
expanded tables

active relationships, 450–453
column fi lters versus table fi lters, 444–447
context transitions, 454–455
differences between table fi lters and expanded 

tables, 453–454
fi lter contexts, 439–441
fi ltering, 444–447, 450–453
RELATED function, 441–444
relationships, 437–441
table fi lters in measures, 447–450
table fi lters versus column fi lters, 444–447
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expressions, reusing, 388–389
FILTER function versus CALCULATETABLE function, 

363–365
fi ltering

CALCULATE function and, 445–447
column fi lters versus, 444–447
in measures, 447–450

as fi lters, 381–384
GENERATESERIES function, 393–394
IN function, 387–388
INTERSECT function, 378–379
iterators, returning tables with, 196–199
measures, defi ning in tables, 29
narrowing computations, 384–386
NATURALINNERJOIN function, 423–425
NATURALLEFTOUTERJOIN function, 423–425
processing, 550
records, 2
reusing expressions, 388–389
rows

ALLNOBLANKROW function, 464, 465
CONTAINSROW function, 387–388
DETAILROWS function, 388–389
SAMPLE function, 427–428
TOPN function, 409–414

as scalar values, 71–74
SELECTCOLUMNS function, 390–391, 393–394
static tables

creating with DATATABLE function, 392–393
creating with ROW function, 391–392

storing in variables, 176, 181
SUMMARIZE function, 369–372, 373–374, 383–384
temporary tables in batch events (xmSQL queries), 

630–632
TOPN function, 409–414
UNION function, 374–378
variables, storing tables in, 58

Tabular model
calculation groups, creating, 281–288
DAX engines and, 545–546
DAX queries, executing, 546
DirectQuery, 546
MDX queries, executing, 546
VertiPaq, 546

technical attributes column (tables), 600, 602
templates

date table templates (Power Pivot for Excel), 220
date templates, 224

temporary tables in batch events (xmSQL queries), 
630–632

test queries, rerunning (DAX optimization), 668
text

concatenation operators, 23
editing, formatting DAX code, 42

text functions, 50–51
Time column, data model optimization, 592–595
TIME function, 51, 52
time intelligence calculations, 217

Auto Date/Time (Power BI), 218–219
automatic date columns (Power Pivot for Excel), 

219
basic calculations, 228–232
basic functions, 233–235
CALCULATE function, 228–232
CALCULATETABLE function, 259, 260–261
context transitions, 260
custom calendars, 272

DATESYTD function, 276–277
weeks, 272–275

date tables
ADDCOLUMNS function, 223–224
building, 220–224
CALENDAR function, 222
CALENDARAUTO function, 222–224
date table templates (Power Pivot for Excel), 

220
date templates, 224
duplicating, 227
loading from other data sources, 221
managing multiple dates, 224–228
Mark as Date Table, 232–233
multiple date tables, 226–228
multiple relationships to date tables, 

224–226
naming, 221

DATEADD function, 237–238, 262–269
DATESINPERIOD function, 243–244
DATESMTD function, 259, 276–277
DATESQTD function, 259, 276–277
DATESYTD function, 259, 260, 261–262, 276–277
differences over previous periods, computing, 

241–243
drillthrough operations, 271
FILTER function, 228–232
FIRSTDATE function, 269, 270
FIRSTNONBLANK function, 256–257, 

270–271
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LASTDATE function, 248–249, 254, 255, 
269–270

LASTNONBLANK function, 250–254, 255, 
270–271

mixing functions, 239–241
moving annual totals, computing, 243–244
MTD calculations, 235–236, 259–262, 276–277
nested functions, call order of, 245–246
NEXTDAY function, 245–246
opening/closing balances, 254–258
PARALLELPERIOD function, 238–239
periods to date, 259–262
PREVIOUSMONTH function, 239
QTD calculations, 235–236, 259–262, 

276–277
SAMEPERIODLASTYEAR function, 237, 245–246
semi-additive calculations, 246–248
STARTOFQUARTER function, 256–257
time periods, computing from prior periods, 

237–239
YTD calculations, 235–236, 259–262, 276–277

time periods, computing from prior periods, 
237–239

top categories/subcategories example, ALL function and, 
66–67

TOPN function
authoring queries, 409–414
ISONORAFTER function and, 417–419
sort order, 410

TOPNSKIP function, authoring queries, 420
transferring fi lters, 480–481

CALCULATE function, 482
CONTAINS function, 481–482
FILTER function, 481–482, 484–485
INTERSECT function, 483–484
TREATAS function, 482–483, 484

TREATAS function, 378
data lineage, 467–468
fi lter contexts and data lineage, 334–336
SUMMARIZECOLUMNS function and, 

407–408
transferring fi lters, 482–483, 484
UNION function and, 377–378

trigonometric functions, 50

U
unary operators, P/C (Parent/Child) hierarchies, 362
unidirectional fi ltering (relationships), 4

UNION function
CALCULATE function and, 376–378
DISTINCT function and, 375–378
tables and, 374–378
TREATAS function and, 377–378

Use Hierarchies Size column (VertiPaq Analyzer), 
582

USERELATIONSHIP function
active relationships, 450–451
CALCULATE function and, 164–168
non-active relationships and ambiguity, 

516–517

V
value encoding (VertiPaq compression), 

554–555
VALUE function, 51
values, list of. See fi lter arguments
VALUES function, 71

ALL function and, 327–328
ALL function versus, 67
ALLEXCEPT function versus, 326–328
blank rows and invalid relataionships, 68–71
calculated columns, 68
calculated physical relationships

circular dependencies, 477–480
range-based relationships, 474–476

calculated tables, 68
computing percentages, 133–134
DISTINCT function versus, 68
fi lter contexts, 322–324, 327–328
FILTERS function versus, 322–324
measures and, 67–68
multiple columns, 71
tables as scalar values, 71–74

VAR keyword, DEFINE sections (authoring queries), 
397–399

variables, 30–31, 175
as a constant, 177–178
defi ning, 176, 178–180
documenting code, 183–184
error-handling, 37
expression variables, 397–399
formatting, 40–41
lazy evaluations, 181–183
multiple evaluations, avoiding with variables, 

704–708
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MultipleItemSales variable, 58
names, 182
nesting

fi lter contexts, 184–185
multiple rows, 184

query variables, 397–399
scalar values, 58
scope of, 178–180
storing

partial results of calculations, 176–177
scalar values, 176, 181
tables, 176, 181

table variables, 181–182
tables, storing, 58
VAR syntax, 175–177
VAR/RETURN blocks, 175–177, 180
VAR/RETURN statements, nesting, 179–180

Variant data type, 22
VertiPaq, 546, 547–548, 550

aggregations, 571–573, 604–607
caches, 637–640
CallbackDataID function, 640–644
columnar databases, 550–553
compression, 553–554

hash encoding, 555–556
re-encoding, 559
RLE, 556–559
value encoding, 554–555

data model optimization, 579
aggregations, 587–588, 604–607
calculated columns, 595–599
choosing columns for storage, 599–602
column cardinality, 591–592
cross-fi ltering, 590
Date column, 592–595
denormalizing data, 584–591
disabling attribute hierarchies, 604
gathering data model information, 579–584
optimizing column storage, 602–603
optimizing drill-through attributes, 604
relationship cardinality, 586–587, 590–591
Time column, 592–595

datacaches, 549
DMV, 563–565
hardware selection, 573

best practices, 577
CPU model, 574–575

Disk I/O performance, 574, 576–577
memory size, 574, 576
memory speed, 574, 575–576
number of cores, 574, 576
as an option, 573–574
paging, 576–577
setting priorities, 574–576

hierarchies, 561–562
materialization, 568–571
multithreaded implementations, 548
partitioning, 562–563
processing tables, 550
relationships (data models), 561–562, 565–568
row-level security, 639
scan operations, 549
segmentation, 562–563
sort orders, 560–561
VertiPaq Analyzer

columns (tables), 580–583
gathering data model information, 579–584

VertiPaq Analyzer, Relationship reports, 584
VertiPaq mode, 488–489

composite data models, 488
single data models, 488

VertiPaq SE queries, 624
composite data models, 646–647
datacaches, parallelism and, 635–637
DISTINCTCOUNT function, 634–635
scan time, 632–634
xmSQL queries and, 624

aggregation functions, 625–627
arithmetical operations, 627
batch events, 630–632
fi lter operations, 628–630
join operators, 630

VertiPaq SE Query Cache Match events (SQL Server 
Profi ler), 621

VertiPaq SE Query End events (SQL Server Profi ler), 621
virtual relationships, 480, 507

dynamic segmentation, 485–488
physical relationships versus, 506–507
transferring fi lters, 480–481

CALCULATE function, 482
CONTAINS function, 481–482
FILTER function, 481–482, 484–485
INTERSECT function, 483–484
TREATAS function, 482–483, 484
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W
weak relationships, 2, 439, 488, 489, 504–506
weeks (custom calendars), time intelligence calculations, 

272–275
work days between two dates, computing, 519–523

nonworking days, 523–525
precomputing values (calculations), 525–527

X
xmSQL

CallbackDataID function
parallelism and, 641
VertiPaq and, 640–644

VertiPaq queries, 548
xmSQL queries, 624

aggregation functions, 625–627

arithmetic operations, 627
batch events, 630–632
fi lter operations, 628–630
join operators, 630

Y
YOY (Year-Over-Year) calculation item, 289–290
YOY% (Year-Over-Year Percentage) calculation item, 

289–290
YTD (Year-to-Date) calculations

calculation group precedence, 299–303
calculation items

applying to expressions, 294
sideways recursion, 307

time intelligence calculations, 235–236, 259–262, 
276–277
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