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Abstract

This paper introduces a boosted conformal procedure designed to tailor confor-
malized prediction intervals toward specific desired properties, such as enhanced
conditional coverage or reduced interval length. We employ machine learning
techniques, notably gradient boosting, to systematically improve upon a prede-
fined conformity score function. This process is guided by carefully constructed
loss functions that measure the deviation of prediction intervals from the targeted
properties. The procedure operates post-training, relying solely on model pre-
dictions and without modifying the trained model (e.g., the deep network). Sys-
tematic experiments demonstrate that starting from conventional conformal meth-
ods, our boosted procedure achieves substantial improvements in reducing interval
length and decreasing deviation from target conditional coverage.

1 Introduction

Black-box machine learning algorithms have been increasingly employed to inform decision-making
in sensitive applications. For instance, deep convolutional neural networks have been applied to di-
agnose skin cancer [14], and AlphaFold has been utilized in the development of malaria vaccines
[24, 25]; here, scientists have employed AlphaFold to predict the structure of a key protein in the
malaria parasite, facilitating the identification of potential binding sites for antibodies that could
prevent the transmission of the parasite [25]. These instances highlight the critical need for under-
standing prediction accuracy, and one popular approach to quantify the uncertainty associated with
general predictions relies on the construction of prediction sets guaranteed to contain the target label
or response with high probability. Ideally, we would like the coverage to be valid conditional on the
values taken by the features of the predictive model (e.g., patient demographics).

Conformal prediction [3] stands out as a flexible calibration procedure that provides a wrapper
around any black-box prediction model to produce valid prediction intervals. Imagine we have a
data set {(Xi, Yi)}ni=1 and a test point (Xn+1, Yn+1) drawn exchangeably from an unknown, ar-
bitrary distribution P (e.g. the pairs (Xi, Yi) may be i.i.d.). Taking the data set and the observed
features Xn+1 as inputs, conformal prediction forms a prediction interval Cn(Xn+1) for Yn+1 with
valid marginal coverage, i.e. such thatP(Yn+1 ∈ Cn(Xn+1)) = 0.95 or any nominal level specified
by the user ahead of time. This is achieved by means of a conformity score E(x, y; f), where (x, y)
represents a data point while f represents any aspects of the distribution that we have estimated. For
instance, the score may be given by the magnitude of the prediction error |y − µ̂(x)|, where µ̂(x)
represents the model prediction of the expected outcome, in which case f is simply µ̂. Roughly, we
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Figure 1: Illustration of the boosted conformal prediction procedure. We introduce a boosting stage
between training and calibration, where we boost τ rounds on the conformity score function E(·, ·)
and obtain the boosted score E(τ)(·, ·). The number of boosting rounds τ is selected via cross
validation. A detailed description of the procedure is presented in Algorithm 1.

would include y in the prediction interval if E(Xn+1, y; f) does not take on an atypical value when
compared with {E(Xi, Yi; f)}, i = 1, . . . , n. Selecting an appropriate conformity score is akin to
choosing a test statistic in statistical testing, where two statistics may yield the same Type I error
rate yet differ substantially in other aspects of performance.

One central issue is that while the conformal procedure guarantees marginal coverage, it does not
extend similar guarantees to other desirable inferential properties without additional assumptions. In
response, researchers have introduced a variety of conformity scores, including the locally adaptive
(Local) conformity score [16], the conformalized quantile regression (CQR) conformity score [18],
and its variants, CQR-m [22] and CQR-r [23]. Among these, CQR has often demonstrated superior
empirical performance in terms of both interval length and conditional coverage [18].

This paper introduces a boosting procedure aimed at enhancing an arbitrary score function.1 By
employing machine learning techniques, namely, gradient boosting, our objective is to modify the
Local or CQR score functions (or other baselines) to reduce the average length of prediction intervals
or improve conditional coverage while maintaining marginal coverage. While this paper focuses
primarily on length and conditional coverage, our methods can be tuned to optimize other criteria;
we elaborate on this in Section 7.

Our boosted conformal procedure searches within a family of generalized scores for a score achiev-
ing a low value of a loss function adapted to the task at hand. Specifically, to evaluate the conditional
coverage of prediction intervals, we build a loss function that maximizes deviation from the target
coverage rate in the leaves of a shallow contrast tree [21]. Searching within a strategically designed
family of score functions, rather than directly retraining or fine-tuning the fitted model under the
task-specific loss function, yields greater flexibility and avoids the costs associated with retraining
or fine-tuning. Further, this boosting process is executed post-model training, requiring only the
model predictions and no direct access to the training algorithm.

Source code for implementing the boosted conformal procedure is available online at https://
github.com/ran-xie/boosted-conformal. Details regarding the acquisition and preprocessing
of the real datasets are also provided in the GitHub repository.

2 The split conformal procedure

We begin by outlining the key steps of the split conformal procedure applied to a family
{(Xi, Yi)}ni=1 of exchangeable samples (e.g., i.i.d.).

• Training. Randomly partition [n] into a training set I1 and a calibration set I2. On the
training set, train a model by means of an algorithm A to produce a conformity score
function E(·, ·; f). The structure of this score function is predetermined, whereas the model
f is learned fromA. An example of a conformity score is E(x, y; f) = |y − µ̂(x)|, where
µ̂(x) is a learned regression function so that f is here simply µ̂.

• Calibration. Evaluate the function E(·, ·; f) on each instance in the calibration set and
obtain scores {Ei}i∈I2 ,2 with each Ei = E(Xi, Yi; f). The (1 − α)th empirical quantile

1An implementation of the boosted conformal procedure (BoostedCP) is available online at https://
github.com/ran-xie/boosted-conformal.

2The term ‘score’ will henceforth refer to the conformity score unless stated otherwise.
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of the score, Q1−α(E, I2), is calculated as

Q1−α(E, I2) = inf{z : P (Z ≤ z) ≥ 1− α},

where Z follows the distribution 1
|I2|+1 (δ∞ +

∑
δEi), and δa is a point mass at a.

• Testing. For a new observation Xn+1, output the conformalized prediction interval

Cn(Xn+1) = {y ∈ R : E(Xn+1, y; f) ≤ Q1−α(E, I2)}. (1)

If ties between {Ei}i∈I2 occur with probability zero, it holds that

1− α ≤ P(Yn+1 ∈ Cn(Xn+1)) ≤ 1− α+
2

|I2|+ 2
, (2)

see [16]. By introducing additional randomization during the calibration step, the prediction interval
can be tuned to obey P(Yn+1 ∈ Cn(Xn+1)) = 1 − α, see [4]. This adjustment is not critical here
and we omit the details.

Locally adaptive conformal prediction (Local for short) [16] introduces a score function that aims
to make conformal prediction adapt to situations where the spread of the distribution of Y varies sig-
nificantly with the observed features X . On the training set, run an algorithmA to fit two functions
µ0(·) and σ0(·), where µ0(X) estimates the conditional mean E[Y | X], and σ0(X) the dispersion
around the conditional mean, frequently chosen as the conditional mean absolute deviation (MAD),
E[|Y − µ0(X)| | X]. With f = (µ0, σ0), the locally adaptive (Local) score function is:

E(x, y; f) = |y − µ0(x)|/σ0(x). (3)

For a new observation Xn+1, the conformalized prediction interval (1) takes on the simplified ex-
pression [µ0(Xn+1)−Q1−α(E, I2)σ0(Xn+1), µ0(Xn+1) +Q1−α(E, I2)σ0(Xn+1)].

Conformalized quantile regression (CQR) [17] also aims to adapt to heteroskedasticity by cal-
ibrating conditional quantiles, which often results in shorter prediction intervals. Apply quantile
regression to produce a pair of estimated quantiles (q̂α/2(x), q̂1−α/2(x)), where q̂β(X) is the esti-
mated βth quantile of the conditional distribution of Y . The CQR score function is defined as

E(x, y; f) = max{q̂α/2(x)− y, y − q̂1−α/2(x)}, (4)

where f = (q̂α/2, q̂1−α/2). For a new observation Xn+1, following (1) yields the prediction interval[
q̂α/2(Xn+1)−Q1−α(E, I2), q̂1−α/2(Xn+1) +Q1−α(E, I2)

]
. (5)

Generalized conformity score families. To construct a Local conformity score, we estimate two
functions µ0(·) and σ0(·) to plug into (3). Since these components are constructed without looking
at performance downstream, it is reasonable to imagine that other choices may enjoy enhanced
properties. How then should we systematically select µ(·) and σ(·)? To address this, we define a
generalized Local score family F containing all potential score functions of the form

F := {E(·, ·; f) : E(x, y; f) = |y − µ(x)|/σ(x), σ(·) > 0}, (6)

where f = (µ, σ). For each E(·, ·; f) ∈ F , the conformalized prediction interval is given by

[µ(X)−Q1−α(E, I2)σ(X), µ(X) +Q1−α(E, I2)σ(X)] . (7)

Turning to CQR, one notable limitation is the uniform adjustment of prediction intervals by the
constant factor Q1−α(E, I2), as shown in (5). This approach is suboptimal in the presence of het-
eroskedasticity, as it applies an identical correction to prediction intervals of varying widths for each
X = x. Thus, simply updating the fitted quantiles (q̂α, q̂1−α/2) and plugging them into the original
score function would be inadequate, as the structure of the original score imposes significant limita-
tions on the effectiveness of conformalized prediction intervals. To address this, several variants in-
cluding CQR-m [22] and CQR-r [23] have been proposed. Focusing on CQR-r, it employs a flexible
score function, defined as E(x, y; f) = max{q̂α/2(x)− y, y− q̂1−α/2(x)}/(q̂1−α/2(x)− q̂α/2(x)),
with f = (q̂α/2, q̂1−α/2, q̂1−α/2 − q̂α/2). Following (1), conformalized prediction intervals become[

q̂α/2(X)− σ̂(X)Q1−α(E, I2), q̂1−α/2(X) + σ̂(X)Q1−α(E, I2)
]
, (8)
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where σ̂ = q̂1−α/2−q̂α/2. Intuitively, the adjusted score function allows prediction bands to adjust in
proportion to their width, instead of adding a constant shift as in CQR. However, despite the intuitive
appeal of adjusted scores as a seemingly more reasonable “allocation” of the conformal correction,
empirical studies reveal that they do not result in narrower prediction intervals when compared to
CQR [23]. This phenomenon is largely due to the uniform direction of the conformal adjustment,
represented by Q1−α(E, I2), across all observations. In particular, if Q1−α(E, I2) < 0, indicating
that the true target y predominantly lies within the estimated quantile range [q̂α/2, q̂1−α/2], there is
a uniform narrowing of the predicted interval across all samples.

In light of these insights, we propose a novel score family,H, designed to augment the flexibility of
the conformity score functions:

H :=
{
E(·, ·; f) : E(x, y; f) = max {µ1(x)− y, y − µ2(x)} /σ(x), µ1(·) ≤ µ2(·), σ(·) > 0

}
, (9)

where f = (µ1, µ2, σ), which leads to conformalized prediction intervals of the form

[µ1(X)− σ(X)Q1−α(E, I2), µ2(X) + σ(X)Q1−α(E, I2)]. (10)

Notably,H includes the Local, CQR, and CQR-r scores as special cases.

3 Boosted conformal procedure

It is clear from above that a model is trained to produce a conformity score E(·, ·; f); e.g., we
may learn a regression function µ̂(·) to plug it into a score function |y − µ̂(x)|. To overcome
the limitation of working with an arbitrarily selected score function, we introduce a boosting step
before calibration, see Figure 1. In a nutshell, we use gradient boosting to iteratively improve upon a
predefined score E(·, ·; f) now denoted as E(0)(·, ·), where the superscript indicates the 0th iteration.

To achieve this, we construct a task-specific loss function ℓ, which takes a dataset D and a score
function E(·, ·; f) as inputs, and outputs ℓ(E(·, ·; f);D) measuring how closely the conformalized
prediction interval aligns with the analyst’s objective. This loss function ℓ is designed to be differen-
tiable with respect to each of the model components produced by the training algorithm. Importantly,
it does not require knowledge of the gradient of f(x) with respect to x. In the example above, taking
the labels as fixed, this means that for each feature xi ∈ D, i = 1, . . . , n, if we set ŷi = µ̂(xi), then
the loss ℓ(E(·, ·);D) is a function of {ŷi}ni=1, and the derivative ∂ℓ(E(·, ·);D)/∂ŷi is well defined.
In Sections 5.1 and 6.1, we present examples of such derivatives.

Each boosting iteration updates the score function sequentially, employing a gradient boosting al-
gorithm such as XGBoost [12] or LightGBM [15]. These algorithms accept as input a dataset D,
a base score function E(·, ·; f), a custom loss function ℓ, gradients of ℓ with respect to f (denoted
∇f ℓ), and a number of boosting rounds τ . We may write the boosting procedure as

(E(0)(·, ·), . . . , E(τ)(·, ·)) = GradientBoosting(D, E(·, ·; f), ℓ,∇f ℓ, τ). (11)

This yields a boosted score function E(τ)(·, ·), which is then used for calibration and for constructing
prediction intervals. The number τ is calculated using k-fold cross-validation on the training dataset,
selecting τ from potential values up to a predefined maximum T (e.g., 500). We partition the dataset
into k folds and for each j = 1, . . . , k, we hold out fold j for sub-calibration and the remaining
k − 1 folds for sub-training. We apply T rounds of gradient boosting (11) on the sub-training data,
generating T + 1 candidate score functions E

(0)
j (·, ·), . . . , E(T )

j (·, ·). Each score function is then
evaluated on sub-calibration data, using the loss function ℓ to compute losses at all epochs, i.e., for
each fold j = 1, . . . k,

{L(t)
j }

T
t=0 = {ℓ(E(t)

j ; foldj)}Tt=0.

Last, τ is selected as the round that minimizes the average loss across all k folds:

τ = argmin0≤t≤T

∑k
j=1L

(t)
j , (12)

see Figure 2. This cross-validation step simulates the calibration step in conformal prediction and
effectively prevents the overfitting of the score function.

Since boosting is conducted on the training data, the boosted procedure satisfies the same marginal
coverage guarantee as the split conformal procedure, as formalized below.
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Figure 2: Schematic drawing showing the selection of the number of boosting rounds via cross-
validation. Left: we hold out fold j, and use the remaining k − 1 folds to generate candidate scores
E

(t)
j , t = 0, . . . ,max-round. The performance of each score is evaluated on fold j using the loss

function ℓ. Right: best-round minimizes the average loss across all k folds. A detailed description
of the procedure is presented in Algorithm 1.

Proposition 3.1. Let {(Xi, Yi)}mi=1 be the held out calibration set, and (Xm+1, Ym+1) be a pair
of new observation. If the m + 1 samples are exchangeable, and ties between {E(τ)(Xi, Yi)}mi=1
occur with probability zero, the confromalized prediction interval (1) computed from score function
E(τ)(·, ·) satisfies the coverage guarantee (2).

Searching within generalized conformity score families. To update the Local score function (3),
we search within the generalized score family F (6). First, we initialize µ(0) = µ0 and σ(0) = σ0.
After completing τ iterations of boosting on the training set, we obtain the boosted score function
E(τ)(x, y) = |y − µ(τ)(x)|/σ(τ)(x). Notably, we can update any score function within F . For
instance, to update E(x, y; f) = |y − µ̂(x)|, we simply initialize µ(0) = µ̂, and take σ(0) to be the
constant function equal to one. Similarly, to update the CQR score function (4), we search within the
score family H (9). First, we initialize a triple µ

(0)
1 = q̂α/2, µ(0)

2 = q̂1−α/2, σ(0) = q̂1−α/2 − q̂α/2.
After τ boosting rounds, we obtain the boosted score function E(τ)(x, y) = max{µ(τ)

1 (x)− y, y −
µ2

(τ)(x)}/σ(τ)(x).

Algorithm 1 Boosting stage
Input:

Training data (Xi, Yi) ∈ Rp ×R, i = 1, ..., n; base conformity score function E(0)(·, ·)
Loss function ℓ; target mis-coverage level α ∈ (0, 1)
Number k of cross-validation folds; maximum boosting rounds T

Procedure:
Randomly divide {1, ..., n} into k folds
for j ← 1 to k do

Set fold j as sub-calibration set, and the remaining k − 1 folds as sub-training set
On the sub-training set, call GradientBoosting (11) to obtain candidate scores {E(t)

j }Tt=0

On the sub-calibration set, evaluate L
(t)
j = ℓ(E

(t)
j ), t = 0, . . . , T

end for
Set boosting rounds τ ← argmint

1
k

∑k
j=1 L

(t)
j as in (12)

On the training set, call GradientBoosting (11) to obtain boosted functions {E(t)}τt=0

Output:
Boosted conformity score function E(τ)(·, ·)

4 Related Works

Adapting the classical conformal procedure to improve properties of the conformalized intervals
has been one of the primary focuses of recent literature. Noteworthy contributions—including CF-
GNN [28] and ConTr [26]—approach this problem by introducing modifications to the training stage
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of the procedure. As outlined in Section 2, a model is trained to produce a score function E(·, ·; f).
The model f usually depends on a set of model parameters, e.g., neural network parameters θ.
Denote the trained model f by fθ. CF-GNN and ConTr retrain or fine-tune the model by using
a carefully constructed loss function, which may aim to produce narrower prediction intervals or
prediction sets of reduced cardinality in classification problems. This process generates a new set of
model parameters θ′. The new model fθ′ is then plugged into the same predefined conformity score
function—namely CQR [28] or the adaptive prediction set score (APS) [26]—to produce E(·, ·, fθ′).

There are two primary limitations. First, the score function imposes constraints on the properties
of conformalized intervals as explained in Section 2. Our approach introduces more flexibility by
constructing a family of generalized score functions that is a superset of {E(·, ·; fθ) : θ ∈ Θ}, where
Θ is the parameter space of the training model. This family is strategically designed to contain an
oracle conformity score ideally suited to the task at hand, e.g., achieving exact conditional coverage.
Second, current methodologies necessitate fine-tuning or retraining models from scratch, requiring
both access to the training model and significant computational resources. In contrast, our boosted
conformal method operates directly on model predictions and circumvents these issues.

Conditional coverage of conformalized prediction intervals has also attracted significant interest,
characterized by efforts to establish theoretical guarantees and achieve numerical improvements.
Prior work established an impossibility result [8, 20], which states that exact conditional coverage
in finite samples cannot be guaranteed without making assumptions about the data distribution. Sub-
sequently, Gibbs et al. [27] developed a modified conformal procedure that guarantees conditional
coverage for predefined protected sub-groups, i.e. subsets of the feature space. Our approach dif-
fers from the previous works by introducing a numerical method directly aimed at improving the
conditional coverage, P(Y ∈ Cn(X)|X = x), across all potential values of x.

5 Boosting for conditional coverage

Maintaining valid marginal coverage, our goal is to produce a prediction interval Cn obeying

P(Y ∈ Cn(Xn+1)|Xn+1 = x) ≈ 1− α (13)

for all possible values of x. To this end, we present a loss function that quantifies the conditional
coverage rate of any prediction interval. Requiring merely a datasetD and a prediction interval Cn(·)
as inputs, it also serves as an effective evaluation metric, which may be of independent interest.

5.1 A measure for deviation from target conditional coverage

From now on, we let E be the score function E(·, ·; f). SetD = {(Xi, Yi)}ni=1 and denote by Cn(·)
the conformalized prediction interval constructed from E. We shall assess the deviation of Cn(·)
from the target conditional coverage by means of Contrast Trees [21]. As background, a contrast
tree iteratively identifies splits within the feature space X in a greedy fashion, aiming to maximize
absolute within-group deviations from the target conditional coverage rate (1−α). For a subset R of
the data point indices [n], let DR = {Xj , Yj}j∈R. The absolute within-group deviation is computed
as

d (Cn(·);DR) =
∣∣∣|R|−1∑

j∈R1(Yj ∈ Cn(Xj))− (1− α)
∣∣∣ . (14)

The overall empirical maximum deviation is then defined as

ℓM (E;D) = max1≤m≤Md
(
Cn(·);DR̂m

)
, (15)

where R̂1 ∪ · · · ∪ R̂M is a partition of [n], which itself depends on E and D. Specifically, it is
computed by running a contrast tree for M iterations. At each iteration, the algorithm not only seeks
to isolate regions with large deviations but also discourages splits where any subset R̂m is too small.

To update score functions via gradient boosting as described in (11), we would need a differentiable
approximation of the maximum deviation. To this end, we construct approximations for the follow-
ing three components of the loss function. With an abuse of notation, in subsequent discussions, we
shall employ the same notations to denote these differentiable approximations.

1. Approximation for the prediction interval Cn(·) in (14): the prediction interval is formu-
lated as (7) for the generalized Local score, and as (10) for the generalized CQR score.
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Denote the upper and lower limits of Cn(·) by u(·) and l(·). We approximate the empirical
quantile Q1−α(E, I2) in u(·) and l(·) with a smooth quantile estimator Qs

1−α. Given r
scalars {zi}ri=1, Qs

1−α is constructed as:

Qs
1−α({zi}ri=1) := ⟨HD(r), s(z)⟩, (16)

where ⟨·, ·⟩ represents the dot product. Here, HD(r) = [Wr,1, ...,Wr,r] is the weight
vector corresponding to the Harrel-Davis distribution-free empirical quantile estimator
[1], and s(z) is a differentiable ordering {z̃(i)}ri=1, arranged in the ascending order. In
practice, the derivative of s(z) with respect to each zi is given by the package devel-
oped in [19]. This approach is a smooth approximation of the Harrel-Davis quantile
estimator QHD

1−α, constructed as a linear combination of the order statistics, QHD
1−α =

⟨HD(r), {z(i)})⟩ =
∑r

i=1Wr,iz(i), where Wr,i takes the value I(1−α)(r+1),α(r+1)(i/r) −
I(1−α)(r+1),α(r+1)((i− 1)/r) and Ia,b(x) represents the incomplete beta function.

2. Approximation for absolute deviation di (14): the indicator function in (14) can be approx-
imated by the product of two sigmoid functions,

1(Yj ∈ Cn(Xj)) = 1(u(Xj)− Yj ≥ 0)1(Yj − l(Xj) ≥ 0)

≈ Sτ1(u(Xj)− Yj)Sτ1(Yj − l(Xj)),

where τ1 is a parameter, trading off smoothness and quality of the approximation. The
sigmoid function Sτ1(x) is defined as Sτ1(x) = (1 + e−τ1x)−1.

3. Approximation for maximum deviation: we employ a log-sum-exp function [2] to derive
the differentiable approximation of ℓM as

ℓM (E;D) := τ2
−1 log

∑M
m=1 exp (τ2dm(Cn(·);Dm)), (17)

where τ2 is a parameter, serving the same purpose as τ1.

Here, we demonstrate calculating the derivative of the smooth approximation (17) with respect to
each component of the generalized Local score, expanding it as follows:

ℓM (E;D) = τ2
−1 log

M∑
m=1

exp
(
τ2

∣∣∣|Rm|−1∑
j∈Rm

Sτ1(u(Xj)− Yj)Sτ1(Yj − l(Xj))− (1− α)
∣∣∣),

where
Sτ1(u(Xj)− Yj) =

(
1 + exp

[
−τ1(µj +Qs

1−α({Ei}ni=1)σj − Yj)
])−1

,

Sτ1(Yj − l(Xj)) =
(
1 + exp

[
−τ1(Yj − µj +Qs

1−α({Ei}ni=1)σj)
])−1

,

with µi = µ(Xi), σi = σ(Xi), Ei = |Yi − µi|/σi. As a result, for each feature Xi within D, we
can evaluate ∂ℓM (E;D) /∂µi and ∂ℓM (E;D) /∂σi via the chain rule.

5.2 Boosting score functions for conditional coverage

Since the empirical maximum deviation ℓM (15) is non-differentiable, we opt for the differentiable
approximation during the gradient boosting step (11). Nonetheless, we utilize the original ℓM to
select the number of boosting rounds as in step (12) and to evaluate the conditional coverage of the
conformalized prediction interval on the test set.

5.2.1 Theoretical guarantees

The oracle score function achieving conditional coverage as defined in (13) belongs to both proposed
generalized score families.
Proposition 5.1 (Asymptotic expressiveness). Let {Xi, Yi}ni=1 be i.i.d. with continuous joint prob-
ability density distribution. Under the split conformal procedure, for any target coverage rate 1−α,
as n→∞, there exists (µ∗, σ∗) and (µ∗

1, µ
∗
2, σ

∗) such that the corresponding generalized Local (6)
and CQR (9) score functions recover conditional coverage at rate 1− α, as defined in (13).

It goes without saying that there is no reason to assume that the optimal µ∗ corresponds to the
conditional mean, median or any quantile of Y given X , or that the optimal σ∗ corresponds to the
standard deviation or the mean absolute deviation of Y given X , as in the original Local score (3).
That said, our greedy strategy has no guarantee on global optimality and this is why the choice of
the starting point—whether it is the Local or CQR score function—plays a role in the performance.
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Figure 3: Comparison of test set conditional coverage evaluated on the dataset meps-19: (a) shows
the classical Local-type conformal procedure and (b) our boosted Local-type conformal procedure.
The target miscoverage rate is set to α = 10% (red). Miscoverage rate is computed at each leaf of
the contrast tree, constructed to detect deviation from the target rate. Each leaf node is labeled with
its size, namely, the fraction of the test set it represents.

Table 1: Test set maximum deviation loss ℓM evaluated on various conformalized intervals. The
best result achieved for each dataset is highlighted in bold.

Max. Conditional Coverage Deviation (%), target miscoverage α = 10%

Dataset Method Improvement Method ImprovementLocal Boosted CQR Boosted
bike 10.979 5.638 -48.65% 4.934 4.925 -0.17%
bio 5.303 4.862 -8.31% 5.069 4.700 -7.29%

community 25.755 13.466 -47.71% 12.688 12.105 -4.59%
concrete 10.740 8.763 -18.40% 9.039 8.265 -8.56%
meps-19 15.357 5.656 -63.17% 5.507 5.507 -0.00%
meps-20 16.939 6.998 -58.69% 7.614 7.184 -5.65%
meps-21 17.627 7.832 -55.57% 8.165 8.067 -1.20%

5.2.2 Empirical results on real data

We apply our boosted conformal procedure to the 11 datasets previously analyzed in [23, 18, 22].
Details on the datasets are provided in Section A.6 in the Appendix. In each dataset, we randomly
hold out 20% as test data. All experiments are repeated 10 times, starting from the data splitting.
We refer to Section A.7 for details on the models and hyper-parameters we employ for the training
and boosting stages.

We evaluate the conditional coverage of the prediction intervals as the maximum within-group devi-
ations across a partitioned test set (15). This partition is obtained through a contrast tree algorithm
described in Section 5.1. Figure 3 illustrates the comparison between miscoverage rates of predic-
tion intervals at each leaf of the contrast tree. These intervals are derived under the classical Local
conformal procedure and our boosted conformal procedure. Notably, the conditional coverage of
the boosted prediction interval more closely aligns with the target rate 1− α.

The experiment results summarized in Table 1 indicate that applying boosting significantly enhances
the performance of the baseline Local procedure. In contrast, boosting on CQR does not yield sig-
nificant improvements—a sign that CQR already targets conditional coverage. (Before boosting, the
prediction intervals generated by the baseline Local procedure exhibit conditional coverage devia-
tions up to three times greater than those of the baseline CQR procedure.) It is noteworthy, however,
that after boosting, the conditional coverage of the Local procedure improves to a level comparable
to that of the boosted CQR procedure. While generally slightly less effective, nevertheless surpasses
the performance of the boosted CQR procedure in two cases. Results on the remaining datasets are
deferred to Tables A2 and A3.
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6 Boosting for length

We begin by specifying the oracle prediction interval with minimum length. For a random variable
Z, the High Density Region (HDR) at a specified significance level α, denoted as HDRα(Z), is
defined as the shortest deterministic interval that covers Z with probability at least 1 − α. The
boundaries of HDRα(Z), the lower limit Ql(α) and the upper limit Qu(α), obey the conditionP(Z ∈
[Ql(α), Qu(α)]) ≥ 1− α. For a pair of (X,Y ) drawn from P , for every value of x ∈ Rp, the oracle
prediction

interval at that point is expressed as

HDRα(Y |X = x) =
[
Ql(α)(Y |X = x), Qu(α)(Y |X = x)

]
. (18)

Before introducing the boosting strategy, we present a word of caution against optimizing exclu-
sively for this objective. Importantly, to maintain valid marginal coverage, the shortest prediction
interval is prone to overcover when the spread of Y |X (the conditional distribution of Y given X)
is small, and undercover when the spread of Y |X is large. This may be undesirable.

Similar to Proposition 5.1, we can show that the generalized score families

exhibit the necessary expressiveness to contain the oracle conformity score, achieving optimal length
while ensuring valid marginal coverage. The formal proof is deferred to Section A.3.

6.1 A measure for length

Consider a dataset D = {(Xi, Yi)}ni=1 and a score function E. Denote the corresponding confor-
malized prediction interval by Cn(·), with its quality measured by the average length:

ℓL(E;D) = n−1∑n
i=1|Cn(Xi)|. (19)

To derive a differentiable approximation of ℓL, we approximate the empirical quantile Q1−α in the
conformalized intervals (7) and (10) with the smooth quantile estimator Qs

1−α constructed in (16).
Here, we demonstrate calculating the derivative of the smooth approximation of ℓL with respect to
each component of the generalized Local score, expanding it as follows based on the previously
outlined approximation steps:

ℓL (E;D) = 2σ̄Qs
1−α({Ei}ni=1), Ei = |Yi − µi|/σi,

with µi = µ(Xi), σi = σ(Xi), σ̄ = n−1
∑n

i=1 σi. As a result, for each feature Xi within D, we
can evaluate ∂ℓL (E;D) /∂µi and ∂ℓL (E;D) /∂σi via the chain rule. For instance,

∂ℓL (E;D)
∂µi

= −2σ̄
∂Qs

1−α({Ej}nj=1)

∂Ei

sign(Yi − µi)

σi
.

6.2 Empirical results on real data

We apply our boosted conformal procedure to the same datasets described in Section 5.2.2. De-
tailed information on the models and hyperparameters used during the training and boosting stages
can be found in Section A.7. Partial experiment results are summarized in Table 2. Notably, the
boosting performance highlighted in bold exhibits significant improvement compared to previously
documented results [17, 23]. We see a pronounced enhancement with the blog dataset; before boost-
ing, the Local prediction intervals are on average 42% longer than those generated by CQR. After
boosting, these intervals outperform the boosted CQR intervals by 32%. Using CQR as the baseline
also yields substantial improvements, a decrease in averaged length exceeding 10% in six out of the
eleven datasets. The meps-21 dataset, in particular, shows an improvement of up to 18% relative
to the baseline. Results on the remaining datasets can be found in Tables A4 and A5. Figure 4
compares the conformalized prediction intervals derived from baseline Local and CQR scores with
those obtained from the boosted scores. To effectively visualize the impact of boosting, we conduct
a regression tree analysis on the training set to predict the label Y , setting the maximum number
of tree nodes to four. This regression tree is then applied to the test set, allowing for a detailed
comparison of the prediction intervals across each of the four distinct leaves.
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Figure 4: Comparison of test set average interval length evaluated on the meps-19 and blog datasets:
classical Local and CQR conformal procedure versus the boosted procedures (abbreviated as ‘Lo-
calb’ and ‘CQRb’) compared in each of the 4 leaves of a regression tree trained on the training set
to predict the label Y . A positive log ratio value between the regular and boosted interval lengths
indicates improvement from boosting. The target miscoverage rate is set at α = 10%.

Table 2: Test set average interval length ℓL evaluated on various conformalized prediction intervals.
The best result achieved for each dataset is highlighted in bold.

Average Length, target miscoverage α = 10%

Dataset Method Improvement Method ImprovementLocal Boosted CQR Boosted
blog 2.056 0.972 -52.74% 1.445 1.434 -0.71%

facebook-1 1.896 1.383 -27.03% 1.198 1.072 -10.47%
facebook-2 1.854 1.363 -26.51% 1.200 1.075 -10.41%

meps-19 2.070 1.685 -18.60% 2.554 2.136 -16.35%
meps-20 2.081 1.836 -11.80% 2.667 2.357 -11.62%
meps-21 2.063 1.795 -12.99% 2.585 2.105 -18.55%

7 Discussion

We introduced a post-training conformity score boosting scheme aiming to optimize for conditional
coverage or length of the conformalized prediction interval. An intriguing avenue for future explo-
ration involves simultaneously optimizing both length and conditional coverage, potentially trading
off these objectives by incorporating user-specified weights [29]. Additionally, we can readily adapt
our procedure to meet various application-specific objectives. For instance, we can optimize for con-
ditional coverage on predefined feature groups, a common task in enhancing fairness in distributing
social resources across different demographic groups [27]. Similarly, we can modify our procedure
to reduce the length of prediction intervals for predefined label groups, which can be seen as reallo-
cating resources to decrease uncertainty for certain groups at the expense of higher uncertainty for
other groups [26]. Candidate loss functions tailored to these objectives are detailed in Section A.1.
Lastly, the primary emphasis of this paper centers on the design of the conformity score boosting
scheme and formalizing the optimization of conditional coverage in mathematical terms, leaving
room for computational optimization to enhance performance and runtime efficiency. In essence,
the gradient boosting algorithm in our procedure can be replaced with any gradient-based machine
learning model. Thus, another interesting future direction would be to explore whether alternative
algorithms could enhance performance.
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A Appendix

A.1 Candidate loss functions for additional application-specific objectives

Conditional coverage on predefined feature groups: this task can be viewed as a specialized ap-
plication within our broader strategy of boosting for conditional coverage, as detailed in Section 5.
There, the primary challenge was to develop a loss function that accurately measures deviations from
the target conditional coverage rate. We achieved this by using contrast trees to identify partitions in
the feature space that maximize these deviations, effectively identifying subgroups in need of pro-
tection. This process is simplified when the partitions correspond to prespecified groups, allowing
us to continue using the empirical maximum deviation as a candidate loss function.

Consider a dataset D = {(Xi, Yi)}ni=1 and a score function E. Denote by Cn(·) the conformal-
ized prediction interval constructed from E. Let G1, . . . , GM be prespecified feature index groups.
Within each set Di = {(Xj , Yj)}j∈Gi , compute the absolute deviation di as

di (Cn(·);Di) =

∣∣∣∣ 1

|Gi|
∑

j∈Gi
1(Yj ∈ Cn(Xj))− (1− α)

∣∣∣∣ . (20)

The overall empirical maximum deviation is then defined as

ℓ (E;D) = max1≤i≤Mdi (Cn(·);Di). (21)

Interval length conditional on predefined label groups: for a dataset D = {(Xi, Yi)}ni=1 and a
score function E, let Y1, . . . ,YM be the prespecified label groups. A natural minimization objective
for balancing uncertainty among these groups is defined as:

ℓ(E;D) =
M∑
i=1

wi
1∑n

j=1 1(Yj ∈ Yi)

n∑
j=1

1(Yj ∈ Yi)|Cn(Xj)|,

where (w1, . . . , wM ) represents a set of user-specified weights.

A.2 Proof of Proposition 5.1

Our proof relies on the following lemma.
Lemma A.1 (Expressiveness). Given any sample pair X and Y with a continuous joint probability
density distribution, and a prediction interval [cl(·), cu(·)] with marginal coverage equal to 1 − α,
there exist specific function sets: (µ(·),σ(·)) for the Local type, and (µ1(·),µ2(·),σ̃(·)) for the CQR
type, such that asymptotically:

1. The conformalized prediction interval (7), derived using the generalized Local type confor-
mity score fµ,σ , accurately recovers [cl(·), cu(·)].

2. Similarly, the conformalized prediction interval (10), based on the generalized CQR type
conformity score Eµ1,µ2,σ̃ , also recovers [cl(·), cu(·)].

Proof of Lemma A.1. Recall that the generalized Local score (6) characterized by (µ, σ) takes the
form

Eµ,σ(x, y) =
|y − µ(x)|

σ(x)
. (22)

Asymptotically, the conformalized prediction interval is given by

[µ(X)−Q1−α(Eµ,σ)σ(X), µ(X) +Q1−α(Eµ,σ)σ(X)] . (23)

Here, Q1−α represents the population quantile. Set

µ(x) =
cl(x) + cu(x)

2
, σ(x) =

cu(x)− cl(x)

2
.

By assumption, we have

P(Y ∈ [cl(X), cu(X)]) = 1− α.
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With a simple change of variables, the above inequality is equivalent to

P

(∣∣∣∣Y − µ(X)

σ(X)

∣∣∣∣ ≤ 1

)
= 1− α.

In other words, this is equivalent to

Q1−α(Eµ,σ) = 1.

We have thus proved the result for the generalized Local type conformity score Eµ,σ . In the same
spirit, we can prove the result for the generalized CQR type conformity score Eµ1,µ2,σ̃ by taking

µ1 = cl +
cu(x)− cl(x)

2
, µ2 = cu −

cu(x)− cl(x)

2
, σ̃ =

cu(x)− cl(x)

2
.

Recall that a generalized CQR score function (9) characterized by (µ1, µ2, σ) is defined as:

Eµ1,µ2,σ(x, y) = max {µ1(x)− y, y − µ2(x)} /σ(x), (24)

which leads to the asymptotic conformalized prediction intervals of the form

[µ1(X)− σ(X)Q1−α(Eµ1,µ2,σ), µ2(X) + σ(X)Q1−α(Eµ1,µ2,σ)]. (25)

Plugging in µ1, µ2, σ̃ defined above, we immediately have

P(Y ∈ [cl(X), cu(X)]) = 1− α

⇐⇒ P(cl(X)− Y ≤ 0, Y − cu(X) ≤ 0) = 1− α

⇐⇒ P

(
cl(X)− Y + σ̃(X)

σ̃(X)
≤ 1,

Y − cu(X) + σ̃(X)

σ̃(X)
≤ 1

)
= 1− α

⇐⇒ Q1−α(Eµ1,µ2,σ(x, y)) = 1.

Proof of Proposition 5.1. It suffices to take cl(x) = Qα/2(Y |X = x), cu(x) = Q1−α/2(Y |X = x)
and apply Lemma A.1.

A.3 Boosting for length: theoretical guarantees

Similar to Proposition 5.1, we show in Proposition A.2 below that the generalized Local and CQR
score families exhibit the necessary expressiveness to contain the oracle score, achieving optimal
length while ensuring valid marginal coverage.
Proposition A.2 (Asymptotic expressiveness). Under the assumptions of Proposition 5.1, for any
target coverage rate 1− α, as n→∞, the following statements hold true:

1. There exists (µ∗, σ∗) such that the corresponding generalized Local score function (6) re-
covers the shortest oracle prediction interval (18).

2. There exists (µ∗
1, µ

∗
2, σ

∗) such that the corresponding generalized CQR score function (9)
recovers the shortest oracle prediction interval (18).

Proof of Proposition A.2. It suffices to take cl(x) = Ql(α)(Y |X = x), cu(x) = Qu(α)(Y |X = x)
and apply Lemma A.1, where Ql(α) and Qu(α) are the lower and upper limits of the High Density
Region defined in (18).

A.4 CQR type conformity score boosting

A generalized CQR score function (9) is uniquely defined by a triple (µ1(·), µ2(·), σ(·)). We will
show how searching for a generalized CQR score can be reduced to searching for a Local generalized
score. To begin with, we shall say that score functions are equivalent if they recover identical
conformalized prediction intervals.
Definition A.3. Let {Xi, Yi}ni=1, (Xn+1, Yn+1) be i.i.d. with continuous joint probability density
distribution, and let [n] be partitioned into a training set I1 and a calibration set I2. Consider two
conformity score functions, E1 and E2, which produce conformalized prediction intervals C1(·) and
C2(·), respectively. For any target coverage rate 1− α, E1 and E2 are equivalent if C1(·) = C2(·)
when marginal coverage rates P(Yn+1 ∈ C1(Xn+1)) and P(Yn+1 ∈ C2(Xn+1)) match.
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Building on this definition, we are now equipped to establish the following equivalences:
Lemma A.4. Under the assumptions of Definition A.3, the following statements hold:

1. For the CQR-r score function defined in Section 2, there is an equivalent generalized Local
score function characterized by a pair (µ(·), σ(·)), where µ = (µ1 + µ2)/2, σ = (µ2 −
µ1)/2.

2. For any generalized Local score function characterized by the pair (µ(·), σ(·)), there is an
equivalent generalized CQR score function characterized by a triple (µ(·), µ(·), σ(·)).

The proof of the above Lemma is deferred to Section A.5. Leveraging these equivalences, we carry
out the boosted conformal procedure as follows: first, we initialize a triple µ

(0)
1 = q̂α/2, µ(0)

2 =

q̂1−α/2, σ(0)
1 = q̂1−α/2 − q̂α/2, which characterizes the CQR-r score function. Next, we find an

equivalent generalized Local score function characterized by a pair (µ(0), σ(0)) chosen according to
Lemma A.4. After τ boosting rounds, we obtain the boosted pair (µ(τ), σ(τ)) and the corresponding
score function. Finally, we recover an equivalent generalized CQR score function

E(τ)(x, y) = max
{
µ
(τ)
1 (x)− y, y − µ2

(τ)(x)
}
/σ

(τ)
1 (x),

characterized by the triple (µ1
(τ), µ2

(τ), σ1
(τ)) chosen according to Lemma A.4.

A.5 Proof of Lemma A.4

Recall that the generalized Local score (6) characterized by (µ, σ) takes the form

Eµ,σ(x, y) =
|y − µ(x)|

σ(x)
. (26)

The conformalized prediction interval is given by
[µ(X)−Q1−α(Eµ,σ, I2)σ(X), µ(X) +Q1−α(Eµ,σ, I2)σ(X)] . (27)

A generalized CQR score function (9) characterized by (µ1, µ2, σ) is defined as:
Eµ1,µ2,σ(x, y) = max {µ1(x)− y, y − µ2(x)} /σ(x),

which leads to conformalized prediction intervals of the form
[µ1(X)− σ(X)Q1−α(Eµ1,µ2,σ, I2), µ2(X) + σ(X)Q1−α(Eµ1,µ2,σ, I2)].

1. Plugging in the triple µ1(x) = q̂α/2, µ2(x) = q̂1−α/2, σ1(x) = q̂1−α/2 − q̂α/2, which
characterize the CQR-r score function, we have the conformalized prediction interval

[µ1(X)− σ1(X)Q1−α(Eµ1,µ2,σ1
, I2), µ2(X) + σ1(X)Q1−α(Eµ1,µ2,σ1

, I2)].

Set

µ(X) =
µ1(X) + µ2(X)

2
, σ(X) =

µ2(X)− µ1(X)

2
,

then the generalized Local conformity score Eµ,σ(x, y) = |y − µ(x)|/σ(x) recovers con-
formalized prediction intervals of the form

[µ(X)− σ(X)Q(Eµ,σ, I2), µ(X) + σ(X)Q(Eµ,σ, I2)]

=

[
µ1(X) + µ2(X)

2
− µ2(X)− µ1(X)

2
Q(Eµ,σ, I2),

µ1(X) + µ2(X)

2
+

µ2(X)− µ1(X)

2
Q(Eµ,σ, I2)

]
=

[
µ2(X)− (µ2(X)− µ1(X))

Q(Eµ,σ, I2)− 1

2
,

µ1(X) + (µ2(X)− µ1(X))
Q(Eµ,σ, I2)− 1

2

]
=

[
µ1(X)− σ1(X)

Q(Eµ,σ, I2)− 1

2
, µ2(X) + σ1(X)

Q(Eµ,σ, I2)− 1

2

]
.

From the monotonicity of the interval lengths with respect to the empirical quantiles, we
have that the two score functions are equivalent by Definition A.3.
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2. Let a generalized Local score function be Eµ,σ(x, y) = |y − µ(x)|/σ(x). Then it suffices
to observe that

|y − µ(x)| = max{y − µ(z), µ(x)− y}.

A.6 Additional information on real datasets

In Table A1, we provide the predicted label, dimensions, and source for each dataset. Data cleaning
and preprocessing are in accordance with the methods described by Romano et al. [17].

Table A1: Datasets for our empirical analyses, with the predicted label, number of samples (n), and
features (d).

Name Label n d Source
bike bike rental counts 10886 18 [9]
bio deviation of predicted from native protein structure 45730 9 [10]

blog number of comments in the next 24 hours 52397 280 [11]
community crime rate per community 1994 100 [7]

concrete concrete compressive strength 1030 8 [5]
facebook-1 Facebook comment volume 40948 53 [5]
facebook-2 Facebook comment volume 81311 53 [13]

meps-19 utilization of medical services 15785 139 [30]
meps-20 utilization of medical services 17541 139 [31]
meps-21 utilization of medical services 15656 139 [32]

star total student test scores up to the third grade 2161 39 [6]

All datasets, except for the meps and star data sets, are licensed under CC-BY 4.0. The Medical
Expenditure Panel Survey (meps) data is subject to copyright and usage rules. The licensing status
of the star dataset could not be determined.

A.7 Experimental Setup

In each dataset, we randomly hold out 20% as test data. The remaining data is divided into a training
set and a calibration set, each taking up a proportion of γ and 1 − γ. We explore training ratios γ
ranging from 10% to 90%. Results corresponding to the optimal value of the hyperparameter γ are
recorded in Table 1, following the practice of Sesia er al. [23].

In the training stage, we employ the random forest regressor from Python’s scikit-learn package to
learn the baseline Local score function. The hyperparameters are the package defaults, except for
the total number of trees, which we set to 1000, and the minimum number of samples required at a
leaf node, which we set to 40, as recommended by Romano et al. [17]. For the baseline CQR score
function, we adopt a black-box neural network quantile regressor with three fully connected layers
and ReLU non-linearities, following the practice of Sesia et al. [23]. In the boosting stage, we set the
hyper-parameters τ1, τ2 in the approximated loss (17) to 50. The approximated loss is then passed
to the Gradient Boosting Machine from Python’s XGBoost package along with a base conformity
score. We set the maximum tree depth to 1 to avoid overfitting and perform cross-validation for the
number of boosting rounds, as outlined in Section 3. All other hyperparameters are set to package
defaults.

All experiments were conducted on a dual-socket AMD EPYC 7502 32-Core Processor system,
utilizing 8 of its 128 CPUs each time. The runtime for each dataset and random seed varies by
dataset size, ranging from 10 minutes to 5 hours.

A.8 Additional results and error bars

In Tables A2 to A5, we present additional results on marginal coverage, maximum conditional
coverage deviation (ℓM ), and average interval length (ℓP ) for each real dataset (including those
not reported in Tables 1 and 2), both before and after boosting. Notably, in each case, boosting
is applied to optimize either conditional coverage or average interval length. As a result, the non-
targeted characteristic may or may not improve after boosting.
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Table A2: Additional information on conformalized intervals obtained before and after boosting for
conditional coverage with the Local conformity score as baseline. The target miscoverage rate is set
to α = 10%.

Dataset ℓL ℓM (%) Marginal Cov.(%)
Local Boosted Local Boosted Local Boosted

bike 1.775 2.201 10.979 5.638 89.927 89.646
bio 1.602 1.614 5.303 4.862 90.024 90.093

blog 2.080 3.403 51.353 48.591 89.995 90.040
community 1.824 10.759 25.755 13.466 90.376 89.549

concrete 1.058 1.062 10.740 8.763 90.583 91.359
facebook-1 1.896 4.790 26.020 25.917 90.201 90.056
facebook-2 1.881 2.273 42.807 42.437 89.966 89.989

meps-19 2.074 2.926 15.357 5.656 90.120 90.497
meps-20 2.102 2.778 16.939 6.998 89.963 90.031
meps-21 2.069 2.537 17.627 7.832 90.064 90.054

star 0.189 0.179 9.658 9.348 90.808 90.831

Table A3: Additional information on conformalized intervals obtained before and after boosting for
conditional coverage with the CQR conformity score as baseline. The target miscoverage rate is set
to α = 10%.

Dataset ℓL ℓM (%) Marginal Cov.(%)
CQR Boosted CQR Boosted CQR Boosted

bike 0.555 0.540 4.934 4.925 90.073 90.184
bio 1.518 1.515 5.069 4.700 89.841 89.853

blog 1.761 1.766 27.760 26.836 90.222 90.244
community 1.718 1.740 12.688 12.105 90.340 90.194

concrete 0.484 0.489 9.039 8.265 90.451 90.652
facebook-1 1.374 1.371 13.407 13.255 90.465 90.247
facebook-2 1.465 1.409 18.257 18.002 89.763 90.001

meps-19 2.784 2.784 5.507 5.507 90.257 90.257
meps-20 2.769 2.743 7.614 7.184 89.991 90.006
meps-21 2.834 2.815 8.16 8.067 90.169 90.067

star 0.199 0.209 9.728 9.630 91.085 91.339

Table A4: Additional information on conformalized intervals obtained before and after boosting for
length with the Local conformity score as baseline. The target miscoverage rate is set to α = 10%.

Dataset ℓL ℓM (%) Marginal Cov.(%)
Local Boosted Local Boosted Local Boosted

bike 1.775 1.360 22.590 19.616 89.927 89.862
bio 1.562 1.514 5.995 5.791 89.937 89.962
blog 2.056 0.972 52.440 54.858 89.988 89.978

community 1.728 1.678 26.066 24.822 89.499 89.323
concrete 1.010 0.698 11.029 10.518 90.631 90.728

facebook-1 1.896 1.384 26.020 34.259 90.201 89.944
facebook-2 1.854 1.363 42.624 50.697 90.020 89.972

meps-19 2.070 1.685 18.626 14.623 90.054 90.070
meps-20 2.081 1.836 17.897 14.643 89.869 89.849
meps-21 2.063 1.795 18.795 13.324 89.914 89.920

star 0.179 0.179 9.976 9.407 90.901 90.577
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Table A5: Additional information on conformalized intervals obtained before and after boosting for
length with the CQR conformity score as baseline. The target miscoverage rate is set to α = 10%.

Dataset ℓL ℓM (%) Marginal Cov.(%)
CQR Boosted CQR Boosted CQR Boosted

bike 0.553 0.489 9.530 10.092 90.041 90.418
bio 1.516 1.468 5.408 5.265 89.670 89.880

blog 1.445 1.434 29.875 34.011 90.149 90.260
community 1.693 1.699 14.006 13.536 89.499 89.699

concrete 0.391 0.393 10.342 10.700 88.932 89.223
facebook-1 1.198 1.073 20.132 30.901 89.937 90.013
facebook-2 1.200 1.075 29.233 34.475 90.035 90.010

meps-19 2.554 2.136 10.357 11.285 90.228 90.399
meps-20 2.667 2.357 10.826 10.720 89.875 89.838
meps-21 2.585 2.105 10.968 10.565 89.946 89.863

star 0.195 0.194 9.982 10.142 91.455 91.432

We have previously reported the evaluated losses ℓM and ℓL for each dataset, averaged over ten
random seeds. Tables A6 and A7 below detail the distribution of these evaluations, providing the
mean, 10% quantile, and 90% quantile for the test set deviations in conditional coverage (ℓM ) and
average interval length (ℓL). These statistics are derived from 110 test set evaluations across 11
datasets and 10 random training-test splits. We opt to report empirical quantiles instead of standard
deviations due to the asymmetric and non-Gaussian nature of the data.

Table A6: Distribution of the test set conditional coverage deviation ℓM evaluated on various con-
formalized prediction intervals across 11 datasets and 10 random training-test splits.

Max. Conditional Coverage Deviation (%), target miscoverage α = 10%

Statistics Method Method
Local Boosted CQR Boosted

mean 21.140% 16.319% 11.106% 10.771%
10% quantile 7.267% 4.604% 4.890% 4.910%
90% quantile 47.832% 44.712% 22.585% 18.697%

Table A7: Distribution of the test set average interval length ℓL evaluated on various conformalized
prediction intervals across 11 datasets and 10 random training-test splits.

Average Length, target miscoverage α = 10%

Statistics Method Method
Local Boosted CQR Boosted

mean 1.677 1.317 1.483 1.319
10% quantile 0.950 0.513 0.346 0.351
90% quantile 2.082 1.829 2.655 2.210

A.9 Experiments under different miscoverage rates

In Tables A8 and A9, we illustrate the performance of boosting for length with the Local conformity
score as baseline with miscoverage rates set to 5% and 20%, respectively.
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Table A8: Additional information on conformalized intervals obtained before and after boosting for
length with the Local conformity score as baseline. The target miscoverage rate is set to α = 5%.

Dataset ℓL ℓM (%) Marginal Cov.(%)
Local Boosted Improvement Local Boosted Local Boosted

bike 2.523 1.828 -27.54% 11.553 11.626 94.927 94.972
bio 1.881 1.801 -4.25% 5.013 4.694 94.857 94.802

blog 4.217 1.923 -54.39% 37.976 34.505 95.027 95.048
community 2.578 2.217 -13.99% 16.406 14.554 95.414 94.812

concrete 1.129 0.838 -25.80% 8.55 8.086 94.709 94.515
facebook-1 2.667 2.262 -15.18% 20.85 20.052 95.104 95.049
facebook-2 2.441 2.092 -14.30% 41.645 39.943 94.941 95.016

meps-19 3.618 2.825 -21.92% 10.515 9.178 95.005 95.008
meps-20 3.951 3.049 -22.84% 11.043 9.693 94.907 94.922
meps-21 4.030 3.033 -24.74% 8.918 8.910 95.061 95.026

star 0.207 0.207 -0.11% 6.57 6.906 95.358 95.289

Table A9: Additional information on conformalized intervals obtained before and after boosting for
length with the Local conformity score as baseline. The target miscoverage rate is set to α = 20%.

Dataset ℓL ℓM (%) Marginal Cov.(%)
Local Boosted Improvement Local Boosted Local Boosted

bike 1.312 0.983 -25.07% 24.649 28.561 79.403 80.152
bio 1.248 1.213 -2.80% 10.838 10.540 79.729 79.594

blog 1.904 0.513 -73.07% 45.813 64.360 79.756 79.920
community 1.337 1.234 -7.71% 25.047 28.831 79.674 79.674

concrete 0.833 0.549 -34.10% 13.831 20.177 80.728 80.825
facebook-1 1.624 0.747 -54.02% 29.384 47.994 80.190 79.731
facebook-2 1.580 0.749 -52.60% 36.488 62.070 79.890 79.930

meps-19 1.821 1.020 -44.03% 20.561 24.763 80.326 80.013
meps-20 1.843 1.095 -40.60% 19.137 24.194 79.684 79.823
meps-21 1.831 1.064 -41.86% 18.227 23.172 80.674 80.057

star 0.142 0.141 -0.71% 15.420 14.517 80.647 80.370

A.10 Training a gradient boosting algorithm with our custom loss functions

Our proposed boosted conformal procedure serves as a post-training step designed to refine the
conformity score E(·, ·; f) obtained during model training. This procedure can leverage pre-trained
models when available. In the absence of pre-trained models, we can alternatively train a gradient
boosting algorithm directly using our custom loss functions. For example, in the context of the local
score, we may initialize with µ(0) = 0, σ(0) = 1 and then apply our boosted conformal procedure.
As discussed in Section 7, this approach is flexible enough to replace gradient boosting with any
gradient-based algorithm, such as neural networks, trained under our custom loss functions. This
framework aligns with that of [26], which introduces a neural network trained with a custom loss
function to minimize the average prediction set size in classification tasks.

In Figure A1, we compare the performance of the two approaches optimizing for average interval
length, searching within the generalized Local score familyF defined in (6). The primary distinction
between the two procedures lies in the initialization: the first approach employs µ(0) = 0, σ(0) = 1,
while the second derives µ(0) and σ(0) from a trained random forests model. We run the experiments
on the meps-19 dataset and compare the performance across different splits of the training and cali-
bration data. In this context, the percentage of training data refers to the proportion of training data
within the combined training and calibration datasets. Our results indicate that cross-validation se-
lects a greater number of boosting iterations when we directly train the gradient boosting algorithm,
resulting in longer runtime. However, the average interval length and maximum conditional cover-
age deviation after boosting are notably smaller for the boosted conformal procedure we introduced
in this paper.
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Figure A1: Comparison of boosted interval length, marginal coverage, maximum conditional cov-
erage deviation (ℓM ), and runtime between direct training of a gradient-based algorithm (red) and
boosting on a pre-trained conformity score (blue).

1 2 3 4 5 6 7 8

1.43

1.44

1.45

1.46

1 2 3 4 5 6 7 8

0.045

0.05

1 2 3 4 5 6 7 8

10

20

Boosted Length Boosted Length SD Runtime

CV Validation

Ratio between training and validation data

Figure A2: Comparison of the average boosted length, standard deviation of boosted length, and
average runtime of the boosting procedure when selecting the optimal number of boosting rounds
using 5-fold cross-validation versus a hold-out validation set of varying sizes. Experiments are
conducted on the bike dataset, with a target miscoverage rate of α = 10%.

A.11 Selecting optimal boosting rounds via hold-out validation set

In our boosted conformal procedure, we use cross-validation on the training set to determine the
optimal number of boosting rounds, a process that can be time-consuming. An alternative approach
is to hold out a fraction of the training set for validation. While more computationally efficient, this
method introduces a trade-off: a smaller validation set can lead to greater variability in prediction
intervals and model performance, whereas a larger validation set may reduce the effective training set
size, potentially limiting the model’s performance. To explore this trade-off, we conduct experiments
on the bike dataset, optimizing for prediction interval length. We compare performance across two
settings: 5-fold cross-validation and a hold-out validation set, with the training-to-validation set ratio
ranging from 1:1 to 8:1. For each setting, we run 100 experiments, recording the average boosted
length, the standard deviation of boosted lengths, and the average runtime. The results are shown in
Figure A2.

A.12 Additional figures on individual datasets

In this section, we present a series of supplementary figures. First, we showcase the improvements in
conditional coverage achieved through the boosted procedure for each benchmark dataset. Figure A3
details results for datasets meps-20 and meps-21. Figure A4 details results for datasets community,
bike, and concrete.
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Next, we illustrate enhanced interval lengths. Figure A5 details results for datasets meps-20, meps-
21, and bike. Figure A6 details results for datasets facebook-1, facebook-2, and concrete. Finally, we
demonstrate in Figure A7 how cross-validating the number of boosting rounds effectively prevents
the gradient boosting algorithm from overfitting.
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Figure A3: See the caption of Figure 3 for details.
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Figure A4: See the caption of Figure 3 for details.

22



1 2 3 4
1

2

3

4

1 2 3 4

0

0.1

0.2

0.3

1 2 3 4

2

4

6

1 2 3 4

0

0.1

0.2

0.3

Local Power Local Log Ratio CQR Power CQR Log Ratio

Classical Boosted Log Ratio

regression tree leaf

(a) meps-20 dateset.

1 2 3 4
1

2

3

4

1 2 3 4

0

0.1

0.2

0.3

0.4

1 2 3 4

2

4

6

1 2 3 4

0.1

0.15

0.2

0.25

0.3

Local Power Local Log Ratio CQR Power CQR Log Ratio

Classical Boosted Log Ratio

regression tree leaf

(b) meps-21 dateset.

1 2 3 4

0.5

1

1.5

2

1 2 3 4

0

0.5

1

1 2 3 4

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4
−0.3

−0.2

−0.1

0

0.1

Local Power Local Log Ratio CQR Power CQR Log Ratio

Classical Boosted Log Ratio

regression tree leaf

(c) bike dateset.

Figure A5: See the caption of Figure 4 for details.
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Figure A6: See the caption of Figure 4 for details.
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Figure A7: Empirical maximum deviation ℓM across T = 500 boosting rounds evaluated on dataset
concrete under random seeds 7, 8, 9, train-calibration ratio 60% : The left panel illustrates the cross-
validated loss, computed as the average across k = 3 sub-calibration folds. The right panel displays
the test loss. The optimal number of boosting rounds τ , determined through cross-validation as
specified in (12), is highlighted in red.
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